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Potential bias of daily soil CO2 efflux 
estimates due to sampling time
Alejandro Cueva  1, Stephen H. Bullock1, Eulogio López-Reyes1 & Rodrigo Vargas 2

Soil respiration (Rs) has been usually measured during daylight hours using manual chambers. 
This approach assumes that measurements made during a typical time interval (e.g., 9 to 11 am) 
represent the mean daily value; locally, this may not always be correct and could result in systematic 
bias of daily and annual Rs budgets. We propose a simple method, based on the temporal stability 
concept, to determine the most appropriate time of the day for manual measurements to capture a 
representative mean daily Rs value. We introduce a correction factor to adjust for biases due to non-
optimally timed sampling. This approach was tested in a semiarid shrubland using 24 hr campaigns 
using two treatments: trenched plots and plots with shrubs. In general, we found optimum times were 
at night and potential biases ranged from −29 to + 40% in relation to the 24 hr mean of Rs, especially in 
trenched plots. The degree of bias varied between treatments and seasons, having a greater influence 
during the wet season when efflux was high than during the dry season when efflux was low. This 
study proposes a framework for improving local Rs estimates that informs how to decrease temporal 
uncertainties in upscaling to the annual total.

Soil respiration (Rs) represents the second largest �ux within the terrestrial carbon cycle, being surpassed only 
by gross primary productivity1. �is �ux is estimated to be an order of magnitude greater than the CO2 input to 
the atmosphere from anthropogenic fossil fuel combustion2. Rs represents a net loss of carbon derived from root 
respiration and from microbial metabolism of soil carbon3,4, the largest carbon pool globally5. Rs has complex 
spatio-temporal biophysical controls that vary on di�erent scales6 as a consequence of changes in biotic (e.g., 
photosynthesis7–10, microbial community11) and abiotic (e.g., soil temperature12,13, soil moisture14,15, soil texture16) 
factors. It is important to recognize that a small change within this pool could represent a signi�cant feedback to 
the earth system17. �us, sampling schemes and measurement strategies should be discussed to improve reports 
of Rs at the site level and across the world.

Rs is a composite of two main sources, heterotrophic (e.g., microbial metabolism) and autotrophic (root and 
mycorrhizae respiration)4. Partitioning of those sources is commonly done using trenching experiments18, where 
roots are excised and excluded from small plots so that microbial metabolism can be assumed to be the only 
source of Rs. Understanding the contributions of autotrophic and heterotrophic respiration is important because 
they may respond di�erently to temperature, with di�erent temporal correlations on a variety of time scales19.

Rs has been measured for almost 90 years20 and commonly has been measured using non-steady-state, 
manually-initiated portable chambers. Manual measurements have been popular around the world because of 
their portability, low implementation costs, and fewer power and security issues. Measurements using manual 
chambers are rapid (samples obtained within minutes), object-oriented (looking for di�erences between treat-
ments without limits to their distribution), and involve visual assessment of the sample unit for every measure-
ment. Results from these manual measurements have relatively good information of spatial variability (due to 
easy implementation) and are usually integrated to estimate longer-period emissions21. �ese temporal integra-
tions include annual �uxes, although this derives from a record with temporal gaps22 due to the low frequency 
of sampling typical of manual chambers (Fig. 1). Furthermore, measurement campaigns are commonly done in 
daylight hours, and assume that measurements made at a speci�c time interval (e.g., 9 to 11 am) represent the 
mean daily value. Locally, that assumption could cause systematic under- or over-estimation and contribute to 
bias or error in annual estimates from local to global scales (see Barton, et al.21 for an example of N2O �uxes and 
Vargas and Allen23 for CO2 �uxes).
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Individual e�orts to monitor Rs at the local scale are commonly performed in order to understand the tem-
poral and spatial biophysical controls of Rs, as well as to estimate seasonal to annual carbon budgets. �ose local 
results may be collected and input to databases of Rs for estimating global carbon budgets. However, any error 
in the measurements of Rs at the local scale could be propagated to the global estimation. �us, it is important 
to obtain the best possible estimates at the local scale, in order to decrease uncertainties for upscaling purposes. 
For instance, the Global Soil Respiration Database24 has been constructed mostly from manual measurements of 
Rs. Remarkably, despite the long history of Rs measurements, little attention has been paid to how the sampling 
time during 24 hr in�uences the estimation of Rs, while other shortcomings and pitfalls of sampling have been 
addressed (e.g., systematic25,26 and random27,28 errors in instrument measurements, sample size and strategy29–31).

�e present work addresses the need to determine the e�ect of sampling time on Rs measurements. We based 
our analysis on the temporal stability concept32,33. Rs for each hour has a relative di�erence (RD) with the 24 hr 
site-level mean Rs. In turn, these values of RD may be relatively stable across hours for some months (e.g., sea-
sonally) and can be represented by their mean (MRD). �en, MRD values close to zero indicate sampling times 
that are optimum, being closest to the 24 hr mean; the concept can also be applied using the standard deviation 
or other moment. We performed our analysis on 24 hr Rs data from two treatments intended to separate heter-
otrophic and autotrophic respiration in a Mediterranean-climate shrubland. Our purpose was to determine the 
time at which Rs measurements are most representative of the daily mean value and how the estimate of annual 
Rs could be a�ected by this artifact. Here we also introduce a correction factor to address the possibility of adjust-
ing Rs measurements that are less representative due to sampling time.

Results and Discussion
Using the temporal stability framework, we found that mean relative di�erence (MRD) values showed biases from 
−13 to + 17% in the shrub treatment, and from −29 to + 40% in the trench treatment (Fig. 2; Table 1). During 
daylight hours (e.g., from 8:00 to 19:00) measurements frequently over-estimated Rs in relation to the daily mean 
value of both trench and shrub treatments.

In general, we found that MRD values in the trench treatment had higher variability (−0.08 ± 22.1%; 
median ± standard deviation) than the shrub treatment (1.23 ± 8.1%; Fig. 2; Table 1). Furthermore, Rs in the 
trench treatment was o�en under-estimated: MRD median values were not close to zero because most hours were 
below the daily average (Table 1; Fig. 2). �ere was usually a greater negative bias during the dry season (−12% 
for trench and −3.14% for shrub) than during the wet season (−4.95% for trench and −0.1% for shrub) (Table 1).

�e most appropriate time intervals for measuring Rs at our study site were not in the customary morning 
hours but rather from 17:00 to 19:00 in the shrub treatment and 20:00 to 21:00 in the trench treatment (Fig. 2). 
�is could be due to Rs having a diurnal cycle, with its lowest values before sunrise, increasing through the morn-
ing and then decreasing more slowly sometime a�er noon and into the night. However, it has to be noted that the 
diurnal cycle of Rs did not follow a sinusoidal trajectory (as has been suggested for N2O �uxes34) in which case 
there would be two non-consecutive ideal hours that represent the mean daily value of Rs. Also, the hours with 
lowest MRD did not match those with the lowest SDMRD. �us, the “ideal” hour may present di�culties both in 
terms of concepts (accuracy of estimates of the annual budget) and logistics (sampling near noon or midnight); 
thus, other criteria for choosing the sampling hours may have to be taken into account. Furthermore, we found 
di�erences when we evaluated the most appropriate time intervals for the dry and wet seasons. For example, 
during the dry season there was a more irregular pattern than during the wet season, such that appropriate hours 

Figure 1. Histogram of number of entries sorted by sampling interval reported in the Soil Respiration Database 
(SRDB V3.0)24. Note that the most common sampling interval is from 28–45 days (e.g., monthly, n = 1236), 
followed by 14–18 (e.g., biweekly, n = 542). Also note that, despite the sampling interval, the annual coverage 
could be less than 365 days. �e total number of entries in the SRDB V3.0 is 5174, but only 3332 reported a 
sampling interval. �e SRDB V3.0 has data from 1961 to 2011.
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for sampling Rs were dispersed across the 24 hr (Fig. 2). During the wet season, in contrast, the most appropriate 
hours to measure Rs were easily identi�able and consecutive (consecutive assigned ranks), ranging from 20:00 to 
22:00 in the trench treatment and from 21:00 to 00:00 in the shrub treatment.

It is likely that optimal hours derived from the methodology we tested will vary among sites. For example, 
Davidson, et al.25 suggested that in a temperate mixed-hardwood forest the diel bias was ± 25% of the daily mean, 
the most adequate hours to measure Rs being in the mid-morning. In a young poplar forest, Gana, et al.35 found 
that the average of measurements made from 6:00 to 12:00 and 16:30 to 22:30 could represent the daily mean 
value of Rs, with potential biases of ± 20%. Moreover, in a temperate rainforest, Perez-Quezada, et al.36 found that 
daytime measurements of Rs always overestimated the Rs mean daily value derived from 24 h high-frequency 
measurements. �us, the sampling times to obtain a representative daily Rs are likely to depend on the ecosystem 
or conditions studied, and should be determined for each site and season. Of course, study conditions include 
manipulations as in �ux-partitioning experiments: our results showed that trenched plots had higher temporal 
bias and di�erent optimal timing.

When we applied the constant o�set (Equation 4 in the Material and Methods Section; speci�c constant 
o�sets for the dry and wet season) to our dataset, we found signi�cant di�erences (Bayes Factor >3) between 

Figure 2. Mean relative di�erence (MRD) values ± standard deviation for all the 24 hr campaigns for the 
treatments (A) Trenched and (B) Shrub, and separated in (C) dry season and (D) wet season.

Treatment/Season µ (%) σ (%) Min (%) Max (%)

Trench-All data −0.08 22.1 −29.1 39.6

Shrub-All data 1.23 8.1 −12.9 16.8

Trench-Dry season −11.99 21.2 −31.02 55.6

Shrub-Dry season −3.14 15.4 −20.22 32.7

Trench-Wet season −4.95 23.2 −28.9 44.9

Shrub-Wet season −0.1 7.8 −9.5 16.6

Table 1. Summary statistics for mean relative di�erence (MRD) values. µ: median; σ: standard deviation; Min: 
minimum value; Max: maximum value.
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corrected and uncorrected estimations of Rs at the annual scale, as well as during the dry and wet season (Table 2; 
Fig. 3). When we compared the annual uncorrected values between the trench and the shrub treatments we 
did not �nd signi�cant di�erences (Bayes Factor = 1.04; Supplementary Table 1). However, the contrast of the 
annual corrected values of Rs between the shrub and the trench treatments was signi�cant (Bayes Factor = 37.41; 

Treatment Season
µ (µmol CO2 
m−2 s−1)

σ (µmol CO2 
m−2 s−1) Di�erence (%)

Bayes 
Factor*

Shrub–corrected All year 1.20 0.77
−11.1 582.1

Shrub–uncorrected All year 1.35 0.85

Trench–corrected All year 0.95 0.61
−25.2 22.08

Trench–uncorrected All year 1.27 0.89

Shrub–corrected Dry season 0.66 0.47
−15.4 4.41

Shrub–uncorrected Dry season 0.78 0.56

Trench–corrected Dry season 0.57 0.38
−14.9 5.17

Trench–uncorrected Dry season 0.67 0.45

Shrub–corrected Wet season 1.73 0.64
−9.9 36.03

Shrub–uncorrected Wet season 1.92 0.71

Trench–corrected Wet season 1.32 0.58
−29.4 20.07

Trench–uncorrected Wet season 1.87 0.81

Table 2. Annual and seasonal average (µ) ± standard deviation (σ) of soil respiration from monthly mid-
day measurements in trench and shrub treatments, corrected and uncorrected for temporal bias. *Values of 
Bayes Factor >1 indicate that data are n times better supported by the alternative hypothesis than by the null 
hypothesis.

Figure 3. Corrected (A) and uncorrected (B) annual series of soil respiration. Note that we use a hydrological 
year (from November to October) instead of a calendar year (January to December).

http://1
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Supplementary Table 1). Strong differences were always found during the wet season (Bayes Factor >3; 
Supplementary Table 1), but not during the dry season for either corrected or uncorrected values (Supplementary 
Table 1). �is suggests that during the season of low ecosystem metabolic activity, together with an irregular 
pattern of the most representative sampling hours, the sampling time was not substantially in�uencing the esti-
mations of Rs. However, during the wet season, sampling time in�uenced the estimations of both trenched and 
shrub treatments. We found that our previous system of sampling around midday could be over-estimating Rs by 
approximately 11 to 25% at the annual scale and by 10 to 30% during the wet season (Table 2).

When we compared the relationships of Rs with its main drivers (i.e., soil temperature and soil moisture), we 
did not �nd signi�cant di�erences between corrected and uncorrected values of Rs at seasonal or annual scales 
(95% con�dence intervals; Supplementary Table 2). Also, the variance explained remained similar between cor-
rected and uncorrected values (Supplementary Table 2). �us, functional relationships of Rs were not a�ected 
by correcting suboptimal estimates of mean Rs by a constant o�set, although there were important e�ects on the 
estimates of seasonal and annual Rs.

Conclusion
Our �ndings show that measurement of Rs in the customary morning to midday hours may not be appropriate 
for integrating temporal variability of Rs. At our study site, Rs measurements in daylight hours tend to overesti-
mate the mean daily value of Rs, especially in the growing season. Repeated 24 hr campaigns can de�ne sampling 
times that yield measurements most representative of the daily mean for each season. Such intensive but limited 
campaigns can also yield appropriate corrections for non-optimal timing of sampling in monitoring programs. 
It is noteworthy that the implications of this research may be geographically broad, and also may apply to other 
GHG emissions from soil (e.g., N2O, CH4), especially in treatment-e�ect experiments. For studies with manual 
systems, with one measurement per sampling position per sampling date, there should be baseline work on the 
24 hr cycle, preferably per season, because convenient sampling could lead to over- or under- estimation of the 
annual Rs �ux. It is important to combine locally appropriate timing of measurements with accurate spatial rep-
resentation because these site-speci�c measurements provide information to databases that are used to estimate 
regional-to-global Rs.

Material and Methods
Estimation of the most representative time interval. Here we present a method to determine the 
most representative time interval to measure Rs, based on the temporal stability concept32. For a collection of 
sample positions where Rs is measured at nearly the same times over 24 hr, there is a stable relationship of the 
mean (or other statistic) for any time to the mean of the collection over all the times. �is relationship may di�er 
among the sample times and may also show seasonal changes. �en, the relative di�erence between an hourly 
mean of Rs and the daily mean Rs will have a range of values, and the closest to zero indicates the optimal time for 
sampling. �is method could easily be applied regardless of site characteristics and to any periodic measurements, 
including other soil greenhouse gases.

�e relative di�erence (RD) of Rs with respect to its expected value is given by:
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where j represents the treatment (e.g., trench), x represents the Rs measurement at the ith time interval (e.g., 
9:00 am), and n represents the number of intervals (e.g., n = 24 (hours) in a day). �e RD values are speci�c for 
each 24 hr period. �us, in order to determine a robust estimate of the most representative time interval, various 
24 hr periods should be taken into account. �en, to integrate the RD of di�erent 24 hr periods, the mean relative 
di�erence (MRD) is estimated as:
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where N is the number of campaigns; we note that if N = 1 then MRD=RD. �us, MRD values should range 
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�e most representative sample interval should be that with MRD closest to zero (e.g., the minimum di�er-
ence in relation with its daily mean value) and lowest SDMRD (e.g., the minimum variability in relation with its 
mean value)37. �us, MRD quanti�es the systematic bias of Rs at each sampling time, while SDMRD quanti�es 
the precision of the bias. Finally, ranks are assigned in ascendant order to each MRD value (i.e., 1 is the lowest 
negative MRD and 24 is the highest positive MRD). �us, we propose that the “ideal” time interval to measure Rs 
would be that with the middle ranking (12 or 13 for 24 hourly samples).

In order to adjust for sampling in “non-ideal” time intervals, a correction factor can be used33:
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where R̂sj is the Rsi measurement at time ith corrected by the o�set derived from the MRDi for time ith.

Study site. El Mogor is a MexFlux38 site (MX-EMg) located within the Valle de Guadalupe, Baja California, 
México (32.02982 N, 116.60449 W, 409 m asl). �e climate at El Mogor is semiarid Mediterranean, with warm-dry 
summers and cool-moist winters. Vegetation is a mixture of chaparral and less-sclerophyllous species. �e site 
was severely burned in 1988 and has recovered to ~50% shrub cover. For further information about El Mogor, see 
previous publications39–41.

Sampling design and measurements. In August 2011 we established three 1 × 1 m trenched plots, within 
the chaparral but lacking shrubs; we installed three PVC collars of 10 cm diameter within each plot. A trench of 
~20 cm width and ~50 cm depth was excavated around each plot, lined with plastic sheeting (~1 mm thick) and 
back�lled. �e excavation depth was decided on the basis of previous studies of the depth distribution of chap-
arral roots, which showed >85% of the roots were in the upper 40 cm of the soil pro�le42,43. Herbaceous plants 
were removed as necessary during the study period. In areas surrounding the trenched plots (<5 m) we inserted 
three more collars, placed within 50 cm of the main stem of a shrub. �e total number of collars was 2 (treatments; 
herein trench and shrub) × 3 (plots) × 3 (collars) = 18. Measurements in the trench and shrub plots were initiated 
three months a�er trenching (November 2011), to minimize the in�uence of disturbance.

We performed eight 24 hr campaigns during 2014 (March, April, June, October, and November), 2015 
(November), and 2016 (January and April). Those sampling campaigns represented the growing (wet) and 
non-growing (dry) seasons, with 4 campaigns per season. Measurements of Rs, soil moisture and soil temperature 
were made hourly from 9:00 of day T to 8:00 of day T + 1. Furthermore, we made monthly measurements of Rs, 
from 12:00 to 14:00 at 25 collars on a grid pattern across 0.125 ha, in order to estimate annual carbon loss via Rs.

Soil respiration was measured using a LI-8100 (LI-COR, Lincoln, NE, USA) and a 10 cm survey chamber 
(model 8100-102). Measurements of soil temperature and volumetric water content (�eta Probe, ML2x) were 
done at ~10 cm depth within 30 cm of the Rs chamber.

Statistical analysis. Di�erences between means were tested using the inverse of Bayes factors (a value 
of Bayes Factor >1 indicates that data are n times better supported by the alternative hypothesis than by the 
null hypothesis44) for Student’s t-test. Furthermore, we used Bayesian linear regressions in order to test if func-
tional responses of Rs with its main drivers (soil temperature and soil moisture) were maintained or a�ected by 
Equation 4. All statistical analyses were made in JASP (V0.8.0.0; available at https://jasp-stats.org/).
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