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POTENTIAL AND RAYLEIGH-SCATTERING THEORY
FOR A SPHERICAL CAP*
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JOHN W. MILES
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Abstract. Harmonic functions are constructed for spherical-harmonic prescriptions
of either a potential or its normal derivative on a spherical cap. The dipole-moment
tensor and the Rayleigh-scattering properties of a spherical bowl, including the limiting
case of a Helmholtz resonator, are determined. The results are uniformly valid with
respect to the polar angle of the cap and resolve certain discrepancies in the existing
literature.

1. Introduction. We consider harmonic functions of the form
co n

\p(r, e, 4>) = 0)(C7 cos m4> + S" sin rrup), (1.1)
n — 0 to —0

where (r, 6, <t>) are spherical polar coordinates, and either i/<™ (Dirichlet problem) or
dtfsZ/dr (Neumann problem) must reduce to the Legendre function P™ (cos 6) on a
spherical cap (= bowl), r = 1 and 0 < 6 < (see Fig. 1). We refer all lengths to the
dimensional radius of the sphere, say a.

The solution of the Dirichlet problem for m = n = 0 was given originally by Kelvin
[1], who determined the charge distribution on a conducting bowl through the spherical
inversion of a disk. Ferrers [2] subsequently obtained the general axisymmetric solution
of the Dirichlet problem through an expansion in zonal harmonics; Gallop [3] obtained
similar results through inversion. Basset [4] obtained the solution for a conducting
bowl in a transverse field (Dirichlet problem for m = n = 1) through inversion. Basset
also claimed to obtain the solution of the hydrodynamic problem of a spherical bowl
in an otherwise uniform flow (the Neumann problem for n = 1) through radial dif-
ferentiation of the solution to the Dirichlet problem, although he did not give explicit
results. In fact, this procedure yields physically unacceptable singularities at the rim
of the bowl (Rayleigh [5] noticed the flaw in the analogous procedure for the diffraction
problem for an aperture in an infinite screen). Collins [6] obtained general solutions
of both the Dirichlet and Neumann problems for a spherical cap and the correct solution
for the hydrodynamic problem.1

* Received February 16, 1970.
1 Alternative solutions of both the Dirichlet and Neumann potential problems may be obtained by

separation of variables in toroidal coordinates (Hobson [12, Sees. 267, 268]); see, e.g., Neumann's [13]
solution of Kelvin's problem. This procedure is, in principle, more direct than the expansions in spherical
harmonics adopted here; however, it is less flexible in practice in consequence of the recondite character
of toroidal functions vis-a-vis spherical harmonics.
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Fig. 1. Spherical bowl.

The principal application of the harmonic functions of (1.1), aside from the afore-
mentioned potential problems, is to Rayleigh scattering by a spherical cap, including
the limiting case of a Helmholtz resonator (dx —> ir). By Rayleigh scattering, we imply

k = 2jra/X « 1, (1.2)

where X is the length of the incident wave. Resonance occurs at k = ka , where [7]

K = (3/3/2*-) + 0(/f) 08 a ir - -» 0). (1.3)
This problem has been attacked previously by Sommerfeld [8], whose incomplete analysis
is entirely wide of the mark, by Morse and Feshbach [9], who considered only the Helm-
holtz resonator and whose end results are marred by algebraic errors, and by Collins [10],
who overlooked the effect of resonance on diffraction and whose results are not uniformly
valid as /S —» 0.

We construct 4>1 (in Sees. 2 and 3) for arbitrary m and n by generalizing the solution
given by Ferrers [2] and use the results to determine (in Sec. 5) uniformly valid (with
respect to dx) approximations to the scattering amplitude and scattering cross-section
for plane-wave diffraction. We also consider (in Sec. 4) the hydrodynamic problem and
calculate the dipole-moment tensor for a bowl in a uniform flow. This last result, although
of little direct interest for a real fluid, enters the Rayleigh-scattering problem and also
illustrates an interesting theoretical point raised by Taylor [11] in connection with
the virtual mass of a body that contains nearly closed cavities.

2. Dirichlet problem. Let ^ be an harmonic function of the form (1.1) for which
\pZ satisfies

K(.r, 6) = PI (cos Q) (r = 1, 0 < 8 < 8,) (2.1a)

on the cap, exhibits the source-like behaviour

*"(r, e) = 0(l/r) (r », 0 < 6 < r) (2.1b)
at infinity, and is continuous and differentiable except at the rim of the cap (r = 1,
8 = 0j), where it must be bounded. We seek the continuation of <PZ over the unit sphere,
say

>A"(1, 0) = Ml) (M = COS 6, fh - cos di). (2.2)
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The solution of the axisymmetric problem (for which we omit the superscript, m = 0)
is given by [2]2

Mr, e) = £ jp.GO (r ^ 1) (2.3)

and

(P„(m, Hi) = (21/2/x)(R f (cos a — cos 8) 1/2 cos (n + %)a da (2.4a)
Jo

= Z S„,(m.)P.(m) (2.4b)
«-0

= P„(m) (mi < M < 1), (2.4c)
where (R implies the real part of, (2.4c) follows from (2.4a) by virtue of the Mehler-
Laplace representation of P„(m)>

„ . , „ , . 1 Tsin (n - s)61 sin (n + s + 1)0,1
s„.(mO = s«0»i) = - [_ „_s + n + s + i J •

and the first term in the square brackets reduces to for n - s. We note the identity

(P„(—fi, —mi) = (—)"(2W2/ir)<R f (cos 9 — cos a)~1/2 sin (n + \)ada (2.6a)
J 81

= (-yPM (-1 < h < mO (2.6b)
and the particular solutions

9 /l — \1/2
<P0(m, mi) = tan-1(- (-1 < m < Mi) (2.7)

7T \Ml — M/

and

<P.(m, Mi) = ~ rMtan_1(^ —) + (1 — Mi)1/2(Mi — m)1/21 (—1 < m < Mi), (2.8)
T L VI — M/ J

where, here and subsequently, the arctangent is in [0, fir].
We generalize (2.3) and (2.4) by constructing

and

K(r, 6) = £>m[^„(r, 0) - £ -4"(Mi)^(r, 0)] (2.9)

<p:0», Mi) = £>m|jp*(M, Mi) — A:-(mi)(P,(m, Mi)J (2.10a)

= Z §"(mi)P"(m) ( C. = Sn. - £ (2.10b)
*-TO \ 7-0 /

= P:(m) (m, < M < 1), (2.10c)

2 The expansion of (2.3) may be summed to obtain an integral representation of ^„(r, 0), but the
result is of limited interest in the present context.
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where the operator SDm is defined by

®mPM = (_)-(i - „T/2(d/d„rPM = p:m, (2.ii)
and the A",- are determined by the requirement that >PZ be bounded as r —* 1 and m t Mi •
Substituting (2.4a) into (2.10a), we find that this last requirement implies

[TO—1
cos (n + |)a — 23 Anj(m) cos (j + |)a

I- 0

(a = 6i , p = 0, 1, • • • , to — 1). (2.12)

Setting m = 1 in (2.10)-(2.12), we obtain

S« - S„, — So, sec cos (n + §)0, (2.13a)

and
<PI(m> Mi) = — (1 — ^2)1/2(d/dfi)[(fh) — (P0(m, Mi) sec cos (n + j)^]. (2.13b)

The simultaneous equations implied by (2.12) for m > 1 may be circumvented
by invoking Collins's [6] general solution to obtain an integral representation of S" ;
however, the foregoing results suffice for the subsequent investigation.

3. Neumann problem. Let ip be an harmonic function of the form (1.1) for which
\p™ satisfies

di1(r, 6)/dr = P~ (cos 6) (r = 1, 0 < 9 < 6, , n > 1) (3.1a)

on the cap, exhibits the dipole-like behaviour

iHr, 6) = 0(l/r2) (r -» », 0 < 9 < x) (3.1b)
at infinity, and is continuous and differentiable except at the rim of the cap, where it
must be bounded. We seek the continuation of d\f/mJdr over the unit sphere, say

WJdr)rmi = P:(m, mi). (3.2)

The potential \pmn is of direct interest only for n > 1, but we consider also the function
Po(mj Mi) in anticipation of the Helmholtz-resonator problem (see Sec. 5).

The solution of the Dirichlet problem, (2.3), together with the consideration that
dip/dr may be singular like (mi — m)_i/2 as r —> 1 and n f /*, , suggests that the axisym-
metric function P„(m> mi) may be constructed by combining <P„(m> mi) and

(R(cos a - cos 9)~1/2 = 2,/2 £ cos (s + §)a P.ijx) (3.3)
8-0

in such a way as to render dxpn/dr continuous across r = 1. This last consideration
requires the elimination of the source (s = 0) term in the expansion of P„(m, mi) in
P.GO, as anticipated in (3.1b); accordingly, we consider

P*(m> Mi) = <?n(M. Mi) — S„0(mi)(1 + Mi)"1/2<R(mi — m)_1/2 (3.4a)

= S S„.(m,)P,(m) (3.4b)
M-l

= P»(m) (mi < m < 1), (3.4c)



POTENTIAL AND RAYLEIGH-SCATTERING THEORY 113

where

S„.(mO = Sn,Oi) — S„0(mi) sec §0, cos (s + 1)0! (3.5a)

= Sln. (3.5b)
The corresponding potential is given by

Mr, 0) = i: Sn,w{~(s + £ v" )p.W + (r * 1), (3.6)

where the additive constant in r > 1 vanishes in consequence of (3.1b), and the additive
constant is determined by the requirement that

ir„(/i, mi) = A(l —, $) ~ ^»(1 + , 6) (3.7a)

= E [(2s + 1)/«(« + 1)]SMP.V) + *. (3.7b)
8-1

must vanish for — 1 < m < Mi • Relegating the detailed calculation to the appendix, we
obtain

= Snodi tan §0! + (dSn./ds)._0 (3.8a)

= n~\n + irxS0n (n > 1) (3.8b)

= ir-1(0i tan f 0i + 0j — sin 00 (n = 0). (3.8c)

An integral expression for ir„ , ju, < /u < 1, is given by (All) in the appendix; however,
the representation (3.7b) is more useful in typical applications. We note the particular
solutions

P, \-l/2<*• »■> -(hi)'" - - -)■
(-1 < M < A*i) (3.9)

and

P „o -1 [, '-1 s$
Referring to (2.9)-(2.11), we construct

P»(m. Mi) = £>m|^P„(/i, Mi) — Z -B"(mi)(P,(m, Mi)J (w > 1) (3.11a)

= E s:.(mOp:(m) (sr. « §„. - E bz §,.) (3.11b)
* i — 0 '

= p:m o«. < m < i) (3.iic)
and

0) = E s:.(Wl){ (s +-i1r)."v""1}p':(M) (r * 1), (3.12)

where the B ™ are determined by (3.1b) and the requirement that the singularity in
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dtpZ/dr as r —> 1 and m T Mi must be integrable. Invoking the latter requirements, we
obtain

S„" = S»o - ES.o = 0 (m > 1) (3.13a)
J'-O

and

(d/dotf [cos (n + \a) — Bnj COS (;" + |)aj = 0

(p = 0, 1, • • • , m - 2, m > 2). (3.13b)

Setting m = 1 in (3.10) and (3.12a), we obtain

S„, = Sna (S„o/ Soo) S0« (3.14a)

and

P^(m, Mi) = —(1 — v )U~(d/d}i.){(?Jji, jUi) — (S„o/ S0o)-Po(m. Mi)]- (3.14b)

We show in the appendix that

Mi) ̂  ^(1~, ^) - «1+, 0) (3.15a)

= £ [(2s + l)/s(s + 1)]S™(m.)^:(m) (3.15b)
8 — m

vanishes for — 1 < m < Mi ■
The simultaneous equations implied by (3.13) for m > 1 may be circumvented

by invoking Collins's [6] general solution; however, the resulting integral representation
of S„™ is rather complicated.

4. Dipole moment and virtual mass. We now suppose the bowl to be moving in
an unbounded, inviscid liquid with the uniform velocity U directed along 0 = 0; and
4> = 0. The corresponding velocity potential (defined such that the particle velocity
at a given point is V <P) may be posed in the form

\p = U[Pi(in)<Pi(r, 0) + P5(/u,-)^!(r, 0) cos 0], (4.1)

where and \p\ are given by (3.6) and (3.12). Letting r —> co in (3.12), we obtain

rf/ —%Ur~2(S„ cos 0, cos 0 + SJ, sin 0, sin 0 cos </>) (r —» <»), (4.2)

where, from (3.5a) and (3.14a),

7rSn = 0, + \ sin 0! — § sin 20! — gsin 30, (4.3a)

= 50? - Tsdl + O(dl) (0, -> 0) (4.3b)

= x — s/35 + 0(/37) = 0,-»O). (4.3c)

and

3rS,\ = 0i + 5 sin 30j — (0! + sin 01)"1(sin 0, + | sin 20,)2 (4.4a)

= + 0(6]) (0, -» 0) (4.4b)

= r - f/S3 + 0(J35) Off —> 0). (4.4c)
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0,
Fig. 2. Dipole-moment parameters for spherical bowl, as given by (4.3) and (4.4).

We infer from (4.2) that the dipole-moment tensor of the bowl is diagonal (as is
directly evident from symmetry) and has the Cartesian components §a3{S„ , S}„ SJX},
where a is the dimensional radius of the sphere. The corresponding kinetic energy of
the fluid motion is (cf. Lamb [14, Sec. 121a])

T = 7rp£/V(Sn cos 20< + Sj, sin 26,) (4.5a)

= MU cos 0,)*(!a3tf)[l + 0(e])] (6\ -> 0) (4.5b)
= \PU\2W)[\ + 0(f)] 03 -» 0). (4.5c)

The limiting result (4.5b) corresponds to a circular disk of radius adi . The limiting
result (4.5c) implies that the virtual mass of a sphere containing a small hole is ap-
proximately three times that of a closed sphere, although (or because) their dipole
moments are approximately equal (Taylor [11] gives a qualitative discussion of this
paradox).

5. Rayleigh scattering. Let the acoustical plane wave

= exp [ikr (cos 8, cos 8 + sin 0, sin 8 cos 0)] (5.1)

be incident upon the bowl and let \[/(r, 8) be the scattered wave; then

VV + = 0, (5.2)
d(i< + f)/dr = 0 (r = 1, 0 < 6 < 6, , 0 < <t> < 2x), (5.3)

and
i ~ 1(6, 4>)r~V" (r ~, 0 < 0 < *•, 0 < <£ < 2*-), (5.4)

where f(8, <t>) is the scattering amplitude. We seek the limiting form of j(6, <j>) as fc —* 0
(Rayleigh scattering). We omit the factor exp (—ikct) from and which must be
regarded as complex amplitudes in the conventional sense; in particular, /(0, <j>) may
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be complex. (It must be recalled, in interpreting the subsequent results, that many
writers—notably Rayleigh and Lamb—use the time dependence exp (ikd).)

Rayleigh's [15] treatment of scattering by small (fc2 « 1) obstacles reveals that the
spherical-harmonic representation of the scattered wave is dominated by the source
(n = 0) and dipole (n = 1) components. The result for a closed, axisymmetric obstacle is

f(6, <j>) = —%k2S0 + hid, <f>), (5.5a)

where

/i(0, <(>) = \k2{Sn cos 0, cos 0 + sin 0, sin 0 cos <j>) (5.5b)

is the dipole component (in which S„ and S[,) are defined as in Sec. 4 above), 4^a3S0/3
is the volume of the obstacle, and all lengths are referred to a. The corresponding, total
scattering cross-section is given by

a = a f sin 9 dd f \f(6,4>)\2d<f> (5.6a)
Jo Jo

= Wk*[i |S0|2 + S2U cos2 6, + (S}02 sin2 0,] (5.6b)

and reduces to 7ira2fc4/9 for a sphere of radius a (for which S0 = Sn = Sj, = 1).
The results for a spherical cap would appear to follow from (5.5) and (5.6) by setting

S0 = 0 and substituting Sn and S}t from (4.3) and (4.4). In fact, the results so obtained
are not uniformly valid for /3 = x — 0X —> 0, and the effective value of |S0[2, qua nor-
malized intensity of the spherically symmetric scattered wave, increases to a resonant
peak at, say, k = k0 and then decreases to unity at /S = 0. The value of k0 for a spherical
bowl, as calculated by Rayleigh [7], is

k0 = (3/3/2tt)1/2[1 + (90/2Ott) + OG32)] (P 0). (5.7)

The value of S0 for k0 = 0(k), as inferred from an heuristic combination of Rayleigh's
results with Lamb's [16, Sec. 88] analysis of plane-wave diffraction by a resonator, is

So = W - kl + iiklk3)" [k0 = 0(k), k -* 0], (5.8a)

1 (k0/k -> 0) (5.8b)

= 0(k2) (k0»k). (5.8c)

There are, however, discrepancies between the results implied by (5.5)-(5.8) and those
given by Morse and Feshbach [9] and by Collins [10]. Morse and Feshbach's results
agree qualitatively with those of (5.5)-(5.8) but appear to contain algebraic errors.
Collins arrives at the surprising and, it appears, erroneous conclusion that "the scattering
cross section of the cap [is] discontinuous as [0J tends to jr." It therefore appears worth-
while to offer a more systematic derivation of the above results that is not only uniformly
valid with respect to 6l , but also retains all terms consistent with the basic approxima-
tion, which imposes an error factor of 1 + 0(k2) in consequence of the approximation
of the Helmholtz equation, (5.2), by Laplace's equation in the neighborhood of the
obstacle.

We construct the solution of (5.2) and (5.3) by invoking the known expansion of
ip, in spherical harmonics, posing a similar expansion for ip, and satisfying (5.3) term
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by term:

i = X) Z) (2n + 1>"*(2 - 5°)[(n — m)!/(n + m)!]P"(cos 6,)
n—O Tnm0

•Un(kr)PZ(cos 0) — kj'n(k)\l/mn(r, 0)] cos m<t>, (5.9)

where

d\rjdr = P"(cos B) (r = 1, 0 < 0 < fl,). (5.10)

Following the development of Sec. 3, we pose the solution of (5.2) and (5.10) in the form

*:<r, e) = (5.ii)
* — T7»

where

x.(r) = [M.'WrVAr) (r > 1) (5.12a)
= [kmVhikr) (r<l), (5.12b)

and h, = ^,(1) is a spherical Hankel function. Invoking (5.10) and the requirement
that 4*1 be continuous across the remainder of the unit sphere, we obtain

= p:m g.. < m < d (5.i3aj

and

£ = o (-i < M < M.), (5.i3b)
a ■■ m

r. = X.U-) - x.(l+) (5.14a)
= ilk'j'.m'.ik)]-1 (5.14b)
= — (3/fc2)(l - Ik2 - \ik2) + 0(k2) (s = 0) (5.14c)

= s-\s + l)"'(2s + 1) + 0(k2) (s > 1). (5.14d)

We now invoke the restriction k <3C 1. Transferring the constant (s = 0) terms
from the left- to the right-hand sides of (5.13a, b), invoking (5.14d) for s > 1, and com-
paring the results to (3.4) and (3.7) for m = 0 and to (3.11) and (3.15) for m > 1, we
obtain

= Snn. + 0(k2) (m > 1), (5.15a)

©„ = S„. - S„S0. + 0(k2) (m = 0, s > 1), (5.15b)

and

©„0 = S, = [*„ + O(^)]/[f0 + + 0(k2)}. (5.15c)

Substituting f0 from (5.14c) and from (3.8b) into (5.15c), we obtain

*o = + !)"1/2 (5.16)

where
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and

S0 = k\ 1 - lkl)(k2 -kl + $iklk3r\ (5.17)
which reduce to (5.7) and (5.8) for k0 « 1, and

Sn = \n\n + 1 )~lSanklk\k2 - k20 + Wok3)'1. (5.18)

The error factors for (5.17) and (5.18) are of the form 1 + 0(/c2), uniformly with respect
to 6, (the uniform validity of the error estimate in the neighborhood of k = k0 depends
on the readily established fact that the real and imaginary parts of the error in the
denominator of (5.17) are 0(k4) and 0(k5), respectively). We omit the error estimates
throughout most of the subsequent development with the implicit understanding that
they are of this form except as explicitly noted to the contrary.

Substituting (5.15) into (5.11), letting kr —» « and k —* 0, in which limit

x.(r) ~ (-i)'+2fc*[(s + D-l-3 • • • (2s - l)]-Y-yir, (5.19)

and neglecting terms that are definitely small in the sense of the preceding paragraph,
we obtain

~ r~Vkr{ - 5oS„[l + $ikS01PM] + i^Sr.PTOO + ik^PKp) J. (5.20)

Substituting (5.20) into the corresponding approximation to the ^ component of (5.9),
1

y]/ = \k2t{/o — ik ^2 PKuJip'i cos Ttuj)""° (5.21)

+ §fc2 EC2 ~ «i)[(2 - m)\/( 2 + cos m4>,
m-0

substituting S0 and St from (5.17) and (5.18), observing that S2i = §St2 and S2i = SJ2,
and omitting the factor exp (ikr)/r in accord with the definition (5.4), we obtain the
scattering amplitude in the form

1(6, <p) = -|fc2[l - (k/k0Y - iikT'Kk/ko)2 + §ifcS01(M - M«)]

+ W, <t>) + Uk'S^P^P^) - P^Ptin)] (5.22)
+ Hk3SUPl(^P\M - PIMPXjl)] cos <j>,

where fi , the first approximation to the dipole component, is given by (5.5b).
Retaining only the dominant terms in (5.22), we obtain

/(<?, 4>) = [W(K -k2- iikiey1 + /,(*, ^)][i + o(fc)], (5.23)

which is identical with the approximation provided by (5.5) and (5.8). The total scatter-
ing cross-section obtained by substituting (5.22) into (5.6a) is identical with that given
by (5.6b) and (5.8), namely

<t = fira2ft4{|fc4[(fc2 — kl)2 -)- -gfcofc6] 1 + Sn cos2 6i + (S}i)2 sin2 0.-}[1 + 0(fc2, fc2)]-
(5.24)

We further simplify (5.22) and (5.24) for the Helmholtz resonator, for which k0 =
0(k), Soi = 3 + 0(ki), s12 = 0(K), s;2 = 0(ki), su = 1 + 0(K), s;, = 1 + o(.k20),
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1(0, <t>) = Hk2[ 1 - (k/k0)2 - *tfcTW*.)' + - m.)]
+ /.(*,*)}[! + 0(fc2, fc*)], (5.25)

and
a = Wk*{m(k2 - K)2 + MX}-1 + 1}[1 + 0(k2, kl)]. (5.26)

The approximation (5.25) differs from Morse and Feshbach's [9, (11.3.81)] result (after
allowing for the fact that their bowl is defined by 91 < 6 < n) only in their approximation
for k0 , (1.3) rather than (5.7), and in their basic dipole component, which they give
as 2/j ; however, the latter discrepancy appears to represent a minor error in their
analysis. The approximation (5.26) differs from Morse and Feshbach's result [9, (11.3.82)],

= Wfc4{i4[(fcf - kl)2 + ikXr1 + 3! [1 + 0(k2, Q], (5.27)
both because of the aforementioned error and because of (what appears to be) an ad-
ditional slip.

The maximum scattering cross-section implied by (5.26) is

O'mai = 4:ira2k^2 = Xjj/jt (fc = fc0), (5.28)

where X0 is the resonant wavelength. This last result also may be inferred directly
from Lamb's analysis [16, p. 279] of resonant scattering, which provides further support
for the correctness of (5.26) vis-a-vis (5.27). We also note that (5.26) implies that cr
achieves a minimum of 2&.22a2ki0 at k = 1.358 k0 ; however this minimum is still much
larger than the corresponding value of a for a sphere, namely 8.31 a2k*. The ratio of <j
to its value for a sphere at k = k0 , namely 7wa2kl/9, is plotted in Fig. 3 for k0 « 1
(such that the damping term, Wok6, is negligible in the numerical range of the plot).

k/k0

Fig. 3. Variation of scattering cross-section with k/kn, as given by (5.26) with k0 « 1. The reference
value, <ro, is the scattering cross section of a sphere at k = k0. The upper and lower dashed lines give the

total value and the dipole component, respectively, of a!for a sphere.
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We conclude by calculating the radial velocity in the aperture (r = 1, 0, < 6 < x),
say v. Differentiating (5.9) with respect to r, invoking

eo

(dWdr)r-i = E ©n, P7G0 (5.29a)
« — m

= 5™sn[l — P0(ju, Ml)] + P"(m, Ml), (5.29b)

where (5.29a) follows from (5.11) and (5.12) and (5.29b) follows from (5.29a) through
(5.15) and (3.11b), and retaining only the dominant terms, we obtain

v = -W[\ - (k/ko)2 - §^T'[i - p0G», mO]
i

+ ik E P7(m.)[P7(m) — P70*, mi)] cos rruj) (5.30)
m-0

within 1 + 0(/c). Invoking the additional restriction /3 « 1 in the formulae for P0 ,
Pj and Pj, we obtain

1 - P0 = 21/*p-1(n< - m)~1/2, (5.31a)

P, - Px = (2-1/V)"1[^(mi - m)"1/2 - 6(mi - m)'/2], (5.31b)

and
P[ - PJ = -3(21/V)"1(1 - m2),/2(mi - m)"1/2, (5.31c)

all within 1 + 0(j32). Substituting (5.S into (5.30) and expressing /3 in terms of k0 ,
we obtain

v = (2VV)-V(fc2 - A:? + fcfc&TG*X - m)~1/2[1 + 0(fc, JfcS)3, (5.32)
which is essentially the approximation invoked by Morse and Feshbach [9].

The velocity in the aperture of a Helmholtz resonator for normal incidence also
has been calculated by Sommerfeld [8] by an ad hoc extension of the method of least
squares to the dual equations of (5.13). Converting his result to the present notation,
we obtain

v = §fc3 i: (2n +1)r„p„(M) i: (2m +1 mm. r p-mp-m ^ (5.33a)
n— 0 m—0 v— 1

= ~f/32[l - ft*; + 0(/c2, &)], (5.33b)
which bears very little resemblance to (5.32). The discrepancy appears to result both
from the rather arbitrary weighting accorded to the two dual equations by Sommerfeld
and from deficiencies in his order-of-magnitude estimates of the expansion coefficients.
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Appendix. We wish to show that

*v(ji, Hi) = 2 K2s + 1)/s(s + 1)]S„,(mi)P.(m) + (Al)
«-l

vanishes in — 1 < h < mi for the appropriate choice of the constant . The coefficient
S„, is given by (3.5) and (2.5).

Differentiating (Al) with respect to h and invoking
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(1 - v?){dPJdn) = n(n + 1)(2n + 1)~\Pn-, - PB+1), (A2)

we obtain

(1 - m)(<W<W = E - P.+1) (A3a)
«-l

= E (S„..+I - S,.,-OP, , (A3b)
« — 0

where (A3b) follows from (A3a) by virtue of the identities Sn0 = S„,_i = 0. Substituting
S„, into (A3b) from (3.5a) and invoking (2.4) and (2.6), we obtain

(1 — n^idxn/dij.) = P„+i(m) — P_iG0 + (—)"[(P„+i(—n, —m)
— <P»-i(—M, —Mi)] + 2S„0(1 — Mi)1/2®(m — Mi)~1/2 (A4a)

= 0 (—1 < m < Mi), (A4b)
from which we infer that tt„ is constant in — 1 < /a < mi • Setting p. = — 1 in (Al) and
requiring *■„(—1, mi) to vanish, we obtain

= E (—)'~'[(2s + l)/s(s + 1)]S„(mi) (A5a)
• -1

S c, + C2 , (A5b)
where

and

Ci = E (-)*_,[(2s + l)/s(s + 1)] S„. , (A6)

C2 = S„0sec 10i E (—)'[(2« + l)/s(s + 1)] cos (s + $)0t • (A7)
«-l

Substituting Sn, into (A6) from (2.5), invoking the partial-fraction expansion

(2s + l)s '(s + 1) 1 = s 1 4- (s + 1) 1, (A8)

and rearranging the coefficients of like reciprocal integers in the summation, we obtain

c, = (2/x) £ (-)-,[«_1 + (s + l)"1] C cos (n + h)a cos (s + |)a (A9a)
«-l J 0

= (2/x) J cos (n + §)aj^cos |a — 2 sin E (—)'-1s-1 sin as J da (A9b)

rSt
= (2/tt) / cos (n + |)a(cos |a — a sin §a) <ia (A9c)

Jo

= Sn0 + (d Sn./ds)..0 , (A9d)

where (A9d) follows from (A9c) through (2.5). Turning to (A7), we obtain
CO

C2 = 2Sn0sec 10i(3/300 E (~)*s-1(s + l)"1 sin (s + £)0, (AlOa)
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= 2§n0sec ^(d/dflOCsin — 6j cos \(AlOb)

= SnO(0! tan §0,-1). (A 10c)

Substituting (A9d) and (AlOc) into (Aob), we obtain (3.8a).
Substituting Sn0 from (2.5) and (P„ from (2.6a) into (A4a) and integrating (dvn/d^)

from n = fii , we obtain

t»(m, Ml) = 2 J (1 — /i2)-1 djii£(2I/2/Tr) fg (j* ~ cos a)~1/2 sin a cos (n + \)ada

+ Sno(l + mOi/2(m — Mi) 1/2^j (m 1 < M < 1)- (All)

Turning to ir™, we rewrite (3.14) in the form

C = Z [2s + l)/s(s + l)]S-0»,)P.(m) = , (A12)
B «■ 1

where the operator £>m is defined by (2.11). Differentiating 0™ as in (A3), we obtain

(i - swrn/dn) = i: (sr.+, - s -op. (Ai3)
a- 1

by virtue of (A2) and S„o = S™_, = 0. Substituting S™ into (A13) from (3.11b) and
proceeding as in (A4), we obtain

(1 - n2){d9.mJdn) =0 (-1 < m < Mi), (A14)

from which we infer that is constant, and 7r™ vanishes, in — 1 < m < Mi •
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