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Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly

population, representing a global public health priority. Despite a large improvement in

understanding the pathogenesis of AD, the etiology of this disorder remains still unclear,

and no current treatment is able to prevent, slow, or stop its progression. Thus, there is a

keen interest in the identification and modification of the risk factors and novel molecular

mechanisms associated with the development and progression of AD. In this context,

it is worth noting that several findings support the existence of a direct link between

neuronal and non-neuronal inflammation/infection and AD progression. Importantly,

recent studies are now supporting the existence of a direct relationship between

periodontitis, a chronic inflammatory oral disease, and AD. The mechanisms underlying

the association remain to be fully elucidated, however, it is generally accepted, although

not confirmed, that oral pathogens can penetrate the bloodstream, inducing a low-grade

systemic inflammation that negatively affects brain function. Indeed, a recent report

demonstrated that oral pathogens and their toxic proteins infect the brain of AD patients.

For instance, when AD progresses from the early to the more advanced stages, patients

could no longer be able to adequately adhere to proper oral hygiene practices, thus

leading to oral dysbiosis that, in turn, fuels infection, such as periodontitis. Therefore, in

this review, we will provide an update on the emerging (preclinical and clinical) evidence

that supports the relationship existing between periodontitis and AD. More in detail, we

will discuss data attesting that periodontitis and AD share common risk factors and a

similar hyper-inflammatory phenotype.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder
affecting millions of people worldwide, with a frequency that
is rapidly rising as the life expectancy increases and the world
population becomes older (Brookmeyer et al., 2002, 2007; Sosa-
Ortiz et al., 2012; Alzheimer’s Association., 2016). Importantly,
AD is characterized by neuronal loss with a slow and progressive
decline in memory, language, and other cognitive skills, leading
to the final stage of the disease, which is ultimately fatal
(Alzheimer’s Association 2016).

Despite decades of intense investigation, how degenerative
neurodisorders, such as AD, develop remains unclear.
Aggregates (plaques) of the amyloid-β peptide (AβP), as well
as neurofibrillary tangles of the hyperphosphorylated protein,
tau, are among the most sought-after therapeutic targets for AD
(Braak and Braak, 1995; Long and Holtzman, 2019). However,
many clinical trials investigating the effects of anti-amyloid
drugs failed to demonstrate improvement in patients’ cognitive
performance and in countering the primary adverse events
(Pinheiro and Faustino, 2019). Hence, there is an increasing
interest in identifying new strategies to prevent and/or treat AD.
For instance, several modifiable risk factors have been considered
so far, such as physical inactivity, mood disorders, hypertension,
diabetes mellitus, and obesity (Mayer et al., 2018). Moreover,
many reports are now supporting the role of inflammation
as a significant pathological driver of AD development and
cognitive decline, with evidence that communication between
the brain and peripheral immune systems also exists (Goldeck
et al., 2016; Cao and Zheng, 2018; Alexandraki et al., 2019;
Long and Holtzman, 2019; Tejera et al., 2019). In this sense,
multiple studies have raised that an infectious hypothesis might
underlie the pathogenesis of AD (Long and Holtzman, 2019).
For instance, several studies have demonstrated the presence
of herpesvirus (HSV) within the amyloid plaques and in the
brains of AD patients (Jamieson et al., 1991; Jamieson et al., 1992;
Wozniak et al., 2009; Carbone et al., 2014). In line with these data,
HSV-1 particles can directly induce the fibrillization of Aβ42
in vitro (Ezzat et al., 2019). Moreover, two retrospective cohort
studies demonstrated that HSV infection significantly increased
the risk of developing all-cause dementia. Of note is that this
risk was almost eliminated in patients treated with antiherpetics
(Chen et al., 2018; Tzeng et al., 2018; Long and Holtzman, 2019).

Further to these viral effects on AD development, the research
in the field has focused its attention on periodontitis, a chronic
oral inflammatory condition, and its potential bidirectional link
with AD (Kim and Amar, 2006; Kamer et al., 2008; Chen
et al., 2017; Marchini et al., 2019; Long and Holtzman, 2019).
Importantly, people with periodontitis have an increased risk
of developing AD (Chen et al., 2017), and those with AD or
dementia have impaired oral health, as a result of cognitive
decline, and are more prone to develop chronic oral diseases,
such as periodontitis, tooth loss, and mucosal lesions (Tada
et al., 2006; Gonsalves et al., 2008; Noble J.M. et al., 2013;
Maldonado et al., 2018). Mechanistically, periodontal pathogens
not only invade the oral cavity but can also percolate through
the epithelium of the periodontal pocket. From here, they

can enter the bloodstream, where they can induce the release
of several endotoxins and exotoxins, thus fueling infection
in different compartments, including the brain (Nazir, 2017;
Sudhakara et al., 2018; Bui et al., 2019; Dominy et al., 2019;
Liccardo et al., 2019).

Thus, this review aimed to provide the readers with
an update on the most recent findings that support the
existence of a relationship between periodontitis and AD, with
particular emphasis on the common risk factors, phenotype,
and bidirectionality.

PATHOPHYSIOLOGY OF ALZHEIMER’S
DISEASE: β-AMYLOID, TAU, AND APOE

AD is generally classified into two forms: the inherited and
the sporadic one (Bekris et al., 2010; Dorszewska et al., 2016).
Although there are differences in terms of the triggering factors
and the proportion of the affected population, the underlying
neuropathology of both conditions remains similar: with patients
progressing from normal to mild cognitive impairment (MCI),
followed by increasing dementia severity, eventually leading to
the final stage of the disease that is ultimately fatal (Donev et al.,
2009; Sperling et al., 2011; Scheltens et al., 2016; Davis et al.,
2018). At a molecular level, both the sporadic and the inherited
forms are characterized by the same diagnostic hallmarks such as
AβP plaques and neurofibrillary tangles (Braak and Braak, 1995;
Long and Holtzman, 2019).

AβP Plaques
In 1907, Alois Alzheimer, a German neurologist, reported
the presence of a not well-identified substance in the cortex
associated with a progressive behavioral and cognitive disorder
(Alzheimer et al., 1995; O’Brien and Wong, 2011). Almost
80 years later, Glenner and Wong (1984) demonstrated that this
substance was constituted by a ∼4 kDa peptide called AβP.
AβP is a fragment derived from the proteolytic cleavage of
the amyloid precursor protein (APP). APP is a transmembrane
protein with a large ectodomain, a C-terminal (CT) membrane-
bound domain and short intracellular domain (AICD) (Passer
et al., 2000; Serpell, 2000; Gu et al., 2001; Weidemann
et al., 2002; Kakuda et al., 2006; Walsh and Selkoe, 2007).
Importantly, two main proteolytic pathways have been described
for APP: the nonamyloidogenic and the amyloidogenic (Andrew
et al., 2016; Figure 1). In the non-amyloidogenic pathway,
α-secretase ADAM10 cleaves APP within the Aβ domain,
generating a soluble proteolytic fragment, termed sAPPα, and
a membrane-bound CT fragment (CTFα). Importantly, CTFα
is subsequently processed by another proteolytic process that
involved γ-secretases to generate p3 and the AICD. Conversely,
in the amyloidogenic pathway, β-secretase 1, also known as β-site
APP cleaving enzyme 1 (BACE1), and presenilin-containing
γ-secretase (PS/γ-secretase) multi-subunit complex are involved
in the generation of AβP (De Strooper et al., 1998; Struhl and
Greenwald, 1999; Wolfe et al., 1999; Gu et al., 2001; De Strooper
et al., 2012; Ben Halima et al., 2016; Andrew et al., 2016). More
in detail, BACE1 cleaves APP, liberating a sAPPβ fragment and a
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FIGURE 1 | Diagram of the non-amyloidogenic and the amyloidogenic proteolytic pathway for the amyloid precursor protein (APP). Non-amyloidogenic pathway:

α-secretase cleaves the transmembrane protein APP to release the soluble APP fragment, sAPPα. The APP C-terminal fragment is then processed by γ-secretase

to release an intracellular domain (AICD) and the P3 fragment. Amyloidogenic pathway: β-secretase processes APP to generate the soluble fragment, sAPP-β, then

cleaved γ-secretase Aβ peptides (AβPs), and the AICD.

99-amino acid remaining CTF (CTFβ) (De Strooper et al., 2012;
Andrew et al., 2016; Ben Halima et al., 2016). Then, the CTFβ
is processed at the ε-site by PS/γ-secretase, thereby releasing
the AICD (Andrew et al., 2016; Ben Halima et al., 2016). The
AICD, either produced by α- or β-secretase, translocates into the
nuclei of neurons. Here, it acts as a regulator of gene expression,
including that of the Aβ-degrading neprilysin, or is degraded into
the cytosol (Belyaev et al., 2010; Grimm et al., 2015; Multhaup
et al., 2015). Importantly, different Aβ forms are generated
by PS/γ-secretase cleavages at the ζ and γ sites that trim the
transmembrane domain of CTFβ to liberate several forms of
AβPs of variable lengths [from 38 (Aβ38) to 42 (Aβ42) amino
acids] (De Strooper et al., 2012). In this regard, Aβ40 is the major
product generated, along with minor amounts of Aβ38 and Aβ42
(De Strooper et al., 2012). However, besides these Aβ forms, it
has been reported that, in this process, tiny amounts of Aβ37 and
Aβ43 are also generated (De Strooper et al., 2012).

Importantly, although AβP’s function is still debated and
uncertain, these products are generated throughout life and
appear to be normally stimulated by synaptic activity (Pearson
and Peers, 2006). Conversely, dysregulation of the trimming
process of APP can lead to a substantial increase in the levels
of the insoluble Aβ42 isoform. This isoform is more prone
to form oligomers, which correlate with synaptic dysfunction
(Hayden and Teplow, 2013), protofibrils, or fibrils. Importantly,
Aβ42 oligomers represent the most soluble and potent toxic
conformers of AD (Haass and Selkoe, 2007), and their presence
correlates with the severity of the disease (McLean et al.,
1999). However, as recently suggested by Gulisano et al.

(2018), Aβ42 oligomers are crucial both in physiological and
pathological conditions. Indeed, only when present in excessive
concentrations or for a prolonged time do these Aβ isoforms
can negatively affect long-term potentiation (LTP) and memory.
Conversely, low-dose administration positively affects synaptic
plasticity and memory.

Thus, all the described processes, in a multitude, generate
amyloid plaques resulting toxic to neurons and participating
in synaptic destruction during the early stages of AD (Andrew
et al., 2016). However, it is worth stressing that several studies
are now supporting the idea that amyloid plaques are not the
major toxic AβP entity, and amyloid plaques are not a direct
indicator of AβP-induced brain damage in AD. For instance,
the Arctic APP mutation (E693G) (Nilsberth et al., 2001) leads
to enhanced Aβ protofibril formation and AD dementia. Still,
no amyloid is visible on positron emission tomography (PET)
imaging through the 11C-labeled Pittsburgh Compound B (PiB)
ligand (Schöll et al., 2012). Similarly, the Osaka mutation
(E6931) in APP causes the aggregation of AβPwith little amyloid
accumulation on PiB-PET (Shimada et al., 2011). Similarly,
transgenic mice carrying the Osaka mutation do not show,
by immunohistochemistry, amyloid deposits (Tomiyama et al.,
2010). Thus, several therapeutic strategies targeting Aβ have
been tested in the last decades, such as secretase inhibitors, AβP
aggregation inhibitors, and Aβ immunotherapy (Pinheiro and
Faustino, 2019). However, almost all of these strategies have been
discontinued, either because of side effects or the lack of sizable
therapeutic effects. Nevertheless, the failure of past clinical trials
targeting Aβ does not mean that Aβ is a wrong target. Indeed,
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the current common concern is that AD patients must be treated
at an earlier stage, i.e., right when the pathological “amyloid”
cascade likely begins.

Tau Protein
The protein tau has been identified and purified in 1970
(Weingarten et al., 1975; Cleveland et al., 1977) as a microtubule-
interacting protein that stabilizes the neuronal cytoskeleton.
The tau protein structure is composed of four main regions:
an acidic N-terminal (NT); a proline-rich region responsible
for the binding to microtubules; four repeat domains (R1–4),
also called microtubule-binding domains (MBDs) (Drewes
et al., 1995; Sengupta et al., 1998; Gendron and Petrucelli,
2009); and a C-terminal (CT) region. Importantly, tau
activity can be modulated by a wealth of posttranslational
modifications (PTMs), such as acetylation, glycosylation,
glycation, methylation, truncation, nitration, ubiquitination,
and phosphorylation (Almansoub et al., 2019). However,
phosphorylation is the most commonly described and
investigated since it is centrally involved in the formation
of pathologic aggregates. Indeed, the aggregation of tau has been
correlated to a broad spectrum of neurological diseases, including
AD, known as “tauopathies” (Congdon and Sigurdsson, 2018;
Almansoub et al., 2019). This PTM is physiologically regulated
by the balance between tau kinases and phosphatase activities
(Martin et al., 2013). Importantly, among 85 phosphorylation
sites, about 45 of these are phosphorylated in AD brains (Noble
W. et al., 2013). More in detail, the early phosphorylation
events, at specific serine residues such as Ser199, Ser202/205,
and Ser262, can disrupt the association of tau with microtubules.
This event, in turn, can lead to alterations in tau-dependent
cellular functions with dysregulated axonal growth and vesicle
and organelle transport (Gendron and Petrucelli, 2009; LaPointe
et al., 2009; Congdon and Sigurdsson, 2018). Otherwise,
phosphorylation at other serine residues, such as Ser396, has
been suggested as a prominent subsequent event that correlates
with the progression of AD (Congdon and Sigurdsson, 2018).

Like phosphorylation, tau acetylation may arise from multiple
mechanisms, and the dysregulation of this process can chiefly
contribute to neurodegeneration. For instance, acetylation
appears to prevent the binding of ubiquitin and then tau turnover
(Min et al., 2010). This event can prompt a rise in cytosolic tau
levels that makes the protein prone to aggregation (Congdon
and Sigurdsson, 2018). Finally, unlike other tau posttranslational
modifications, O-GlcNAcylation seems to be protective against
tau-induced pathology. Indeed, in the AD brain, the levels
of O-GlcNAcylated tau are reduced when compared to those
in healthy subjects (Liu et al., 2009). Thus, targeting these
posttranslational modifications may offer new avenues to prevent
tau aggregation, restoring the normal function of the protein.

Apolipoprotein E
Apolipoprotein E (ApoE) is a primary cholesterol carrier highly
expressed in astrocytes and, to a lesser extent, in the microglia
which mediates both the transport and delivery of lipids from a
cell type to another (Mahley and Rall, 2000). In humans, three
different alleles (ε2, ε3, and ε4) give rise to three different isoforms

of ApoE, which differ in amino acids in positions 112 and 158:
ApoE2 (Cys112 and Cys158), ApoE3 (Cys112 and Arg158), and
ApoE4 (Arg112 and Arg158) (Mahley and Rall, 2000; Liu et al.,
2013). Importantly, the single amino acid difference in the ApoE
protein influences its ability to bind lipids, receptors, and also
Aβ(REFF). Indeed, several studies have demonstrated that ApoE
has a crucial role in Aβ aggregation and clearance influencing
senile plaque formation and AD development (Ellis et al., 1996;
Liu et al., 2013). In this context, several reports, including
clinical, epidemiological, and genetic studies, have demonstrated
an association between ApoE genotypes and AD. For instance,
genome-wide association studies (GWAS) have confirmed that
the ε4 allele of ApoE is one of the strongest genetic risk factors
for AD (REFF). Indeed, the ε4 allele is significantly enriched
in AD patients (Corder et al., 1993) and is associated with an
increased Aβ plaque load in the brain (Schmechel et al., 1993),
a higher brain atrophy (Agosta et al., 2009), and an earlier onset
and accelerated progression of the disease (Shi et al., 2017).

Moreover, it has been shown that Aβ deposition and
aggregation to form senile plaques are a phenomena
predominantly observed in ApoE ε4 allele carriers compared
with non-carriers (Schmechel et al., 1993; Polvikoski et al.,
1995; Kok et al., 2009). In addition, ApoE ε4 carriers present
lower Aβ42 levels in cerebrospinal fluids (CSFs) and higher
PiB-positive imaging (Prince et al., 2004; Head et al., 2012).

NEUROINFLAMMATION IN THE
PATHOGENESIS OF ALZHEIMER’S
DISEASE

In addition to the two classic diagnostic hallmarks of AD, Aβ

plaques and neurofibrillary tangles, the brain of patients with
AD exhibits evidence of a sustained inflammatory response
(Mandrekar and Landreth, 2010; Femminella et al., 2018, 2019).
In the acute phase, inflammation in the brain represents
an established defense against infections, toxins, and injury.
However, a disruption in the equilibrium between the pro- and
anti-inflammatory mediators results in a chronic inflammatory
condition of the brain which is identified as a neuroinflammation
(Mandrekar and Landreth, 2010). Importantly, this process is
currently attributed to the accumulation of reactive microglia
and astrocytes that, in AD, appears to be localized to amyloid
deposits (Alzheimer et al., 1995; Bornemann et al., 2001; Stalder
et al., 2001; Mandrekar and Landreth, 2010). Microglia are
the resident phagocytes of the central nervous system that
are activated in response to AβP accumulation, change their
morphology to ameboid cells, migrate to the plaques, and
release inflammatory mediators, starting the phagocytosis of the
plaques (Kettenmann et al., 2011; Du et al., 2017; Wolf et al.,
2017). However, while in the acute phase, the activation of
microglia is neuroprotective; in chronic phase, it exacerbates
neuroinflammation with consequent neurodegeneration (Solito
and Sastre, 2012; Heppner et al., 2015; Zuroff et al., 2017;
Kinney et al., 2018). Emerging evidences have demonstrated
that astrocyte-mediated neuroinflammation is also involved
in the pathogenesis of neurodegenerative diseases, including
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AD (Verkhratsky et al., 2010; Colombo and Farina, 2016).
Astrocytes are specialized glial cells involved in the production
of neurotrophic factors and in the maintenance of the blood
brain–barrier (BBB), which protect the central nervous system
(CNS) from harmful molecules and cells (including pathogens)
(Sofroniew and Vinters, 2010). In response to brain insults, these
cells become activated, a process known as reactive astrogliosis,
and they release reactive oxygen species (ROS), nitric oxide
(NO), and pro-inflammatory molecules, including interleukins
(ILs) and tumor necrosis factor (TNF) (Phillips et al., 2014; Neal
and Richardson, 2018). Although initially this process is aimed
at removing noxious stimuli, prolonged astrocyte activation
causes detrimental effects, leading to neuronal dysfunction
and cell loss (Steardo et al., 2015). Reactive astrogliosis is a
hallmark of AD and is responsible for the exacerbation of
AβP-induced neurotoxicity and increased tau phosphorylation
(Garwood et al., 2011; Osborn et al., 2016).

The involvement of neuroinflammation in the pathogenesis
of AD has been supported by observational and epidemiological
studies demonstrating that chronic use of nonsteroidal anti-
inflammatory drugs (NSAIDs) can exert beneficial roles in
reducing the risk of AD (Ali et al., 2019). Moreover, mutations
in the genes encoding for immune receptors, including triggering
receptor expressed on myeloid cells 2 (TREM2) and myeloid
cell surface antigen CD33, have been associated with an
elevated risk of developing AD (Griciuc et al., 2013; Gratuze
et al., 2018). TREM2 is a transmembrane immune receptor
expressed on the surface microglia, and in AD, it is involved
in the clearance of Aβ plaques (Boche et al., 2013; Jevtic
et al., 2017; Lagarde et al., 2018). For this reason, an
alteration in TREM2 function is reported as harmful and
correlates with AD development. For instance, Wang and
coworkers have demonstrated that TREM2 deficiency resulted
in an increased AβP accumulation in the brain with reduced
clustering of the microglia around the plaques (Wang et al.,
2015). Importantly, the most common TREM2 mutation is
the arginine 47 histidine (R47H) variant, which appears to
be associated with a reduced microglial uptake of Aβ and
an increased risk of AD development (Guerreiro et al., 2013;
Jonsson et al., 2013; Tanzi, 2015; Hansen et al., 2018). In this
regard, Cheng-Hathaway et al. (2018) demonstrated that AD
mice heterozygous for the TREM2 R47H presented reduced
immune cells and enhanced neuritic dystrophy around Aβ

plaques. Importantly, other TREM2 variants have also been
studied for their association with the risk of AD, including
R62H (Huang et al., 2004; Guerreiro et al., 2013; Jonsson
et al., 2013; Jin S.C. et al., 2014; Roussos et al., 2015; Ghani
et al., 2016; Song et al., 2017; Sims et al., 2017). More in
detail, Kleinberger et al. demonstrated, in human macrophages
in vitro, that the TREM2 R62H variant led to an impairment
of the phagocytic functions of TREM2 with a reduced uptake
of Aβ-LDL complexes compared to wild-type control cells
(Kleinberger et al., 2014; Yeh et al., 2016). Of note is that
numerous recent findings suggest a link between tau protein
aggregation and TREM2 dysfunction. For instance, in the CSF
of AD patients, the levels of soluble TREM2 correlate with the
amount of total and phosphorylated tau, but not with those of

Aβ42 (Piccio et al., 2016). Importantly, either soluble TREM2
or the phosphorylated tau levels in the CSF are related to
the cognitive decline and clinical progression of AD (de Leon
et al., 2004; Buerger et al., 2006; Andersson et al., 2008; Ewers
et al., 2019). Contrary to the protective role of TREM2, CD33
induces a negative response in AD because this receptor inhibits
phagocytosis, thus reducing microglial uptake and clearance
of Aβ (Griciuc et al., 2013). There is also evidence for the
existence of a potential crosstalk between CD33 and TREM2.
More in detail, Griciuc and coworkers have demonstrated,
in a murine model of AD, that loss of CD33 resulted in a
decreased Aβ pathology and improved cognition (Griciuc et al.,
2019). However, these effects were significantly abrogated by
additional TREM2 knockout (Griciuc et al., 2019). Conversely,
TREM2 knockout mice presented increased Aβ pathology and
exacerbated neurodegeneration, which was not rescued by
additional knockout of CD33. Thus, the authors concluded that
TREM2 acts downstream of CD33.

Importantly, an association between TREM2 and ApoE has
also been discussed. For instance, Jendresen et al. (2017) have
demonstrated that human ApoE protein contains a binding site
for TREM2 (amino acids 130–149), and this binding is isoform-
dependent. In line with this report, Atagi et al. (2015) showed
that ApoE can increase the phagocytosis of apoptotic neurons
via TREM2 binding.

Importantly, ApoE activity has also been associated
with microglia function. Indeed, LaDu and colleagues have
demonstrated that glial cells cultured from ApoE knockout (KO)
mice show an increased production of pro-inflammatorymarkers
in response to treatment with Aβ (LaDu et al., 2001). In line
with these data, in 2003, Lynch et al. (2003) have demonstrated
that intravenous administration of lipopolysaccharide (LPS) in
animals expressing the ε4 allele resulted in a more significant
systemic and brain inflammation compared with their ε3 allele
counterparts. Analogously, in a tauopathy murine model,
ApoE knockdown markedly reduced the activation of microglia
and astrocytes (Shi et al., 2017). This evidence supports the
role of ApoE in neurodegenerative disorders. In the same
vein, in one report, Rodriguez and colleagues demonstrated
a direct relationship between ApoE, neuroinflammation, and
AD (Rodriguez et al., 2014). Indeed, in the cortex of transgenic
mice expressing five familial AD mutations (FAD), these
authors found that the ApoE genotype can influence both
Aβ deposition and Aβ-induced glial activation. Consistent
with this notion, NSAIDs have been shown to reduce AD
risk only in ε4 allele carriers, further supporting the role
of the ApoE genotype in AD progression and development
(Szekely et al., 2008).

Finally, in addition to these mechanisms, chronic complement
activation has been linked to neuroinflammation and AD
(Fischer et al., 1995; Fischer and Popa-Wagner, 1996).
In particular, recent pieces of evidence from GWAS have
identified complement component receptor (CR1), which
binds complement proteins C3b and C4b, as a risk factor
for AD (Lambert et al., 2009). In line with these data,
Brouwers and coworkers found four single-nucleotide
polymorphisms (SNPs) in the CR1 locus that were associated
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with elevated levels of Aβ in the CSF of patients with AD
(Brouwers et al., 2012). Furthermore, intragenic duplication
of low copy repeats (LCR) within the CR1 gene appears
to be associated with an increased risk of late-onset AD
(Kucukkilic et al., 2018).

ORAL DYSBIOSIS, INFLAMMATION, AND
PERIODONTITIS

The microbiome plays a crucial role in human physiology
influencing nutrition, immunity, organ development, and
function (Sudhakara et al., 2018). In the last decades, the
observation that several chronic diseases of the gastrointestinal
tract and mouth are associated with the perturbation of
microbiome (dysbiosis) has achieved growing attention
from scientists. Thus, several studies have been designed
to evaluate the potential association between dysbiosis and
systemic diseases, including cardiovascular and neurological
disorders (Beck and Offenbacher, 2005; Poole et al., 2013).
Periodontitis is a chronic inflammatory disease caused by the
abnormal growth and aggregation of different microorganisms
(Kassebaum et al., 2014; Poole et al., 2015). In periodontitis,
of the about 800 microorganisms identified so far, it appears
that the vast majority of germs are Gram-positive (early
colonizers), followed by Gram-negative bacteria (late colonizers).
The latter are on the tooth surface, where they contribute
to form the dental plaque (Belstrøm et al., 2014; Liccardo
et al., 2019). These species include Porphyromonas gingivalis,
Aggregatibacter actinomycetemcomitans, Treponema denticola,
Prevotella intermedia, Campylobacter rectus, Tannerella forsythia,
Fusobacterium nucleatum, Selenomonas spp., Parvimonas micra,
and Eubacterium timidum (Socransky et al., 1998; Belstrøm et al.,
2014; Liccardo et al., 2019). Interestingly, poor oral hygiene
results in the increase of the anaerobic environment in the
dental plaque, promoting the proliferation of these pathogens
and the release of their toxic factors. Moreover, defects in host
immunoregulation enable pathogen proliferation and increase
local inflammation (Barth et al., 2013). Paradoxically, also
neutrophils, i.e., the most efficient phagocytes and primary
cellular defense recruited to the periodontal pocket, participate
in the pathogenesis of periodontitis (Hajishengallis, 2015).
Indeed, these immune cell types release several molecules
(antimicrobial peptides, enzymes, and reactive oxygen species)
that cannot discriminate between pathogens and host tissue.
Moreover, certain agents, such as P. gingivalis, may subvert
neutrophil function, inhibiting the phagocytosis, thus expanding
the inflammatory response (Sochalska and Potempa, 2017).
Because of this process, additional mediators and cytokines
are produced, and more neutrophils, T cells, and monocytes
are recruited to the periodontium, leading to chronic local and
systemic inflammation (Cekici et al., 2014; Hajishengallis, 2014;
Hajishengallis, 2015). Importantly, T cells promote the release
of several cytokines and inflammatory mediators, including
tumor necrosis factor alpha (TNF-α), interleukin (IL)-1, IL-4,
IL-10, and transforming growth factor β (TGF-β) (Graves, 2008).
In addition to these inflammatory mediators, in response to

pathogen infection, the gingival epithelial cells and fibroblasts
release other cytokines and mediators [i.e., IL-1, IL-8, TNF-α,
and prostaglandin E2 (PGE2)] that, in turn, recruit more
macrophages and neutrophils. Moreover, these cells promote
the expression of matrix metalloproteinases (MMPs), tissue-
derived enzymes that participate in the extracellular matrix
remodeling. Altogether, these processes result in the stimulation
of osteoclasts with subsequent alveolar bone reabsorption (Neely
et al., 2005; Jin J. et al., 2014). Periodontitis leads to systemic
inflammation due to the direct infiltration of bacteria and their
virulence factors into the bloodstream (Poole et al., 2013). For
this reason, periodontitis has been linked to the onset and
progression of disorders systemically, such as cancer, diabetes,
and cardiovascular and neurological diseases (Hajishengallis,
2015; Liccardo et al., 2019). Importantly, virulence factors
expressed by periodontal pathogens are important pathogenic
determinants in the initiation, progression, and severity
of the disease, and they are responsible for the local and
systemic inflammatory response observed in patients with
periodontitis. For instance, P. gingivalis, long considered as
one of the most important members of the periodontopathic
microbiota, presents a specific LPS (LPS-Pg), which is recognized
by immune cells via Toll-like receptors 2 and 4 (TLR2/4),
and toxic proteases called gingipains (gps) and other surface
components such as carbohydrates and fimbriae (Potempa
et al., 1995, 1997; Holt et al., 1999; Imamura, 2003; Hasegawa
et al., 2008; Yilmaz, 2008; Guo et al., 2010). gps are cysteine
proteases that comprise lysine-gp (Kgp) and arginine-gp A
(RgpA) and B (RgpB) are released and transported to the outer
bacterial membrane surfaces (Guo et al., 2010). In synergy
with other virulence factors (Guo et al., 2010; Dominy et al.,
2019) these proteases are crucially involved in P. gingivalis
survival and pathogenicity, allowing the colonization and
invasion of gingival/periodontal tissues as well as other tissues,
systemically. Importantly, the initial colonization of cells,
including fibroblasts, epithelial cells, and other bacteria, is
mostly mediated by the coordination between gps and the
fimbrial and non-fimbrial components. Moreover, gps play
a critical role in iron and nutrient acquisition (P. gingivalis
agglutinates erythrocytes and lyses them to release hemoglobin),
tissue destruction (Guo et al., 2010), and in the inactivation
of host defenses escaping phagocytosis from immune cells
(i.e., neutrophils) (Maekawa et al., 2014). Analogously,
A. actinomycetemcomitans produces numerous factors that
have been well characterized, including adherence proteins,
LPS, and toxins like the cytolethal distending toxin (CDT)
and leukotoxin (LtxA) (Kolodrubetz et al., 1989; Lally et al.,
1989; Shenker et al., 2005). Of note is that these toxins are
involved in immune evasion mechanisms (Kachlany, 2010).
Finally, T. forsythia expresses several proteases that contribute
to bacterial virulence in multiple manners. For example,
proteases participate in degrading the host periodontal tissue,
modifying host cell proteins, thus allowing bacterial colonization.
Moreover, all the above-mentioned factors are able to activate
host degradative enzymes that process components involved in
innate and adaptive immunity, thus blocking the host immune
response (Sharma, 2010).
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FIGURE 2 | Scheme of the proposed mechanism linking periodontitis to Alzheimer’s disease: (1) Oral dysbiosis of the dental plaque leads to proliferation, tissue

invasion, and then dissemination into the bloodstream of oral pathogens. (2) Next, the oral pathogens and their toxic molecules, such as lipopolysaccharide (LPS),

bind to microglia via Toll-like receptors 2/4 (TLR2/4), inducing the release of cytokines (3) and inflammatory mediators that, in turn, lead to APP processing from

neuronal cells. (3–4) Subsequently, the activation of β- and γ-secretase leads to an increased secretion of Aβ peptides (AβPs), in particular Aβ42 monomers and

sAPPβ, outside of the cells and AICD intracellularly. (4) AβPs form oligomers, protofibrils, or fibrils and then amyloid plaques that are recognized by TREM2 receptors

on the microglia plasma membrane, thus triggering an inflammatory response, which again stimulates AβP production. Dysfunctional neurons present also increased

tau phosphorylation (p-tau) with the formation of neurofibrillary tangles (p-tau tangles). All these processes induce neuronal degeneration.

RELATIONSHIP BETWEEN
PERIODONTITIS AND ALZHEIMER’S
DISEASE

Although the brain is considered an immune-isolated
environment, several shreds of evidence have indicated that
systemic inflammation contributes to neurodegeneration
through the microglial activation and release of pro-
inflammatory molecules, thus driving AD progression (Perry
et al., 2007; Holmes, 2013). For instance, Capsoni and colleagues,
in 2012, have demonstrated that pathogen-free conditions can
delay the onset of neurodegeneration in a murine model of
nerve growth factor (NGF) deprivation (Capsoni et al., 2012).
Furthermore, LPS, the main component of the membrane of
Gram-negative bacteria, can be found in large amounts in the
brain of AD patients compared to healthy controls (Zhan et al.,
2016). In this context, several studies have found that LPS
co-localized with AβPs (Aβ40/42) in the amyloid plaques and
around vessels of the brain of AD patients (Zhan et al., 2018).
And peripheral injection of LPS in mice can activate microglia,
inducing the release of pro-inflammatory cytokines, such as

interleukins and TNF-α (Godbout et al., 2005). In line with these
data, Sheng et al. (2003) demonstrated that mice infused with
LPS presented an increased neuroinflammation associated with
the enhanced expression and processing of APP and Aβ40/42
levels inside neurons. Lastly, Lee and colleagues showed that
in rTg4510 mice expressing a mutated tau protein (TauP301L)
that develop tauopathy between 3 and 5 months of age, LPS
infusion increases microglial activation and tangle formations
(Lee et al., 2010). Thus, these reports indicate that bacteria
can induce local inflammatory damage, which, in chronic
condition, is a trigger of neuroinflammation, constituting a
significant contributor of neurodegeneration and AD. For
this reason, periodontal pathogens have been investigated
for their involvement in AD development and progression.
For instance, Chen and colleagues have demonstrated, in a
retrospective study, that periodontitis exposure is associated
with an about 1.7-fold increase in the risk of developing AD
(Chen et al., 2017). Analogously, a recent study analyzing the
National Health and Nutrition Examination Survey (NHANES)
database demonstrated that subjects with mild to severe
periodontitis presented a decreased cognitive function compared
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with the healthy group (Sung et al., 2019). Mechanistically,
this association has been demonstrated in a different number
of studies. Kamer et al. (2009) have observed that elevated
serum levels of TNF-α and serum antibodies to P. gingivalis,
A. actinomycetemcomitans, and T. forsythia were present in
AD patients compared to the controls. In line with these
data, Sparks Stein and coworkers demonstrated that antibody
levels to F. nucleatum and P. intermedia, at baseline, resulted
significantly increased compared to the controls and correlated
with a declined cognitive function in AD patients (Sparks et al.,
2012). Furthermore, in a preclinical study from Ilievski and
coworkers, it has been shown that in wild-type mice, P. gingivalis
infection resulted in the neurodegeneration and formation of
extracellular Aβ42 (Ilievski et al., 2018). Analogously, Díaz-
Zúñiga et al. (2019) demonstrated that in vitro LPS (from
A. actinomycetemcomitans) increased neuroinflammation via
the activation of microglia and the subsequent increase in
pro-inflammatory cytokines and chemokines coupled to the
accumulation of Aβ42. Importantly, LPS from P. gingivalis
(LPS-PG) binds to glial cells (Poole et al., 2013), and in the AD
brain, it is co-localized with Aβ plaques (Zhan et al., 2016; Zhao
et al., 2017). Of note is that a direct connection between oral
dysbiosis and AD has been suggested by Poole et al. (2013), who
reported the presence of periodontal pathogen components in
AD subjects. Subsequently and in line with these data, Dominy
et al. (2019) demonstrated that P. gingivalis and their virulence
factors, gingipains, were exclusively detected in the brain of AD
patients compared to the controls. Moreover, in this study, the
authors demonstrated that in mice, this oral pathogen migrates
from the mouth to the brain, increasing the production of
Aβ42, exerting significant neurotoxic effects. Conversely, these
processes were abolished following treatment with gingipain
inhibitors. In this context, a phase II/III clinical trial has been
designed and initiated in order to test the effects of the gingipain
inhibitor COR388 in patients with a diagnosis of mild to
moderate AD (NCT03823404).

Importantly, as discussed above, the ApoE genotype
appears to be crucially involved in neuroinflammation,
and as previously demonstrated, it can also contribute to
enhancing P. gingivalis brain colonization. For example,
in 2015, Poole and coworkers observed the presence of
P. gingivalis DNA (Poole et al., 2015) in the brain of ApoEnull

mice infected at gingival levels with this Gram-positive
pathogen. Interestingly, as demonstrated by Singhrao et al., in
these mice, gingival infection with P. gingivalis also resulted
in the early appearance of age-related granules (Singhrao
et al., 2015). These data, in line with the results obtained in
another study by Hafezi-Moghadam et al., suggest that the
lack of functional ApoE protein and the increased systemic
inflammation, observed in periodontitis, induce an impairment
of the BBB (Hafezi-Moghadam et al., 2007; Singhrao et al., 2017;
Ranjan et al., 2018).

Importantly, a dysfunctional BBB allows periodontal
pathogens to access the systemic circulation (bacteremia)
and invade the brain (Hafezi-Moghadam et al., 2007;
Singhrao et al., 2017; Ranjan et al., 2018) and represents an early
feature of AD and cognitive decline (Van de Haar et al., 2016;

Carter, 2017). In aggregate, these data strengthen the potential
relationship between periodontitis and AD development
and progression (Figure 2).

CONCLUSION

In summary, periodontitis and AD often coexist. However, the
current debate focuses on one main question: what comes first?
Some studies have demonstrated that people with periodontitis
present a major risk of developing AD (Chen et al., 2017);
however, other reports suggest that those with AD or dementia
suffer from inadequate oral health, stemming from cognitive
decline, and are, therefore, more likely to develop periodontitis
(Tada et al., 2006; Gonsalves et al., 2008; Maldonado et al.,
2018). Thus, further studies are urgently needed to establish the
raison d’être for the mutual association between periodontitis
and AD. Along this line of reasoning, the trial (NCT03823404)
discussed above shall give us the proof-of-concept of the
beneficial role of oral pathogen blockade in human AD. Yet,
while waiting for the publication of the trial outcome, we
can ascertain, with no additional hesitation, that a more
careful dental treatment effectively improves the quality of
life/cognitive impairment of patients with mild AD (Rolim
et al., 2014). Likewise, in decreasing the incidence of dementia
in patients treated for dementia or periodontitis (Lee et al.,
2017; Yoo et al., 2019). Therefore, oral hygiene care strategies
should be included in the routine health care of patients with
dementia and cognitive impairment and become a dominant
part of adult oral health programs to avoid any extra-neuronal
source of inflammation as well as to prevent the onset of
neurodegeneration. Thus, these findings highlight the necessity
to prevent the progression of periodontitis and encourage
healthcare service at the national level.
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