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Abstract.—Only recently has Bayesian inference of phylogeny been proposed. The method is now a
practical alternative to the other methods; indeed, the method appears to possess advantages over
the other methods in terms of ability to use complex models of evolution, ease of interpretation of the
results, and computational ef�ciency. However, the method should be used cautiously. The results
of a Bayesian analysis should be examined with respect to the sensitivity of the results to the priors
used and the reliability of the Markov chain Monte Carlo approximation of the probabilities of trees.
[Bayesian inference; Markov chain Monte Carlo; phylogeny; posterior probability.]

In 1996, threegroups independently pro-
posed using Bayesian inference of phy-
logeny. Rannala and Yang (1996), then at
Berkeley, showed how posterior probabili-
ties of trees, the central quantity in Bayesian
inference of phylogeny, could be calculated
under a birth–death prior for a small num-
ber of species. At about the same time,
two groups of statisticians were doing much
the same thing; Mau (1996) and Li (1996),
at Wisconsin and Ohio State, respectively,
published their dissertations that year, both
showing how posterior probabilities of trees
could be calculated under simple priors.
The next few years saw the publication
of a number of important papers, most
of which concerned the nuts and bolts of
calculating posterior probabilities for trees
(Mau and Newton, 1997; Yang and Rannala,
1997; Larget and Simon, 1999; Mau et al.,
1999; Newton et al., 1999). The method
of choice for calculating posterior proba-
bilities, in fact the only numerical method
currently available that can approximate
posterior probabilities for trees, is a tech-
nique �rmly grounded in probability the-
ory (Tierney, 1994) called Markov chain
Monte Carlo (MCMC; Metropolis et al., 1953;
Hastings, 1970; Green, 1995). The next few
years also saw a number of papers that
used Bayesian inference in a phylogenetic
context to address questions such as “Is
an amino acid under positive or diversi-
fying selection?” (Nielsen and Yang, 1998),
“When did a group of species diverge?”
(Thorne et al., 1998; Huelsenbeck et al.,
2000a), “Did hosts and parasites cospeciate?”

(Huelsenbeck et al., 2000b), and “What is the
ancestral sequence for some clade?” (Yang
et al., 1995b; Huelsenbeck and Bollback,
2001). Once the theory had been described
and a number of computer programs became
available (BAMBE: Simon and Larget, 1998;
MrBayes: Huelsenbeck and Ronquist, 2001),
it was only amatter of time before the method
became more widely used.

The phylogenetics literature is full of new
methods for estimating phylogeny, so the in-
troduction of yet another method of phy-
logenetic inference does not seem like a
portentous event. Moreover, Bayesian in-
ference is not even new. Bayesian estima-
tion is one of the oldest methods of statis-
tical inference, dating back to the 18 century.
A number of earlier papers had hinted at
Bayesian inference of phylogeny. Felsenstein
(1968), in his Ph.D. thesis, introduced a
number of Bayesian ideas, such as poste-
rior probabilities of trees (Felsenstein, 1968:
21–26) and a credible set of trees (Felsenstein,
1968:25–26; also see Wheeler, 1991). How-
ever, Felsenstein was not able to calculate
posterior probabilities of trees at the time;
Hastings’ seminal paper appeared two years
later (1970), and it was another two decades
before statisticians began to fully realize the
power of the MCMC approach.

Bayesian inference of phylogeny repre-
sents a signi�cant advance for a number of
reasons. First, like the maximum likelihood
method, Bayesian estimation of phylogeny is
based on the likelihood function. The likeli-
hood, a quantity that is proportional to the
probability of observing the data conditional
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on a tree, is the vehicle that carries the phy-
logenetic information contained in the data
in both maximum likelihood and Bayesian
estimation, and the same models of DNA,
amino acid, or morphological evolution can
be used in both methods. Maximum likeli-
hood is known to outperform other meth-
ods of phylogenetic estimation under a range
of conditions (Huelsenbeck and Hillis, 1993;
Kuhner and Felsenstein, 1994; Huelsenbeck,
1995a, 1995b), and statistical theory suggests
that this should be so. Because Bayesian
inference is based on the likelihood func-
tion, it should inherit many of the nice
statistical properties of the maximum likeli-
hood method. Second, unlike maximum like-
lihood, Bayesian inference of phylogeny can
incorporate a systematist’s prior information
about phylogeny through the speci�cation
of a prior probability distribution of trees.
This is also where some of the different for-
mulations of Bayesian estimation of phy-
logeny diverge. For example, Rannala and
Yang (1996) placed a birth–death prior on
trees, giving equal weight to labeled histo-
ries. Other formulations of the problem typ-
ically give equal weight to rooted or un-
rooted phylogenies. In any case, the use of
a prior probability distribution on trees can
be viewed as either a strength or a weak-
ness of the method. It seems a strength when
the systematist has prior information about
the phylogeny of a group. Why not incor-
porate such information when it is avail-
able? However, when the systematist does
not have strong prior beliefs, specifying a
prior seems more dif�cult, with the usual
solution being that all trees are given equal
weight, a priori. Third, MCMC provides an
elegant and computationally ef�cient way
of approximating posterior probabilities of
trees or other model parameters, the quanti-
ties of interest in Bayesian inference. MCMC
is not limited to Bayesian analysis and has
been used to account for uncertainty in ge-
nealogy for several coalescence problems in
a maximum likelihood framework (Kuhner
et al., 1994; Beerli and Felsenstein, 1999).
However, the MCMC method more naturally
�ts a Bayesian framework, and the growing
use of Bayesian methods in other �elds dates
from the widespread application of MCMC
starting in the middle 1980s. Bayesian infer-
ence of phylogeny is interesting because it
brings a totally new perspective to a num-
ber of problems of long standing in both evo-

lutionary biology and phylogenetics. To the
evolutionary biologist interested in compar-
ative analysis, Bayesian inference suggests
a natural way to accommodate uncertainty
in phylogeny (Huelsenbeck et al., 2000c). To
the practicing systematist, Bayesian analy-
sis provides an intuitive measure of sup-
port for trees and a practical way to esti-
mate large phylogenies using a statistical
approach.

The recent developments in Bayesian in-
ference of phylogeny are bound to generate
debate in the systematics community. Phy-
logenetics has a long history of heated ar-
guments about the relative merits of differ-
ent methods—researchers in the �eld seem
preadapted for ideological warfare—and the
introduction of notions such as prior and
posterior probabilities should spur new bat-
tles. In fact, the debate has been intense
for some time already in the statistics lit-
erature. Many statisticians hold strong be-
liefs about the relative merit of so called
frequentist (e.g., maximum likelihood) and
Bayesian methods of inference, and the
tone of the debate sometimes sounds pecu-
liarly familiar to a systematist. Ultimately,
of course, the biologist will have to decide
for him- or herself whether Bayesian infer-
ence of phylogeny is sensible. This intro-
duction is designed to help this decision
process by describing Bayesian inference of
phylogeny and the methods used to ap-
proximate posterior probabilities of trees. We
also outline some of the pitfalls and remain-
ing unsolved mysteries of Bayesian analysis
of phylogeny and highlight some potential
applications.

WHAT IS BAYESIAN ESTIMATION
OF PHYLOGENY?

As mentioned above, Bayesian estimation
of phylogeny is based on a quantity called
the posterior probability distribution of trees.
To calculate the posterior probability of a
tree, we start by labeling all trees from 1
to B(s), where B(s) is the number of possi-
ble trees for s species; the notation we use is
¿1, ¿2, : : : , ¿B(s) for the �rst, second, third, etc.,
tree. We also have some observations, such
as an alignment of DNA sequences or a ma-
trix of morphological characters, which we
denote X. The posterior probability of trees
is the probability of the i th tree conditional
on the observations and is calculated using
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Bayes’s theorem as

Pr[¿i j X] D
Pr[X j ¿i ] £ Pr[¿i ]

PB(s)
jD1 Pr[X j ¿ j ] £ Pr[¿ j ]

,

where Pr[¿i j X] is the posterior probability
of tree i , Pr[X j ¿i ] is the likelihood of tree i ,
and Pr[¿i ] is the prior probability of tree i .
The denominator is a normalizing constant
that involves a summation over all B(s) pos-
sible trees: B(s) D (2s ¡ 3)!=[2s¡2(s ¡ 2)!] for
rooted trees and B(s) D (2s ¡ 5)!=[2s¡3(s ¡
3)!] for unrooted trees. Bayes’s formula
shows how a person who started out with
one set of beliefs, formulated in the prior
probability distribution of trees, should mod-
ify his or her beliefs in the light of new
observations.

The above description of the Bayesian ap-
proach to phylogenetics is actually incom-
plete because the tree, ¿ , provides insuf�cient
information with which to calculate likeli-
hoods. One also needs a substitution model
describing how characters evolve on the tree
and information on the value of the param-
eters in this model, µ , and on the lengths of
the branches on the tree, À. Branch lengths
are typically in terms of expected number
of substitutions per site. The parameters of
the substitution model vary with the details
of the analysis but typically include vari-
ables related to the frequency of the character
states, biases in rates of change among char-
acter states, and rate variation across sites.
The likelihood of the i th tree is obtained by
integrating over all possible combinations
of branch lengths and substitution model
parameters:

Pr[X j ¿i ] D
Z

vi ,µ
f (X j ¿i , Ài , µ) f (Ài , µ)dÀi dµ ,

where f (Ài , µ ) is the prior probability den-
sity of the branch lengths and substitution
model parameters. (Tree topology, here de-
noted ¿ , is a discrete parameter, and it makes
sense to think about the probability of the
tree taking some speci�c topology ¿i . How-
ever, many of the parameters of the phylo-
genetic model are continuous, and the prob-
ability of any speci�c parameter value is 0.
For continuous parameters, the idea of in-
�nitesimal probabilities is used instead; the
probability of a parameter, 2, taking a spe-

ci�c value, µ , is f (µ )dµ , where f (µ) is a prob-
ability density and dµ is an in�nitesimal in-
terval). The likelihood [ f (X j ¿i , Ài , µ )] can be
calculated under the same models of evolu-
tion used by maximum likelihood. The prior
probability density distribution [ f (Ài , µ)] is
more dif�cult to specify. Usually, so-called
�at priors are placed on the parameters over
a range of values likely to contain the true
value of the parameter. Flat priors placeequal
probability on all possible values within the
speci�ed range. In the Bayesian literature,
sometimes improper uniform priors are ad-
vocated. Here, uniform probability is given
to all possible values of the parameter. The
prior is “improper” because it is not a prob-
ability distribution, failing to integrate to 1.
Often, but not always, the use of improper
priors leads to an improper posterior proba-
bility distribution. The use of improper pri-
ors has not been expored for the phylogeny
problem, but for some parameters, such as
branch lengths, the use of improper priors is
obviously inappropriate.

How do we derive phylogenetic conclu-
sions from the posterior probability distribu-
tion of trees? One possibility is to use the
most probable tree as a point estimate of
phylogeny (Rannala and Yang, 1996). This
is called the maximum a posteriori probabil-
ity (MAP) estimate of phylogeny. A standard
Bayesian approach to summarize results is
to form a 95% credibility interval for the pa-
rameter of interest based on the posterior dis-
tribution. Note the Bayesian use of the term
credibility interval for an entity that is simi-
lar, at least in some ways, to the con�dence
interval of classical statistics. In phylogeny
construction, a 95% credible set of trees can
be constructed by starting with the MAP tree
and adding trees in order of decreasing prob-
ability until the cumulative probability is 0.95
(Felsenstein, 1968). The most powerful ap-
proach is perhaps to summarize the results
of a Bayesian analysis on a majority rule con-
sensus tree or on the MAP tree (Larget and
Simon, 1999), as is typically done when sum-
marizing the results of a bootstrap analysis
(Felsenstein, 1985). However, the numbers
on the branches of the tree now represent the
posterior probability that the clade is true.
Although the MAP, credible set, and major-
ity rule consensus tree are the usual ways to
summarize the results of a Bayesian analysis
of phylogeny, other methods, equally valid,
also could be devised.
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HOW ARE POSTERIOR PROBABILITIES
OF TREES APPROXIMATED?

Calculating the posterior probability of a
tree involves a summation over all possible
trees and, for each tree, integration over
all combinations of branch lengths and
substitution-model parameter values. The
summation over trees and integration over
all combinations of branch lengths and pa-
rameter values is impossible to perform an-
alytically, except perhaps in a few of the
very simplest cases. By necessity, then, pos-
terior probabilities of trees must be approxi-
mated. There are a number of methods avail-
able for approximating integrals, some of
which involve sampling procedures. Ideally,
one would like to approximate the posterior
probability distribution of trees by randomly
drawing from the posterior probability dis-
tribution of trees. The fraction of the time any
tree was drawn would be a valid approxima-
tion of its posterior probability. This method,
called Monte Carlo integration, has the ad-
vantages that each draw is independent and
the investigator has control over the error in
the approximation (if one wants a better ap-
proximation, more trees are drawn from the
posterior probability distribution of trees).
Unfortunately, this ideal cannot yet be real-
ized. However, one can obtain information
equivalent to that from independent sam-
ples by instead taking much larger depen-
dent samples using the MCMC method. This
method appears to be very ef�cient for ap-
proximating posterior probabilities of trees.

MCMC works as follows. First, start the
Markov chain with a tree. This tree might be
one that is randomly chosen or one that is
likely to be a good description of the data.
We designate this tree (with branch lengths)
9 D (¿ , À). Second, a new tree, designated 9 0,
is proposed. The proposal mechanism that
changes 9 into 9 0 must satisfy a few condi-
tions: (1) the proposal mechanism must be
stochastic, i.e., the probability of proposing
thenew tree given the old tree is f (9 0 j 9) and
the probability of the reverse move, which
is not actually made, is f (9 j 9 0); (2) every
possible tree must be accessible by repeated
application of the proposal mechanism (i.e.,
the Markov chain must be irreducible); and
(3) the chain must be aperiodic. Other than
these requirements, the details of the pro-
posal mechanism are up to the investiga-
tor. Unfortunately, the proposal details may

greatly in�uence the ef�ciency of the chain in
approximating the posterior probability dis-
tribution. There is an art to devising proposal
mechanisms that ef�ciently explore the space
of trees. Third, the new tree is accepted with
a probability described by Metropolis et al.
(1953) and Hastings (1970):

R D min
µ
1,

f (9 0 j X)
f (9 j X)

£
f (9 j 9 0)
f (9 0 j 9)

¶
:

The acceptance probability, R, is the proba-
bility that the proposed state, 9 0, becomes
the next state of the chain. At �rst glance,
it would not appear that the above formula
allows approximation of the posterior proba-
bility. After all, f (9 j X ) is the posterior prob-
ability of a tree and involves, minimally, a
summation over all possible trees. However,
the beauty of the Metropolis–Hastings algo-
rithm is that the denominator of Bayes’s the-
orem, the complex summation and integra-
tion, cancels out. Thus, the above formula
reduces to the product of three ratios, each
of which can be readily calculated:

R D min
µ
1,

f (9 0 j X)
f (9 j X)

£
f (9 j 9 0)
f (9 0 j 9)

¶

D min
µ
1,

f (X j 9 0) f (9 0)=f (X)
f (X j 9) f (9)=f (X)

£
f (9 j 9 0)
f (9 0 j 9)

¶

D min

2

66664
1,

f (X j 9 0)
f (X j 9)| {z }

likelihood ratio

£
f (9 0)
f (9)| {z }

prior ratio

£
f (9 j 9 0)
f (9 0 j 9)| {z }

proposal ratio

3

77775
,

where f (X j 9 0)=f (X j 9) is the likelihood
ratio, f (9 0)= f (9) is the prior ratio, and
f (9 j 9 0)= f (9 0 j 9) is the proposal ratio.
The proposal ratio is also referred to as the
Hastings ratio. Fourth, a uniform random
number on the interval (0,1) is generated.
If this number is less than R, then the new
state is accepted, and 9 D 9 0. Otherwise,
the chain remains in state 9 . Fifth, go back
to step 2. Steps 2–5 are repeated many
thousands or millions of times. The fraction
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of the time that the chain visits any particular
tree is a valid approximation of the poste-
rior probability of that tree. If the chain is
designed so that the proposal ratio is 1,
proposals of trees with higher posterior
probabilities are always accepted, whereas
proposals to trees with lower posterior prob-
abilities are accepted with a probability that
depends on the probability of the proposed
tree relative to the probability of the current
tree.

The usual procedure for the phylogeny
problem is toupdate parameters of the model
in blocks. For example, a number of different
proposal mechanisms might be used, each of
which changes a different parameter; some
might change the tree and branch lengths and
others might change parameters of the sub-
stitution model.

AN APPLICATION OF BAYESIAN INFERENCE

In this section, we present the results of
a small survey study in which people (both
systematists and amateurs) were asked to
evaluate the monophyly of a plant genus,
Ipomoea; it shows that people can easily for-
mulate prior opinions and modify their be-
liefs in a reasonable manner in light of new
observations, although we do not prove that
the individuals in the study updated their
opinions using Bayes’s rule. The use by
Bayesian methods of subjective probabilities
simply formalizes something that systema-
tists do on a regular basis. Systematics has a
tradition of using very strong priors in phy-
logenetic analysis in the form of constraints
on trees; these constraints place prior proba-
bilities of zero on large classes of trees. How-
ever, the survey also demonstrates some of
the potential pitfalls of explicitly incorporat-
ing prior probabilities of trees.

Ipomoea is a large genus within the Con-
volvulaceae containing over 600 species of
vines and shrubs distributed throughout
the tropics and subtropics (McDonald, 1991;
Austin and Huaman, 1996; Wilkin, 1999).
Ipomoea has been placed within the tribe
of morning glories with spiny pollen, Ipo-
moeeae (sensu lato), which also includes the
genera Argyreia, Lepistemon, Stictocardia, and
Turbina. The monophyly of Ipomoea is con-
sistent with the taxonomy of this genus and
its close relatives (Van Ooststroom, 1953;
Verdcourt, 1963; McDonald, 1991; Austin and
Huaman, 1996) (Table 1). The monophyly of

TABLE 1. A classi�cation of the species included in
the phylogenetic analysis of this study.

Family Convolvulaceae
Tribe Merremieae

Merremia tuberosa (L.) Rendle
Operculina brownii Ooststr.

Tribe Ipomoeeae
Genus Argyreia

Argyreia nervosa (Burm. F.) Bojer
Genus Lepistemon

Lepistemon owariense (P. Beauv.) Hallier f.
Genus Stictocardia

Stictocardia tiliifolia (Desr.) Hallier f.
Genus Turbina

Turbina holubii (Baker) A. Meeuse
Genus Ipomoea L. (all species listed below this

point are in the genus Ipomoea)
Subgenus Ipomoea

Section Ipomoea
Ipomoea arachnosperma Welw.
Ipomoea pes-tigridis L.

Section Pharbitis (Choisy) Griseb.
Ipomoea hederacea Jacq.
Ipomoea purpurea (L.) Roth

Subgenus Quamoclit (Moench) Clarke
Section Mina (Cerv.) Griseb.

Ipomoea lobata (Cerv.) Thell.
Ipomoea quamoclit L.

Section Calonyction (Choisy) Griseb.
Ipomoea alba L.

Section Tricolores J. A. McDonald
Ipomoea tricolor Cav.

Section Orthipomoea Choisy
Ipomoea eriocarpa R. Br.
Ipomoea plebeia R. Br.

Subgenus Eriospermum (Hallier f.) Verdcourt ex
Austin

Section Eriospermum Hallier f.
Ipomoea amnicola Morong.
Ipomoea arborescens (Humb. & Bonpl. ex

Willd.) G. Don
Ipomoea batatas (L.) Lam.
Ipomoea carnea Jacq.
Ipomoea leptophylla Torr.
Ipomoea pedicellaris Benth.
Ipomoea setosa Ker Gawl.
Ipomoea sumatrana (Miq.) Ooststr.
Ipomoea umbraticola House

Section Erpipomoea Choisy
Ipomoea aquatica Forssk.
Ipomoea cairica (L.) Sweet
Ipomoea ochracea (Lindl.) G. Don
Ipomoea pes-caprae R. Br.

the group wasaddressed here through a sam-
ple of 23 Ipomoea species and one species of
each of the generaArgyreia, Lepistemon, Sticto-
cardia, and Turbina. Merremia and Operculina
from the tribe Merremieae provided out-
group taxa. Participants in the survey were
asked to state their prior beliefs about the
monophyly of the Ipomoea species, using as
information the classi�cation. The histogram
of the responses is shown in Figure 1A.



678 SYSTEMATIC BIOLOGY VOL. 51

FIGURE 1. Frequency histograms of the responses concerning Ipomoea monophyly. (A) Prior beliefs. (B) Updated
beliefs.

Miller et al. (1999) and Manos et al. (2001)
collected ITS and waxy DNA sequences for
27 species of morning glories and two out-
group taxa. The sequences were 649 and 651
sites in length for waxy and ITS, respectively.
Figure 2 shows a phylogenetic tree esti-
mated using maximum likelihood under the
GTR C 0 model of DNA substitution. This
model allows different nucleotide changes
to have different rates, different nucleotide
frequencies, and among-site rate variation.
The numbers on the internal branches rep-
resent the nonparametric bootstrap support
for individual clades. This tree is inconsis-
tent with Ipomoea monophyly (as is the max-
imum parsimony tree). Moreover, in the 100
nonparametric bootstrap replicates, not one
tree consistent with Ipomoea monophyly was
observed. The log likelihood for the com-
bined data for the maximum likelihood tree
was ¡7859.76. The log likelihood of the best
tree consistent with Ipomoea monophyly was
much lower, ¡7910.46.

Figure 1B shows the modi�ed probabilities
of the participants. Virtually all participants
revised their assessment of Ipomoea mono-
phyly after observing the results of the ITS
and waxy analysis by lowering the probabil-
ity of monophyly (two participants did not
change their beliefs at all). Many of the partic-
ipants gave a lot of credence to the taxonomy,
on which they based their prior of Ipomoea
monophyly; most placed the prior probabil-
ity of Ipomoea monophyly at about 0.5, with
the argument that this probability was fair,
giving no preference to Ipomoea monophyly

or nonmonophyly. This prior could be in-
terpreted as a belief that about half of all
phylogenies determined by morphological
characteristics are, in fact, incorrect. A less in-
tuitive consequence is that, because there are
so few trees consistent with Ipomoea mono-
phyly a prior probability of 0.5 places a
tremendous amount of prior weight on in-
dividual trees consistent with Ipomoea mono-
phyly. There are a total of 5:33 £ 1029 trees
consistent with Ipomoea monophyly and
1:58 £ 1035 trees inconsistent with Ipomoea
monophyly. By specifying a prior that has
the probability of Ipomoea monophyletic as
0.5, individual trees consistent with Ipomoea
monophyly have 296,366 times more prior
probability than do individual trees inconsis-
tent with Ipomoea monophyly; thus, the prior
odds are weighted tremendously in favor of
Ipomoea monophyly. A prior that places uni-
form probabilities on all possible tree topolo-
gies completely discounts the information
that previous systematists had classi�ed
Ipomoea as a monophyletic group.

The monophylyof Ipomoea can alsobe eval-
uated using a computer program; the com-
puter uses Bayes’s theorem to update the
posterior probabilities of phylogenetic trees
based on DNA sequence data. The proba-
bility that Ipomoea is monophyletic is sim-
ply the sum of the posterior probabilities
of trees having Ipomoea monophyletic. If an
equal-weight prior is placed on all phyloge-
netic trees (i.e., the prior probability of Ipo-
moea monophyly is 3:37 £ 10¡6), the poste-
rior probability of monophyly is essentially 0.
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FIGURE 2. The majority rule consensus tree of maximum likelihood analyses of 100 nonparametric bootstrap
replicates under the GTR C 0 model of DNA substitution.
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Even if the prior probability of Ipomoea mono-
phyly is as high as 0.9, the posterior probabil-
ity of monophyly is so small as to be virtually
immeasurable using Monte Carlo techniques
(i.e., <0.01). For this example, the likelihood
function overwhelms the prior placed on Ipo-
moea monophyly.

A strict application of Bayes’s theorem
more radically changes belief about Ipomoea
monophyly than do the people in the sur-
vey. Does this mean that people do not be-
have like Bayesians? Not necessarily. The
participants are likely accounting for more
sources of uncertainty than does the model
used for the MCMC calculation. These other
in�uences include the possibilities that the
alignment of the DNA sequences is incorrect
and that the assumptions of the phylogenetic
analysis are wrong. One person even consid-
ered the (small) chance that the data were
fraudulent. The result was that the partici-
pants were more conservative in how they
modi�ed their beliefs. These additional fac-
tors are dif�cult to accommodate in a com-
puter program; computers have a strong ten-
dency to treat data and models quite literally.

PITFALLS

For many systematists, the most exciting
aspect of Bayesian inference using MCMC
is its computational ef�ciency. Problems that
have previously been impossible to analyze
with statistical methods because of their size
or the complexity of the relevant models,
even given the resources of a supercomputer
center, can now be tackled within days on
an ordinary desktop computer. It is easy to
be carried away by the possibilities and for-
get that there are also pitfalls of Bayesian
analysis. For beginners, the most important
concern is often the sensitivity of the re-
sults, the posterior distribution, to the cho-
sen prior distributions. Indeed, some critics
emphasize the subjective nature of Bayesian
probabilities and contrast it with the general
striving for objectivity in science. A more
practical but potentially serious problem is
related to the MCMC technique: How can we
determine when chains have been run long
enough to produce a reasonable sample from
the posterior distribution?

Sensitivity to Priors

Bayesian estimation is unique among phy-
logenetic methods because, along with the

usual assumptions about the evolutionary
process that generated the observations, it
forces the investigator to specify any prior
beliefs. All parameters in the evolutionary
model, including phylogeny, branch lengths,
and substitution model parameters, must be
associated with prior probability distribu-
tions. But why is it necessary to specify prior
beliefs? Doesn’t the explicit incorporation of
prior beliefs make all Bayesian probabilities
subjective?

One can turn the �rst question around and
ask, “Why should background knowledge be
ignored?” It is not only sensible to base con-
clusions on all the available information (to-
tal evidence); in some cases, it is even critical.
Assume, for instance, that you are asked to
bet money on the relative probability, P , of
turning up heads with a particular coin. You
are only allowed to toss the coin twice, and it
turns up heads both times. Maximum likeli-
hood estimation based on these observations
would give the estimated value P D 1:0. Of
course, you cannot exclude the possibility
that the coin is so heavily biased that it al-
ways turns up heads. However, the coin was
taken from your wallet and it looks and feels
just like a normal coin. If the coin were fair,
there would still be a probability of 0.5 of
turning up either heads or tails twice in two
tosses. Given this information, it seems un-
likely that the maximum likelihood estimate
is close to the true value. In situations like
this, the only sensible approach is to com-
bine the information from your observations
with the available background information,
in this case suggesting that the true value of
P is likely to be closer to 0.5 than to 1.0.

An interesting aspect of the explicit speci-
�cation of priors on all model parameters is
that when drawing inferences about one pa-
rameter (topology for instance), it allows us
to integrate out all other parameters. The pos-
terior probability of a tree, for instance, rep-
resents the probability summed (integrated)
over all possible branch lengths and substitu-
tion model parameter values. Integrating out
irrelevant parameters is likely to be associ-
ated with good statistical properties, such as
robustness (Berger et al., 1999). In maximum
likelihood estimation, however, the usual ap-
proach is to use the pro�le likelihood instead
of the integrated likelihood; for pro�le like-
lihood, likelihoods are calculated by maxi-
mizing the likelihood with respect to the pa-
rameters that are not of direct interest to the
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biologist. Such parameters are referred to as
nuisance parameters, and they must be esti-
mated along with the parameter(s) of interest
(for discussions of nuisance parameters and
integrated likelihood, see Goldman, 1990;
Berger et al., 1999). Nuisance parameters typ-
ically include the branch lengths as well as a
number of substitution model parameters.

As more and more data are added to
a Bayesian analysis, the in�uence of the
prior beliefs on the posterior distribution de-
creases. In a typical Bayesian analysis of phy-
logeny, the results are likely to be rather in-
sensitive to the prior. In the Ipomoea study,
in the most extreme cases persons placed
2.5 million times (15 log likelihood units)
more weight on trees consistent with Ipo-
moea monophyly than on trees inconsistent
with Ipomoea monophyly. Nonetheless, this
extreme prior was overwhelmed by the data:
The difference in likelihood between the best
trees with and without Ipomoea monophyly
was about 50 log likelihood units. The prior
would have to be much more in favor of Ipo-
moea monophyly to substantially change the
posterior probability distribution of trees.

Even if it is unlikely to be aproblem in most
Bayesian analyses of phylogeny, the sensitiv-
ity to the chosen priors remains a legitimate
concern. It is good practice to describe the
priors of a Bayesian analysis carefully, par-
ticularly if they are nonstandard. If there is
reason to believe that the data are weak, the
in�uence of the priors on the posterior dis-
tribution can be examined by rerunning the
analysis with different priors. A good way
of illustrating the relative contributions of
priors and data to the posterior probability
distribution is to formulate the support for a
particular hypothesis before and after analy-
sis in terms of odds. In the Ipomoea example,
for instance, the most extremepersons placed
the prior odds 2.5 million to 1 on Ipomoea
being monophyletic. Updating these odds
with the data, the posterior odds become
1:6 £ 1015 to 1 against a monophyletic Ipomoea
(for another example, see Huelsenbeck and
Imennov, 2002).

Convergence and Mixing

An appropriately constructed Markov
chain will eventually produce dependent
samples from the posterior probability dis-
tribution of trees. However, the chain is typi-
cally started from a point in parameter space

far removed from the regions with high pos-
terior probability, and it will take some time
before the chain �nds the probable param-
eter values and produces a reasonable ap-
proximation of the posterior distribution. In
MCMC parlance, there is a burn-in period
before the chain converges onto the station-
ary or target distribution, the posterior prob-
ability distribution in this case. Even after
convergence, the chain may move extremely
slowly between different regions of the pa-
rameter space with high posterior probabil-
ity, in which case the chain is said to mix
poorly. How can we know that the chain
we are sampling from has converged and
mixes well? The disappointing answer is that
it is impossible to know for certain. However,
there are several good methods for examin-
ing both convergence and mixing.

The obvious way of monitoring conver-
gence is to examine plots of log likelihood
values. Initially, likelihood values tend to
increase from generation to generation, but
eventually the likelihood values cease to
climb and instead �uctuate randomly up and
down. This is taken as a sign of convergence,
and the initial climbing phase is recognized
as the burn-in period. The samples drawn
from the chain before convergence are dis-
carded, and our inferences are based exclu-
sively on the remaining samples.

Unfortunately, log likelihood plots are no-
toriously unreliable for convergence moni-
toring (Gilks et al., 1996). For example, it is
quite possible that a chain oscillates around
what appears to be a stable likelihood value
for many generations but then suddenly
starts to climb again. Furthermore, the like-
lihood plot provides little information about
the mixing behavior of the chain; two chains
that are indistinguishable in their likelihood
plots may sample from widely separate re-
gions of the posterior distribution. Perhaps
the most powerful approach to addressing
these concerns is to compare independent
MCMC runs. If several chains started from
widely different places in parameter space
end up producing indistinguishable sam-
ples, then that is a strong indication of con-
vergence and appropriate mixing.

In MCMC estimation of posterior probabil-
ity distributions resulting from phylogenetic
analysis, the topology parameter is likely
to be particularly problematic. Therefore, it
makes sense to start independent runs with
random trees and focus on the integration
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over tree space when evaluating the results.
For instance, the topological variance within
and between chains can be compared using
a suitable measure of tree-to-tree distance
(Huelsenbeck et al., 2001). Before chains have
converged, they will sample from different
parts of tree space and the average tree-
to-tree distance within chains will be con-
siderably smaller than that among chains.
After convergence, and given appropriate
mixing, all chains will be sampling from the
same distribution and the average tree-to-
tree distance will be the same within and
among chains. An alternative way of moni-
toring topological convergence is to compare
the posterior clade probabilities among in-
dependent runs started from random trees.
Again, similar clade probabilities in inde-
pendent runs constitute strong evidence for
convergence.

Even though topology isa particularly crit-
ical parameter, it is of course possible to ex-
amine convergence in the estimate of any pa-
rameter in the model. If the systematist were
particularly interested in drawing inferences
about the shape of the gamma distribution
of rate variation, for example, it would be
appropriate to monitor convergence for that
parameter. Regardless of the parameter in fo-
cus, independent runs allow estimation of
the so-called Monte Carlo error. Five or 10
independent MCMC runs may be suf�cient
to obtain a reasonable estimate of the error. In
this way, we might for instance give the pre-
cision of the clade probabilities in a Bayesian
MCMC analysis in terms of the observed
Monte Carlo standard deviation around
the mean.

The size and complexity of the problems
that are possible to analyze with MCMC are
determined by the convergence and mixing
of the chains. Therefore, techniques that im-
prove convergence and mixing are likely to
be particularly important in extending the
limits of MCMC analysis. A good illustration
is provided by the Metropolis-coupling tech-
nique originally described by Geyer (1991).
The idea is to run n Markov chains in parallel
(the n chains are labeled i D 0, 1, : : : , n ¡ 1).
One chain samples from the posterior dis-
tribution of interest, Pr[¿ jX], also referred
to as the cold distribution. The other chains
are sampling from heated distributions ob-
tained by raising the cold distribution by ¯i ,
where 0 · ¯i · 1. Thus, the heated distribu-
tions have the form Pr[¿ jX]¯i . Usually, if n

chains are used then incremental heating of
the form ¯i D 1=(1 C iT ) is applied, where T
is a “temperature” parameter that is set to an
appropriate value. At regular intervals, two
chains are picked randomly and an attempt
is made to change their states (parameter val-
ues) using a normal Metropolis step.

The effect of the heating is to decrease
the difference between hilltops and val-
leys in the posterior distribution, such that
the heated chains move more readily be-
tween isolated hilltops. The only function
of the heated chains, however, is to pro-
vide the cold chain with intelligent propos-
als of new states. Because the heated chains
move around more readily among the avail-
able hilltops, they can signi�cantly improve
mixing of the cold chain by letting it jump
from one hill to another in a single step, a
move that might otherwise take millions of
generations because of the improbability of
the intermediate states. Metropolis-coupled
MCMC, or MCMCMC, or (MC)3 for short,
has extended the limits of MCMC analysis of
phylogeny considerably; the largest success-
ful (MC)3 analyses, comprising more than
350 sequences (Huelsenbeck et al., 2001), in-
tegrate over a tree space that is several hun-
dred orders of magnitude larger than the tree
spaces that have been successfully analyzed
without Metropolis coupling.

Despite the success of Metropolis cou-
pling, convergence and mixing remain im-
portant problems for MCMC analysis of phy-
logeny. Undoubtedly, these problems will be
a major focus of future research, and consid-
ering how young the �eld is, we may expect
to see some signi�cant advances that will ex-
tend the capabilities of MCMC in addressing
phylogeny problems. For the time being, we
suggest that the user, now aware of a few
of the problems of convergence in MCMC
algorithms, exercise caution. Keep in mind
that “MCMC is a complex mixture of com-
puter programming, statistical theory, and
practical experience. When it works, it does
things that cannot be done any other way,
but it is good to remember that it is not fool-
proof” (Geyer, 1999:80). We can also make a
few general recommendations. First, we ad-
vocate that several long chains be run, espe-
cially when several processors are available.
Although some statisticians have argued that
convergence can be monitored from a single
long chain (e.g., Geyer, 1992), the results from
several chains can often lead to the discovery
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of problems (e.g., when different chains
give obviously different answers). Second,
whenever possible, we advocate running
multiple chains, each of which starts from
a random tree. The disadvantage of using
random trees (instead of, say, a neighbor-
joining tree) to start the chain is that it may
take a long time for the chain to �nd trees
with high probability. However, convergence
seems more assured if several chains, each of
which started from different random trees,
all give the same result. Third, many or all of
the parameters of the model should be mon-
itored for convergence. Different parameters
of the phylogenetic model probably will con-
verge at different rates.

UNSOLVED PROBLEMS

Because Bayesian analysis using MCMC is
a new method in systematics, it is not surpris-
ing that there are a number of unsolved mys-
teries and potential problems that have not
yet been addressed. Here, we limit ourselves
to discussing three of these issues. Perhaps
the most vexing mystery is the observed dis-
crepancy between Bayesian posterior proba-
bilities and nonparametric bootstrap support
values. Another important problem is model
validation. The use of existing phylogenetic
results as priors in subsequent analyses or as
the basis for the construction of supertrees
also is an important �eld where additional
research is necessary.

Bootstrap Values and Posterior Probabilities

A common empirical observation is that
bootstrap support values, calculated using
parsimony or maximum likelihood, tend to
be lower than the corresponding Bayesian
posterior probabilities. This raises a num-
ber of questions: Does the bootstrap mea-
sure something qualitatively different than
is indicated by the posterior clade proba-
bilities? Is the bootstrap more robust than
the Bayesian posterior probabilities? Do the
Bayesian posterior probabilities lead to over-
con�dence in the results?

This is a �eld where more research is
clearly needed, and it seems impossible to
provide any fast and hard answers currently.
Although bootstrap values and Bayesian
posterior probabilities both measure phylo-
genetic uncertainty, they are calculated very
differently. The bootstrap, or the nonpara-
metric bootstrap to be exact, is a measure

of uncertainty based on resampling from the
original data matrix. Thus, it evaluates pre-
cision based on a multinomial sampling dis-
tribution, which does not in itself have any
relation to an evolutionary model. The evo-
lutionary model only enters into the calcu-
lations when a phylogenetic estimate is de-
rived for each resampled matrix. Bayesian
analysis, however, explicitly measures un-
certainty based on the speci�ed evolutionary
model and the available data; it seems much
more similar to the parametric bootstrap in
this respect. These simple technical differ-
ences undoubtedly explain the discrepan-
cies between nonparametric bootstrap sup-
port values and posterior clade probabilities.
However, the prime concern is to �nd the un-
derlying cause for the effect, because it may
have profound implications.

Maximum likelihood analysis of phy-
logeny has been around for a while. Yet, some
of the fundamental properties are still poorly
known because standard statistical theory
does not apply. For instance, analysis of phy-
logeny is not based on true likelihoods but
on pro�le likelihoods, in which some nui-
sance parameters are estimated, as we have
discussed. Problems arise because the pro-
�le likelihood does not incorporate the vari-
ability of the estimated nuisance parameters.
A possible result is inadvertent imprecision
in the phylogenetic estimate. Bayesian phy-
logenetic inference is not based on pro�le
likelihoods but on marginal distributions, in
which the uncertainty concerning all param-
eters except topology is integrated out. These
considerations, then, suggest that one cause
of the discrepancy may be that maximum
likelihood tends to underestimate the con-
�dence in phylogenetic results because of
methodological differences.

The interpretation of the bootstrap itself,
as applied to phylogenetics, is also under
discussion. The standard bootstrap values
do not accurately measure con�dence in the
traditional, hypothesis-testing context, but it
is possible to calculate corrected bootstrap
values (Efron et al., 1996; Sanderson and
Wojciechowski, 2000). Unfortunately, the cor-
rection is computationally expensive, and
it can result in either an increase or a de-
crease in the original bootstrap proportions.
However, some arguments raised by Sander-
son and Wojciechowski (2000) suggest that
the correction is generally upwards for mod-
erate to large data sets. In their 140-taxon
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analysis, the bootstrap support for Neo-
Astragalus rose from 67% to 93% after cor-
rection. Bayesian analysis of the same data
produced a posterior probability for the Neo-
Astragalus clade that agrees well with the cor-
rected bootstrap proportion (Huelsenbeck
et al., 2001). It is premature to base any far-
reaching conclusions on these observations,
but a major cause of discrepancy between
bootstrap proportions and clade probabili-
ties may be an inherent statistical bias in un-
corrected bootstrap proportions.

A third potential explanation for the dis-
crepancy is that Bayesian analysis is more
sensitive than other methods to model mis-
speci�cation. This possibility is dif�cult to
address, and more research is clearly war-
ranted. However, there do not appear to be
any obvious reasons to expect Bayesian anal-
ysis to be more sensitive than other meth-
ods, such as maximum likelihood, to model
misspeci�cation. On the contrary, the use
of marginal posterior probabilities instead
of pro�le likelihoods could actually infer
greater robustness of Bayesian methods.

A distinct advantage of the Bayesian pos-
terior probabilities is that their interpreta-
tion is so clear-cut and intuitively appealing;
they represent the probability that the corre-
sponding clade is true given the model, the
priors, and the data. Obviously, the Bayesian
approach is not a panacea for problems in
statistical inference of phylogeny, and there
are already several anecdotal cases in which
obviously erroneous or con�icting clades re-
ceive high posterior probabilities in Bayesian
analyses. The most likely explanation is that
the model is inappropriate for these data.
These con�icting results can be considered
as either a strength or a weakness of the
method. We tend to see it as a strength; if the
model is inappropriate then more work on
the model is needed before we can hope to
make substantial progress. Perhaps there is
real incongruence between the gene tree and
the species tree, perhaps there is time hetero-
geneity in the evolution of the characters, or
perhaps there are other factors that distort
the results. In any case, it seems important
to discover the reason for the problem and
take that into account in the analysis. Oth-
ers will prefer to hide the uncertainty in an
inconclusive support value. However, inap-
propriate modeling assumptions are likely to
be problematic for all parametric statistical
methods, and hiding potential problems in

inconclusive support values can be counter-
productive in the long term if it slows down
the development of more realistic evolution-
ary models.

Complex Priors on Trees

Many scientists are attracted to the
Bayesian approach because it seems to mimic
how scientists behave in the real world; a sci-
entist starts off with some belief about a hy-
pothesis, collects data relevant to the hypoth-
esis, and then modi�es his or her beliefs in
the light of the observations. Bayesian analy-
sis simply formalizes this process. However,
in practice, the Bayesian ideal is often not re-
alized. For example, for the phylogeny prob-
lem, practicing systematists are forced to use
the priors of the computer programmers who
wrote the software package that performs
the Bayesian phylogenetic analysis. Many
people currently use a “Simon and Larget”
prior when using the program BAMBE
(Simon and Larget, 1998) or a “Huelsenbeck
and Ronquist” prior when using the program
MrBayes (Huelsenbeck and Ronquist, 2001).
A practical problem in the phylogenetic con-
text, then, is how to formulate the topological
results of one analysis in a way that is suit-
able as a prior in a subsequent analysis or,
for that matter, how to even specify complex
priors based on previous taxonomic work.
We need a prior probability distribution on
trees, but even for a small phylogenetic prob-
lem the number of possible trees B(s) is so
large that we cannot expect to be able to esti-
mate the posterior probability of all of them,
particularly not the ones with low posterior
probabilities. Even if we could, we would
have to deal with an enormous amount of
information to specify the prior for the next
analysis. For large analyses, it may even be
dif�cult to estimate the posterior probability
for the most likely trees, because even small
clades that are poorly resolved will result in
a large number of fully resolved trees of ap-
proximately equal probability.

Model Testing

The results of a Bayesian analysis of phy-
logeny are contingentupon thechosen model
being correct, so it is important to test
whether the model provides an adequate de-
scription of the data. In a Bayesian analysis,
the problem of model testing comes down
to two related issues: checking a model and
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examining the sensitivity of posterior prob-
ability distributions to the choice of model
(Gelman et al., 1995).

There is no single agreed-upon method for
checking models in a Bayesian analysis. Typ-
ically, the ability of a model to predict future
observations (or more practically the ability
of part of the collected data to predict the
remaining data that were collected), Bayes
factors (the ratio of the marginal likelihoods
under two models, a quantity similar to the
more familiar likelihood ratio test statistic)
or posterior predictive P values, are used to
check the model used in a Bayesian analy-
sis. To date, in the phylogenetics literature,
a more practical approach has been taken
in which model choice is performed using
likelihood ratio tests and then inferences are
based on posterior probabilities of trees; lit-
tle attention has been given to the methods of
model choice developed in the Bayesian liter-
ature. However, the Bayesian methods might
be useful in several contexts. Some of the
methods do not require strict nesting of hy-
potheses, as is a requirement when using the
Â2 approximation of the null distribution for
likelihood ratio tests. Moreover, the Bayesian
methods integrate over uncertainty in many
of the model parameters that are not of direct
interest. However, the interpretation ofBayes
factors is not easy, with one solution being to
give a verbal description (e.g., instead of a
P value) of the strength of the support of one
hypothesis over another (Jeffreys, 1961). Pos-
terior predictive P values, however, may be
useful in providing a way to measure the re-
liability of a model in a phylogenetic analysis
(Bollback, 2002).

Model choice is another area that deserves
more study in phylogenetics. Several inter-
esting questions remain. For example, most
methods of Bayesian model choice have not
yet been implemented for comparing phylo-
genetic models. Implementation of many of
these methods may be challenging, because
they could use complicated forms of MCMC.
Once the Bayesian methods have been devel-
oped, the behavior of these methods, com-
pared with more commonly used methods
such as likelihood ratios tests, should be
explored.

A BAYESIAN FUTURE

Whether Bayesian phylogenetic methods
become accepted and widely used will prob-

ably come down to a single consideration:
Does the Bayesian method allow the biologist
to address new and interesting evolutionary
questions? Here, the news is encouraging.
Bayesian methods have already been applied
to a number of interesting questions, such as
estimating ancestral states on a phylogeny
(Yang et al., 1995b), searching for positively
selected sites (Nielsen and Yang, 1998), infer-
ring a history of cospeciation (Huelsenbeck
et al., 2000b), estimating divergence times
under a relaxed molecular clock (Thorne
et al., 1998), inferring phylogeny using gene
order data (Larget et al., 2002), and stochas-
tically reconstructing a character’s history
(Nielsen and Huelsenbeck, 2002). Bayesian
inference also suggests a natural way to
accommodate the uncertainty in phyloge-
nies when performing comparative analyses
(Losos and Miles, 1994; Huelsenbeck et al.,
2000c).

Even the most basic question of
phylogenetics—how to estimate the phy-
logeny of a group of taxa—has bene�ted
from a Bayesian perspective. Topology is a
strange parameter, and how to deal with it in
a statistical framework has generated discus-
sion (Yang et al., 1995a). Bayesian estimation
provides the �rst different perspective of
topology as a parameter; a Bayesian analysis
treats the phylogeny as a random variable.
Bayesian methods also provide an easy
method for assessing the reliability of a
phylogenetic tree. All inferences about phy-
logeny are simply based upon the posterior
probability distribution of trees, something
that can be approximated in principle using
a single run of a Markov chain. Summariz-
ing the posterior probability distribution
of trees, however, is an open question. So
far, majority rule consensus trees (Larget
and Simon, 1999), credible sets (Felsenstein,
1968; Wheeler, 1991), and the maximum
posterior probability tree (Rannala and
Yang, 1996) have been suggested as ways
to summarize the results of a Bayesian
analysis of phylogeny. However, there may
be other aspects of the posterior distribution
that are of interest. For example, perhaps
the systematist is only interested in the
subtree(s) de�ned by a subset of the taxa
included in the analysis. In this case, it is
easy to summarize the results of the subset
of species, while allowing all of the species
to contribute to the phylogenetic analysis.
(Simply prune away the species that are not
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of interest after running a Markov chain; the
fraction of the time that any subtree is in
the pruned list of trees is an approximation
of the posterior probability of that subtree.)
Another way to assess the support for a
clade is to examine the degree to which your
beliefs changed after observing a matrix
of characters. The Bayes factor measures
“the change in the odds in favor of the
hypothesis when going from the prior to the
posterior” (Lavine and Schervisch, 1999).
This approach has been used to examine the
support for the monophyly of a group of
insects (Huelsenbeck, 2001).

This issue of Systematic Biology includes
several papers that were presented at a sym-
posium on Bayesian inference of phylogeny
held at the annual meeting of the Soci-
ety of Systematic Biologists in Knoxville,
Tennessee, during the summer of 2001. To-
gether, they represent some of the potential
applications of Bayesian inference. Thorne
and Kishino (2002) have extended their
method for estimating divergence times of
clades to multigene data and devised a
method for examining correlation in rates
across lineages. Aris-Brosou and Yang (2002)
also have examined divergence time estima-
tion, considering several models for relaxing
the molecular clock and exploring the sen-
sitivity of divergence time estimates to the
model of rate variation used in the analysis.
Suchard et al. (2002) have devised a method
for detecting recombination using Bayes fac-
tors. This approach is especially timely given
the increased use of phylogenetic methods
on (potentially) recombining viral sequences.
Nielsen (2002) has shown how character
transformations can be mapped onto phylo-
genies using an approach that is essentially
Bayesian (also see Nielsen and Huelsenbeck,
2002). Nielsen’s method is especially im-
portant, because it allows characters to be
mapped onto a tree under stochastic mod-
els of character change. This approach brings
a new perspective to the problem of deter-
mining a character’s history and conjures im-
ages of a MacClade-like program (Maddison
and Maddison, 2000) for visualizing the his-
tory of a character under stochastic mod-
els. Previously, only the parsimony method
could be used to map a character onto a phy-
logeny. Now, characters can be mapped onto
a tree under the same stochastic models of
character evolution used in maximum like-
lihood, Bayesian, and many distance meth-

ods. Nielsen’s approach will force evolution-
ary biologists to consider the uncertainty in
character histories. Miller et al. (2002) have
shown a nice application of Bayesian phy-
logenetic analysis to the question of morn-
ing glory monophyly. They paid especially
close attention to monitoring convergence of
chains and showed some examples where
Markov chains have failed to converge. Fi-
nally, Rannala (2002) has added a cautionary
note to Bayesian analysis using MCMC. The
MCMC procedure is so general and easy to
apply that it can even be applied to problems
where the parameters are not identi�able.
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