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Abstract— In this paper we describe a novel decentralized
control strategy to realize formations of mobile robots. We first
describe a methodology to obtain a formation with the shape
of a regular polygon. Then, applying a bijective coordinates
transformation, we show how to obtain a formation with an
arbitrary shape. Our control strategy is based on the interaction
of some artificial potential fields, but it is not affected by the
problem of local minima.

I. INTRODUCTION

This paper describes a novel strategy to realize formations

of mobile robots with arbitrary shape.

In the literature, many different approaches to formation

control can be found. The main existing approaches can

be divided into two categories: centralized and distributed.

Because of the intrinsic unreliability of centralized methods

[8], we focus our attention to distributed ones: all the agents

are equal, and if one of them stops working, the other ones

can still complete their task.

Many distributed strategies have been proposed to make

a group of mobile robots move in a cohesive way [5], [9],

[10], imitating the behavior of large groups of animals (e.g.

school of fish). However, the aim of our control strategy is

quite different: we want a group of mobile robots to create a

formation with an exact desired geometric shape. In fact, our

target application is a group of Automated Guided Vehicles

(AGVs) moving in a warehouse for goods delivery. We want

a group of AGVs to cooperatively deliver a certain amount

of goods, moving in a formation. The creation of a formation

with the desired shape is useful to precisely limit the action

zone of the AGVs, thus reducing the chance of collisions

with other entities (e.g. human guided vehicles).

Potential based control strategies make robots move along

the negative gradient of the composition of some artificial

potential fields. Correctly shaping these potential fields al-

lows one to impose a desired behavior to a group of robots.

While most of the potential based control strategies have the

aim of controlling only the overall swarm geometry (e.g.

[2], [1]), recently some strategies have appeared to control

the exact shape of the formation. One possible approach

is to deploy a group of robots over a desired curve [11],

[7], [4]. However, our control strategy allows us not only to

equitably deploy the robots over a curve, but to specify their

exact positions. Previous potential based strategies to obtain

formation with exact geometric shape [8] have the drawback
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that, as the number of agents increases, many local minima

appear. Local minima are asymptotically stable undesired

equilibrium points. Thus, they are one of the main problem in

potential based strategies [3], because they make the agents

stop in undesired positions.

However, our control strategy doesn’t lead to the creation

of local minima. Thus, the desired formation is always

created.

We will start describing a methodology to obtain a for-

mation with the shape of a regular polygon, in Sec. II and

III. In Sec. IV we will describe how to extend our control

strategy to obtain formations with arbitrary shapes, by means

of a coordinates transformation. In Sec. V we will show

some simulations to validate the results obtained in the paper.

Sec. VI contains some concluding remarks.

II. REGULAR POLYGON CONTROL LAW

In this paper we consider a group of n point mass

holonomic agents characterized by the following dynamics:

ẍi = ui i = 1, ..., n (1)

where xi ∈ R
2 is the position of the i–th agent. The dynamic

behavior we are considering is quite simple, but all the results

obtained in the paper can be extended to nonholonomic

vehicles. In fact, many strategies can be found (e.g. [6] and

[13]) to feedback linearize several classes of nonholonomic

vehicles. Furthermore, we suppose that the agents can local-

ize themselves exactly. Referring to our target application, a

group of AGVs moving in a warehouse, this can be done,

for example, by means of laser triangulation.

Let W be the sensing range of each agent. Each agent

knows only the positions of its neighbors, which are the

agents that are closer than W .

We want the agents to create a formation with the shape

of a regular polygon with n sides. More specifically, we

want the length of every side (i.e. the distance between

two neighboring agents) to be equal to L ≤ W , and the

circumcenter of the polygon to be in a certain position

xc ∈ R
2. Let R be the radius of the circumcircle of the

polygon (i.e. the distance between each agent and the cir-

cumcenter): from basic geometrical considerations, it follows

that R = L/ [2 sin (π/n)].
We assume that each agent knows the position of the

center of the circumcircle, xc, the number of agents, n, and

the desired distance between two neighboring agents, L. We

remark that knowing the total number of agents is necessary

to create a formation with an exact geometric shape.
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We implement the following control law to obtain the

desired behavior:

ui = fci +

n
∑

j=1;j 6=i

faij − bẋi (2)

where b is a positive constant which implements a damping

action.

The first term of Eq. (2) is defined as follows:

fci = −∇xi
Vci (xi) (3)

and

Vci (xi) =
1

2
Kc(dci − R)

2
(4)

where dci (t) = ‖xi (t) − xc‖, and Kc is a positive constant.

The role of this term is to take each agent at distance R
from the desired position for the center of the formation. In

other words, if no other potential fields were present, this

term would make every agent move to a circumference with

center xc and radius R.

The second term of Eq. (2) is defined by the following

components:

faij = −∇xi
Vaij (xi, xj) (5)

and

Vaij (xi, xj) =

{

1

2
Ka(dij − L)

2
if dij ≤ L

0 otherwise
(6)

where dij (t) = ‖xi (t) − xj (t)‖, and Ka is a positive

constant. It’s easy to see that function Vaij is continuous

(and differentiable).This term is used to regulate the distances

among the agents. This interagent potential produces a re-

pulsive force if two agents are too close, namely if dij < L,

and produces a null force if the distance is greater than or

equal to the desired one, namely if dij ≥ L.

Thus, the composition of these potential fields produces

the following behavior:

1) All the agents move toward a circumference with

center xc and radius R. No collisions among the agents

can happen, because of the presence of the control

action in Eq. (5).

2) When all the agents lie on the circumference, the

control action in Eq. (3) is null. The control action

in Eq. (5) regulates the relative distances among the

agents, until they are in the desired configuration.

3) In the desired configuration, the composition of the po-

tentials gives a null control action, because the agents

are on the circumference (fci = 0 ∀i = 1, . . . , n), and

the distance between each couple of agents is equal to

L (faij = 0 ∀i, j = 1, . . . , n).

Proposition 1 The regular polygon formation is an asymp-

totically stable configuration.

Let x =
[

xT
1 ... xT

n ẋT
1 ... ẋT

n

]T
∈ X be the state vector

of the system. Let us introduce the following Lyapunov

candidate function V : X → R, given by the total energy of

the system:

V (x) =

n
∑

i=1



Vci (xi) +

n
∑

j=1;j 6=i

Vaij (xi, xj) +
1

2
‖ẋi‖

2





(7)

From Eq. (4) and Eq. (6) one can trivially see that V ≥ 0. V
is the sum of three terms which are always positive or null.

Thus, we need all of them to be equal to zero for V to be

equal to zero. More specifically, we have V = 0 if and only

if, simultaneously:

1) ẋi = 0 ∀i = 1, ..., n; i.e. all the agents are at

some steady state position (they don’t move from their

current position);

2) Vci = 0 ∀i = 1, ..., n; i.e. all the agents are on the

circumference with center xc and radius R;

3) Vaij = 0 ∀i, j = 1, ..., n; i.e. all the agents are at a

distance greater than or equal to L with respect to their

neighbors (dij ≥ L ∀i, j = 1, ..., n).

From basic geometrical considerations it follows that condi-

tions 2 and 3 can hold simultaneously if and only if dij = L
∀i, j = 1, ..., n. In other words, V ≥ 0 always, an V = 0
only in the regular polygon formation (no local minima).

Consider the time derivative of this function:

V̇ (x) =
∑n

i=1
ẋi

[

∇xi
Vci (xi) +

∑n

j=1;j 6=i ∇xi
Vaij (xi, xj) + ẍi

]

(8)

From Eq. (1), Eq. (2), Eq. (3) and Eq. (5) we obtain the

following equation:

ẍi = −∇xi
Vci (xi) −

n
∑

j=1;j 6=i

∇xi
Vaij (xi, xj) − bẋi (9)

Thus, from Eq. (8) and Eq. (9):

V̇ (x) = −

n
∑

i=1

b‖ẋi‖
2

(10)

which is always less than or equal to zero.

The asymptotic stability can be proved by invoking

LaSalle’s principle.

The desired configuration is not globally asymptotically

stable because undesired equilibrium configurations appear

when two or more vehicles are aligned with xc. In this

case the potentials never generate a force perpendicular to

the alignment direction and, therefore, the aligned agents

would never play their role in the creation of the desired

polygonal formation. Nevertheless, these equilibrium points

are not local minima but they are clearly unstable. In fact, an

infinitesimal perturbation of the position of the aligned agents

is sufficient for the potentials to create a force that leads the

agents to the desired configuration. Thus, in order to avoid

some agents to get stuck in this undesired configuration,

when an agents detects that it’s aligned with xc and with

another agent, it applies a random infinitesimal force that

modifies its position in order destroy the alignment condition

and to converge to the desired polygonal configuration. The
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possibility that all the aligned agents apply a force in the

same direction and that, therefore, the alignment condition

is preserved after the perturbation, is practically zero.

Hence, the regular polygon configuration is the only

asymptotically stable configuration of the system. Thus,

unlike other potential–based methods [3], in our control

strategy local minima never appear.

III. ORIENTATION OF THE POLYGON

The control strategy presented in the previous section

admits a symmetry. In fact, given n agents, there are infinite

regular polygons with n sides lying on the same circum-

circle, and our control strategy just takes the agents in one

admissible configuration. However, in many applications it is

very useful to select exactly one of these infinite admissible

configurations. To solve this problem, we have to fix the

orientation of the formation. To this aim, we need to modify

the control law presented in the previous section.

x∗

L∗

x1

x2

L

Fig. 1. The action zone of the orientation component of the control law
must be such that it influences one and only one agent at the steady state

In Fig. 1 one can see three admissible configurations,

obtained by rotating the polygon around its circumcenter.

The system has one degree of freedom: to select one precise

polygon, we need one condition to eliminate this degree of

freedom. One way to do this is to select the position of

one of the vertices of the polygon. Thus, define x∗ as the

position to be occupied by one of the vertices of the polygon.

Fixing the position of one of the vertices, we can select the

orientation of the polygon. Since we want all the agents to

be indistinguishable, we don’t want to select a priori which

agent will be in the position x∗. Thus, we introduce a new

potential Voi which attracts to x∗ every agent that is inside

a proper region of attraction. It is now necessary to define

this region of attraction.

Let C = {x s.t. ‖x − x∗‖ ≤ L∗} be a circle whose

border intersects the circumcircle of the polygon in two

points x1 and x2 such that ‖x1 − x2‖ = L (Fig. 1).

From simple geometrical considerations, it follows that

L∗ = L/ {2 cos [(arcsin (L/2R)) /2]}. Assume that C is the

region of attraction. If one agent is inside C, the action of Voi

would attract this agent to x∗ taking the polygon at the right

orientation. Nevertheless, if two agents are in x1 and x2,

they are both attracted to x∗ and the interaction between Voi

and the interagent potential creates a local minimum which

deforms the final shape of the formation. On the other hand,

if we exclude the border of C from the region of attraction,

we have another pathological case. In fact, in this case, if

two agents are in x1 and x2, none of them is attracted to x∗

and the orientation of the polygon is not changed as desired.

In order to avoid these undesired behaviors, we define the

region of attraction as

S∗ = {x s.t. ‖x − x∗‖ < L∗} ∪ {x1} (11)

Note that x1 can be substituted by x2 as well.

Thus, we implement the following control law:

ui = fci +

n
∑

j=1;j 6=i

faij + foi − bẋi (12)

This control law can be obtained from Eq. (2) by adding the

term foi, which is defined as follows:

foi = −∇xi
Voi (xi) (13)

and

Voi (xi) =

{ 1

2
Ko(doi)

2
if xi ∈ S∗

K∗ otherwise
(14)

where Ko and K∗ are constants, with Ko > 0, and

doi (t) = ‖xi (t) − x∗‖.

We have shown that, after the polygon has been created,

one and only one agent would be influenced by the orienta-

tion action. But during the transient (i.e., before the polygon

has been created) it can happen that two or more agents

are inside S∗. For the polygon to be correctly created, we

need that the distance between two neighboring agents is

equal to L, even in presence of this orientation component.

Thus, if two or more agents are inside S∗, they must get

far from one other, until they reach the correct relative posi-

tions. In other words, the gain of the orientation component

(Ko) must be much smaller than the gain of the interagent

component (Ka). Namely, we must chose these gains such

that Ka ≫ Ko. This ensures that, in presence of both the

components, the orientation one becomes negligible, and the

polygonal formation is correctly created. Once the agents are

in the polygonal formation, only one of them is inside S∗,

and the formation is taken to the desired orientation.

IV. DEFORMATION OF THE POLYGON: BIJECTIVE

COORDINATES TRANSFORMATION

For many applications it is very useful to obtain formations

with shapes different from regular polygons. Our main idea

is to obtain a formation with an arbitrary shape by deforming

the regular polygon, as shown in Fig. 2. In this picture, the

u

v

w

zxk

xk+1

xc

x′
k

x′
k+1 x′

c

x

x′

T

Fig. 2. To obtain an arbitrary shape, we deformed the regular polygon by
means of a bijective coordinates transformation
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reference frame (w, z) represents the real reference frame;

the real positions of the agents are measured with respect

to the coordinate set (w, z). The reference frame (u, v)
is an auxiliary reference frame. We introduce a bijective

coordinates transformation T that allows us to relate the

desired positions for the agents in (w, z) to the positions

of the vertices of a regular polygon in (u, v).

Thus, we propose the following control strategy:

1) Each agent measures its own position, and the positions

of its neighbors, with respect to the real reference

frame (w, z).
2) Each agent transforms these positions using the trans-

formation T , and obtains the values of these positions

with respect to the auxiliary reference frame (u, v).
3) Then, it calculates the control action as described in

the previous sections, with respect to the auxiliary

reference frame (u, v).
4) Finally, applying the inverse transformation, it finds

the value of the control action with respect to the real

reference frame (w, z), and can apply it.

Thus, we obtain a formation that has the shape of a regular

polygon with respect to the auxiliary reference frame (u, v),
but has the desired shape with respect to the real reference

frame (w, z).

We will now define a bijective transformation of coordi-

nates T which allows us to map n arbitrary positions into

the positions of the vertices of a regular polygon. We have

only to ensure that the distance between each couple of

neighboring position is less than the visibility range W .

Refer to the left–hand picture in Fig. 2. We partition the

(u, v) reference frame, creating n triangular zones (where n
is the number of agents in the formation). The partition is

created drawing n rays: each ray starts at the circumcenter

of the polygon xc and passes through a vertex. Thus, the

environment is partitioned in n zones, whose borders are

these n rays.

Referring to the right–hand picture in Fig. 2, the (w, z)
reference frame can be partitioned in a similar way. The

partition is created drawing n rays: each ray starts at x′
c and

passes through the desired position of an agent in the desired

formation. x′
c is the image of xc under the transformation T .

We will show in the sequel what conditions have to hold to

determine its position.

Once defined the partitions in the two coordinates sets, we

have to correlate them by means of a bijective relation. This

relation maps each vertex of the polygon in (u, v) into the

desired position of an agent in the formation in (w, z). The

circumcenter of the polygon xc = (uc, vc)
T

is mapped into

the point x′
c = (wc, zc)

T
. Then, each triangular zone in the

(u, v) reference frame is mapped into one triangular zone in

the (w, z) reference frame. For example, referring to Fig. 2,

the triangular zone defined by the points (xk, xk+1) has to

be mapped into the triangular zone defined by the points
(

x′
k, x′

k+1

)

, and vice versa. Thus, we define this mapping as

follows: x ∈ (u, v) is inside the k–th zone (yellow zone in

the left–hand picture in Fig. 2) if the argument of the vector

(x − xc) is between the arguments of the vectors (xk − xc)
and (xk+1 − xc):

x ∈ k–th zone iff

∠ (x − xc) ∈ [∠ (xk − xc) , ∠ (xk+1 − xc)[ (15)

and x′ ∈ (w, z) is inside the k–th zone (yellow zone in the

right–hand picture in Fig. 2) if the argument of the vector

(x′ − x′
c) is between the arguments of the vectors (x′

k − x′
c)

and
(

x′
k+1 − x′

c

)

:

x′ ∈ k–th zone iff

∠ (x′ − x′
c) ∈

[

∠ (x′
k − x′

c) , ∠
(

x′
k+1 − xc

)[

(16)

Let x̄ =
(

xT , 1
)T

∈ R
3 and x̄′ =

(

x′T , 1
)T

∈ R
3. For

each couple of corresponding triangular zones, we exploit a

projective transformation [12] that maps x̄ into x̄′. For the

k–th couple of triangular zones:

x̄′ = Mk · x̄ (17)

The matrix Mk has the following structure:

Mk =





a b c
d e f
0 0 1



 (18)

where a, b, c, d, e, f ∈ R. Each triangular zone is defined by

three points (Fig. 2): (xc, xk, xk+1) in the (u, v) coordinates

set, and
(

x′
c, x

′
k, x′

k+1

)

in the (w, z) coordinates set. To find

the matrix Mk, we impose the following conditions:






x̄′
c = Mk · x̄c

x̄′
k = Mk · x̄k

x̄′
k+1 = Mk · x̄k+1

(19)

Since xc, x
′
c, xk, x′

k, xk+1, x
′
k+1 ∈ R

2, the conditions in

Eq. (19) represent a linear system of six equations, to find

the six components of the matrix Mk.

It’s easy to show that, if xc, xk and xk+1 are different

and non–collinear, the six equations are linearly independent.

Since xc, xk and xk+1 are respectively the circumcenter and

two adjacent vertices of a regular polygon, they are never

coincident or collinear.

A projective transformation maps a straight line into a

straight line [12]. Thus the line connecting xc and xk is

transformed into the line connecting x′
c and x′

k (Fig. 2). In

other words, the borders of the k–th triangular zone in the

(u, v) coordinates set are mapped into the borders of the k–th

triangular zone in the (w, z) coordinates set, ∀k = 1 . . . n.

Since any linear transformation of a convex set yelds to

a convex set [14], each triangular zone is mapped into a

convex set by Mk. Since the borders of each triangular zone

in the (u, v) coordinates set are mapped into the borders of

the corresponding triangular zone in the (w, z) coordinates

set, we can conclude that the matrix Mk maps every point

of the k–th triangular zone in the (u, v) coordinates set into

points of the k–th triangular zone in the (w, z) coordinates

set, ∀k = 1 . . . n.
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Mk is invertible. In fact, let xc, xk, xk+1 ∈ R
2 be the

positions of the center of the polygon, and of two adjacent

vertices, and let x′
c, x′

k , x′
k+1 ∈ R

2 be their corresponding

transformed points. From geometrical considerations, it’s

easy to show that the matrix Mk is singular if and only

if

• x′
k = x′

k+1, or

• the arguments of vectors (x′
k − x′

c) and
(

x′
k+1 − x′

c

)

are equal.

The first condition means that the desired position of two

different agents must be different. This appears to be a very

natural condition: it doesn’t have any physical meaning to

obtain a formation in which two or more agents occupy the

same position at the same time.

To satisfy the second condition, x′
c must be non–collinear

to any couple of desired position for the agents in the

formation. This is the only condition that has to be satisfied

during the choice of x′
c. Since the number of agents in the

formation is finite, it’s always possible to find a suitable

position for x′
c.

We want to remark that the coordinates transformation

defined so far can be calculated by each agent without any

centralized controller. Each agent must only know the desired

positions that define the shape of the formation.

We have assumed so far that the triangular zones are

convex sets. While this is always true in the (u, v) reference

frame, because the triangular zones are defined by means

of the vertices of a regular polygon, this condition can be

violated in the (w, z) reference frame in many cases of

interest (e.g. left–hand picture in Fig. 3).

uu

vv

ww

zz
TT

x+

x′
+

xhxh

xh+1xh+1

x′
hx′

h
x′

h+1x′
h+1

Fig. 3. Adding an auxiliary point, all the zones of the partitions are convex

The borders of the triangular zones are rays starting at x′
c

and passing through the desired position of an agent in the

formation. If the angle between a couple of adjacent rays

is greater than π, the corresponding zone is non–convex.

To apply the strategy described so far, we need to modify

the partition to obtain only convex zones. More specifically,

we need to divide the non–convex zone, thus obtaining two

convex triangular zones. To do this, we introduce an auxiliary

point, which defines and additional ray.

More specifically, let α′
h and α′

h+1 be the arguments of

vectors (x′
h − x′

c) and
(

x′
h+1 − x′

c

)

respectively. Further-

more, let ∆α′
h =

∣

∣α′
h − α′

h+1

∣

∣. If ∆α′
h > π, we introduce a

point x′
+, such that

∠
(

x′
+ − x′

c

)

= α′
+ = α′

h + ∆α′
h/2 (20)

Then, the partition of the environment (right–hand picture in

Fig. 3) is done considering n+1 points: the desired positions

of the n agents, and the auxiliary point x′
+.

To make the transformation bijective, a corresponding aux-

iliary point, named x+, must be added in the (u, v) reference

frame as well. Let αh and αh+1 be the arguments of vectors

(xh − xc) and (xh+1 − xc) respectively. The argument of

vector (x+ − xc) will be the following:

∠ (x+ − xc) = α+ = αh + |αh+1 − αh| /2 = αh + π/n
(21)

Thus, as stated in the introduction, our control strategy

allows the creation of formations with totally arbitrary shape.

We remark that x+ is used only for the definition of the

bijective mapping: it does not directly influence the control

action (it is not an attraction point for the agents).

The bijective coordinates transformation T defined so far

can be described as a variable matrix:

x′
i = Ti (xi) · xi (22)

where xi and x′
i represent the position of the i–th agents

respectively in the (u, v) and in the (w, z) coordinates set.

Ti (xi) = Mk if xi is inside the k–th triangular zone. Let

x =
[

x̄T
1 . . . x̄T

n

]T
∈ R

3n and x
′ =

[

x̄′T
1 . . . x̄′T

n

]T
∈ R

3n.

We introduce the total transformation matrix T, such that

x
′ = T (x) · x (23)

The matrix T is a block diagonal matrix with the following

structure:

T (x) =














T1 (x1) 0 . . . . . . 0
0 T2 (x2) 0 . . . 0
...

...
...

...
...

0 . . . 0 Tn−1 (xn−1) 0
0 . . . . . . 0 Tn (xn)















(24)

The matrix T is clearly invertible, since it’s the block

diagonal composition of invertible matrices.

Let xD be the desired configuration of the agents in the

(u, v) reference frame, i.e. if x = xD the agents create a

formation with the shape of a regular polygon in the (u, v)
reference frame. Let x

′
D

be the desired configuration of the

agents in the (w, z) reference frame, i.e. if x
′ = x

′
D

the

agents create a formation with the desired shape in the (w, z)
reference frame. The coordinates transformation is defined

such that

x
′
D

= T (xD) · xD (25)

We have proved in Sec. II that our control strategy is

asymptotically stable, and doesn’t have the problem of local
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minima. In other words, applying our control strategy, the

regular polygon formation is always created, namely

lim
t→∞

x (t) = xD (26)

Applying the coordinates transformation to Eq. (26), we

obtain

lim
t→∞

x
′ (t) = lim

t→∞
T (x (t)) · x (t) = T (xD) · xD = x

′
D

(27)

In other words, with our control strategy the desired forma-

tion is always created.

V. EXAMPLES AND SIMULATIONS

(a) (b)

Fig. 4. Trajectories simulated with Matlab: black dots are the starting
positions, red stars are the final positions

To validate our control strategy, we performed several sim-

ulations using Matlab. We considered point mass agents, with

unitary mass. During our simulations, we have varied the

number of the agents involved, and their desired positions. As

expected, the agents always converge to the desired positions.

The trajectories covered by five point mass agents realizing

two different formations are represented in Fig. 4. In our

simulations, we used the following parameters: Kc = 80,

Ka = 100, Ko = 30. With these parameters, the time taken

by the group to create the formation is always less then 20

seconds. Fig. 5 shows the trajectories covered by five agents

Fig. 5. Agents moving while maintaining a formation: different colors
represent different instant of time

moving in the environment while keeping an arrow shaped

formation. The movement of the formation is obtained by

translating the point x′
c. The desired positions for the agents

are represented as relative positions with respect to x′
c. Thus,

as x′
c translates, even the minima of the composition of

the potential fields translate. Therefore, the agents move

preserving the shape of the formation, as shown in Fig. 5.

VI. CONCLUSIONS

The control strategy described in this paper is a completely

decentralized algorithm: there is no need for any centralized

controller. As typical in decentralized systems, this feature

improves the reliability of the system. Current work aims at

implementing online adaptation and scaling of the formation,

in case of sudden failure or addition of an agent.

The agents only need local information about their neigh-

bors. This kind of information can be obtained by means of

proximity sensors, thus the need for explicit communication

among the agents can be heavily reduced, which reduces

the computational power required. Furthermore, if they don’t

need explicit communication, they can act in noisy environ-

ments as well, for example in presence of other radio sources

which could disturb the communication.

Current work aims at including obstacle avoidance behav-

ior in the control strategy. We are also studying how to extend

our control strategy to nonholonimic systems. Afterwards,

we will implement an experimental setup to test it on real

robots. Once implemented our control strategy on real robots,

we will investigate how to control the heading of the robots

inside the formations.
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