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Abstract

Background

Bacillus cereus biovar anthracis (Bcbva) is an emergent bacterium closely related to Bacil-

lus anthracis, the etiological agent of anthrax. The latter has a worldwide distribution and

usually causes infectious disease in mammals associated with savanna ecosystems. Bcbva

was identified in humid tropical forests of Côte d’Ivoire in 2001. Here, we characterize the

potential geographic distributions of Bcbva in West Africa and B. anthracis in sub-Saharan

Africa using an ecological niche modeling approach.

Methodology/Principal findings

Georeferenced occurrence data for B. anthracis and Bcbva were obtained from public data

repositories and the scientific literature. Combinations of temperature, humidity, vegetation

greenness, and soils values served as environmental variables in model calibrations. To pre-

dict the potential distribution of suitable environments for each pathogen across the study

region, parameter values derived from the median of 10 replicates of the best-performing

model for each pathogen were used. We found suitable environments predicted for B.

anthracis across areas of confirmed and suspected anthrax activity in sub-Saharan Africa,

including an east-west corridor from Ethiopia to Sierra Leone in the Sahel region and multiple

areas in eastern, central, and southern Africa. The study area for Bcbva was restricted to

West and Central Africa to reflect areas that have likely been accessible to Bcbva by dis-

persal. Model predicted values indicated potential suitable environments within humid for-

ested environments. Background similarity tests in geographic space indicated statistical

support to reject the null hypothesis of similarity when comparing environments associated
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with B. anthracis to those of Bcbva and when comparing humidity values and soils values

individually. We failed to reject the null hypothesis of similarity when comparing environments

associated with Bcbva to those of B. anthracis, suggesting that additional investigation is

needed to provide a more robust characterization of the Bcbva niche.

Conclusions/Significance

This study represents the first time that the environmental and geographic distribution of

Bcbva has been mapped. We document likely differences in ecological niche—and conse-

quently in geographic distribution—between Bcbva and typical B. anthracis, and areas of

possible co-occurrence between the two. We provide information crucial to guiding and

improving monitoring efforts focused on these pathogens.

Author summary

Bacillus cereus biovar anthracis (Bcbva) is an emergent pathogen causing anthrax in West

and Central African countries. It shares multiple bacteriological and genomic characteris-

tics with Bacillus anthracis, the gram-positive bacterium causing anthrax in mammals

worldwide. However, Bcbva has only been isolated in tropical humid forested environ-

ments in Africa; thus, we attempted to characterize its potential distribution and the dif-

ferences with B. anthracis using an ecological niche modeling framework. According to

our results, both pathogens are using different environments and their distribution looks

complementary with B. anthracis occupying savanna-like environments and Bcbva occu-

pying forested areas; further, we detected some level of overlap between the potential geo-

graphic distributions of B. anthracis and Bcbva, despite their lack of overlap in their

current environmental space. This is the first time the potential distribution of Bcbva is

addressed considering all the available spatial information on the pathogen occurrence

available as of 2017. Although our Bcbva models are limited due to sample size, this explo-

ration informs on areas that would likely be considered for further investigation of Bcbva

outbreaks with special emphasis on areas where Bcbva and B. anthracis could co-exist.

Introduction

Bacillus anthracis, the causative agent of anthrax, affects humans, livestock, and wildlife in

multiple regions around the world. It is a gram-positive, rod-shaped, and spore-forming bacte-

rium that primarily affects wild and domestic herbivores, resulting in high mortality rates,

while also posing an important human health risk [1]. The primary route of infection with

anthrax in wildlife and livestock is grazing in vegetated areas where previous anthrax out-

breaks have occurred [2,3]. Spores residing in soils, vegetation, or water are ingested, resulting

in germination, followed by rapid replication of vegetative cells and elaboration of exotoxins,

leading to septicemia and death [4]. Carcasses opened by scavenger animals or via human

activities during disposal exposes vegetative cells to oxygen, which results in spore formation

within 48–72 hours (but see [5]). Additional transmission routes in animals include mechani-

cal from biting hemophagic flies [6–9], in addition to a possible respiratory pathway through

spore inhalation, although just documented in one incident [10]. In humans, cutaneous

anthrax is the most common clinical outcome following contact with contaminated animal
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hides or animal products [1]. Consumption of meat from infected animals can lead to gastro-

intestinal anthrax, which although rare compared to cutaneous anthrax, continues to cause

problems in many developing regions of the world [1,11]. Inhalation anthrax in humans pres-

ents with severe respiratory symptoms, accompanied by high mortality rates, and poses an

important bioterrorism risk, as was demonstrated during the 2001 anthrax attacks in the

United States [12]. Anthrax through injection is the least common form of the disease in

humans, and was described as a clinical entity affecting mainly heroin users [13].

The worldwide distribution of B. anthracis is a characteristic derived directly from its ability

to form spores that are resistant to diverse environmental conditions [1,4,7,14,15]. The ability

of spores to persist for years and even decades in the environment is well-documented, includ-

ing several reports of spore survival lasting>50 years [1,4,7,16–18]. Mounting evidence sug-

gests an association between B. anthracis spore survival and elevated soil pH values, high

calcium concentrations, and presence of organic matter in the natural environment, although

direct links between spore decay and specific environmental variables remain under investiga-

tion [1,3,4,14].

In sub-Saharan Africa, anthrax occurs in wildlife and domestic livestock in multiple coun-

tries, with periodic, scattered epizootic outbreaks [19]. Most outbreaks occur in savanna eco-

systems, where extensive livestock grazing and animal husbandry takes place [1]. In addition

to agricultural livestock, these regions hold many wildlife preserves populated by susceptible

ungulate species, such as African buffalo (Syncerus caffer), greater kudu (Tragelaphus strepsi-

ceros), hippopotamus (Hippopotamus amphibius), zebra (Equus quagga), and elephant (Loxo-

donta africana), among others [7,16].

After the discovery of a series of chimpanzee (Pan troglodytes troglodytes) and gorilla

(Gorilla gorilla gorilla) carcasses in 2001 and 2004–2005 in Côte d’Ivoire and Cameroon

[20,21], B. anthracis was incriminated as a new emerging infectious disease hazard within for-

ested environments in sub-Saharan Africa, including yet another risk to endangered species

such as great apes [22]. However, further detailed molecular, morphological, and microbiolog-

ical analyses revealed that the pathogen was in fact a new variety of a different Bacillus species,

Bacillus cereus biovar anthracis [23,24] (henceforth “Bcbva” for brevity). Phylogenetic analyses

determined that B. anthracis and Bcbva fall within the broader B. cereus group, comprising

multiple species with diverse pathogenicity and ecological niches [25]. Bcbva exhibits chromo-

somal characteristics associated with B. cereus, but contains two virulence plasmids almost

identical to those in B. anthracis [24]. Experimental studies in mice and guinea pigs demon-

strated Bcbva virulence comparable to that of wild-type B. anthracis; similarly, protection

against Bcbva infection was conferred using vaccination with formaldehyde-inactivated B.

anthracis spores plus protective antigen [26].

Further studies have isolated Bcbva from animal anthrax cases in West and Central African

countries, including Liberia, Democratic Republic of Congo, and Central African Republic

[27,28]. Importantly, Bcbva was found to infect a wide range of species, including not only

gorillas and chimpanzees, but six additional monkey species, duikers, mongooses, and porcu-

pines; the pathogen was responsible for high wildlife mortality rates in forested areas within

Tai National Park [28,29]. Recent mathematical models have shown considerable potential of

Bcbva to undermine chimpanzee populations [28]; considering its similarities to B. anthracis,

the U.S. Department of Health and Human Services added Bcbva to its list of select agents and

toxins, along with viruses such as Ebola and Marburg [30].

Here, we focus on characterizing the ecological niches of B. anthracis and Bcbva in sub-

Saharan Africa and on evaluating potential niche differences between the two pathogens. The

potential distribution of B. anthracis links closely to locations of previous anthrax outbreaks,

but understanding of environmental factors leading to emergence and risk across geographic
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regions remains incomplete. Although B. anthracis has been documented frommultiple conti-

nents and is considered to have a global distribution [15,17], Bcbva infections have been identi-

fied only within sub-Saharan Africa [27,28]. Empirical evidence suggests that Bcbva infections

occur in subtropical humid environments, primarily in non-human primates, whereas B.

anthracis infections occur more commonly in arid regions, and so far, the pathogen has been

found in a broader variety of host species, although susceptibility varies among them; identifi-

cation of additional Bcbva host species will likely increase with further investigations [7,8,16].

Although locality data for Bcbva are sparse in comparison to those for B. anthracis, these obser-

vations suggest that Bcbva may occupy an ecological niche peripheral to that of B. anthracis,

which may explain high incidence in humid, forested environments.

Recent advances in geospatial analysis approaches provide new opportunities to explore

and predict the geographic distribution of suitable environments under which potential spore

survival and possible anthrax transmission may occur [31]. Ecological niche modeling is a

correlative approach that uses georeferenced occurrence data and environmental variables to

identify the geographic distribution of environments suitable for a species of interest [32]. This

approach has been used to anticipate potential distributions of multiple pathogens at global

and regional scales [33–35], including previous anthrax investigations [36–42].

The objective of this study is to take a broad-scale approach to understanding the potential

geographic distributions of B. anthracis and Bcbva in sub-Saharan Africa, using an ecological

niche modeling approach. A second objective is to quantify the similarity of environments

from which Bcbva isolates have been obtained with those occupied by B. anthracis in West

Africa. Understanding potential niche overlap or difference between these pathogens will pro-

vide new insights into possibilities for co-occurrence, or for infection from Bcbva in previously

unknown geographic areas. This information is critical to identify areas to build veterinary

and public health capacity to properly differentiate anthrax outbreaks caused by either B.

anthracis or Bcbva in Africa.

Methods

Occurrences

Confirmed occurrence records for anthrax cases in animals or humans from Africa were com-

piled from multiple sources, including publicly available data from the Emergency Prevention

System (EMPRES) of the Food and Agriculture Organization (FAO) of the United Nations

[17] and records documented by the online outbreak databases HealthMap [43] and ProMED-

mail [44–46]. We also manually georeferenced localities from [47–50]. For Bcbva occurrences,

we used all confirmed localities available for the pathogen until December 2017 as reported by

[21,23,24,27,28]. We used exact coordinates when reported [27,28], or georeferenced them

manually according to the information provided [21]. All occurrence data are provided in S1

Table.

We accepted polymerase chain reaction (PCR) and sequencing, and bacteriological exami-

nation as reasonably certain laboratory confirmation for B. anthracis, except for Ghana where

we included georeferenced confirmed outbreaks [47,48]. We also removed duplicate records,

records with locational information only referring to centroids of first and second political

administrative levels (e.g., centroid of the country, state, or province), and filtered occurrences

to retain only one per grid cell. Many African countries have reported suspected occurrences

of B. anthracis; however, confirmed anthrax records were obtained only from Bostwana, Cam-

eroon, Chad, Ghana, Namibia, Tanzania, Uganda, and Zambia (Fig 1 and S1 Table). Occur-

rence data for Bcbva were obtained from Cameroon, Central African Republic, Côte d’Ivoire,

Democratic Republic of the Congo, and Liberia (Fig 1 and S1 Table).

PLOS NEGLECTED TROPICAL DISEASES Potential distribution of Bacillus cereus biovar anthracis in Africa

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008131 March 9, 2020 4 / 20

https://doi.org/10.1371/journal.pntd.0008131


Occurrence dates ranged from 2000 to 2017. We obtained a total of 57 occurrences for B.

anthracis, and 14 for Bcbva. To prevent overfitting owing to spatial autocorrelation and sam-

pling bias (e.g., occurrences in Ghana, Fig 1), we thinned our data spatially using a distance of

30 km (B. anthracis n = 40, Bcbva n = 7) and 50 km (B. anthracis n = 34, Bcbva n = 5) and

developed models using all occurrences in each thinned dataset [51].

Calibration areas

Ecological niche models are sensitive to the area selected for calibration, and evaluation met-

rics can be inflated as an artifact of including larger study areas [52]. We selected specific cali-

bration areas for each pathogen considering its natural history. As mentioned, B. anthracis has

a nearly global distribution [1,15,17]; its spore form can endure a broad range of environmen-

tal conditions although the capacity for spore survival declines in extreme settings [7]. For this

reason, we defined all of sub-Saharan Africa as the calibration area for B. anthracis [53]. For

Bcbva, we wanted to use an area broad enough to include areas surrounding its known occur-

rences [23]. We developed a buffer of 12˚ (~1300 km) around available occurrences including

areas south of the Sahara Desert across western and central Africa (Fig 1). In this context, the

two calibration areas (Fig 1) represent hypothesis of the geographic regions that the species

have been able to explore and potentially colonize through time, which corresponds to theM

region described by [54].

Environmental variables

We explored four classes of environmental variables for model calibration: temperature,

humidity, vegetation greenness, and soils. All variables were resampled to 5’ (~10 km) spatial

resolution to address uncertainty of georeferencing some localities [31]. Climate variables

were obtained from the MERRAclim 2000–2010 dataset, a global climatic repository derived

from remotely-sensed satellite data and ground information [55]. MERRAclim has advantages

over other climate data sets used commonly in ecological niche modeling applications because

satellite information helps to reduce uncertainty in interpolated values [55]. We used the so-

Fig 1. Occurrence points and calibration areas. Confirmed records of Bacillus anthracis (blue) and Bcvba (red) with their
corresponding calibration areas (gray shading). Maps were developed using shape files of Africa from the public domain repository
of Natural Earth (http://www.naturalearthdata.com/) and built with ArcGIS 10.3 (ESRI Redlands, CA, USA).

https://doi.org/10.1371/journal.pntd.0008131.g001
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called “bioclimatic” variables, including temperature and moisture (i.e., humidity) related lay-

ers (S2 Table) from the decade 2000–2010 to match the time of georeferenced cases.

Normalized Difference Vegetation Index (NDVI) values (version six, V6) were drawn from

biweekly (16-day composite) images at 500 m resolution from the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) sensor on board of NASA’s Terra satellite [56]. NDVI charac-

terizes the amount of green biomass in an area, and has been used as a proxy for soil moisture

[57]. We obtained satellite data from 2005 to 2017 for a total of 299 satellite images (available

at https://lpdaac.usgs.gov/data_access/data_pool, S2 Table). Original images were downloaded

and reprojected to geographic coordinates (WGS 84) using the MODIS Reprojection Tool

[58] and the ‘rts’ package implemented in R version 1.0–47 [59,60].

Additionally, we investigated soil variables, including pH, cation exchange capacity (e.g.,

calcium), and carbon content (S2 Table) from the SoilGrids dataset at 250 m resolution and at

multiple depths ranging from 0–5 cm and 5–15 cm [61] available at https://soilgrids.org/. Soil-

Grids is a global repository of chemical and physical soil properties built by the International

Soil Reference Information Centre (ISRIC)—World Soil Information, that includes informa-

tion for regions with gaps in availability of continuous soils values, including areas across the

continent of Africa [61].

To prevent development of overly complex models owing to high correlations among envi-

ronmental variables in each class of data, we used a separate principal components analysis

(PCA) for each set of environments [31,62]. We retained the first three principal components

(PCs) for each environmental realm, explaining 99.98% of the variance for temperature, 99.99%

for humidity, 91.49% for NDVI, and 97.43% of the variance for soil-related variables; thus, anal-

yses were performed with 12 environmental layers.

Ecological niche models

We chose a maximum entropy approach implemented in the software package Maxent (ver-

sion 3.3.3k) [63]. We explored different parameters for our models, considering different com-

binations of response types (i.e., linear [L], linear+quadratic [LQ], linear+quadratic+product

[LQP], and linear+quadratic+product+threshold+hinge [LQPTH]), and regularization multi-

plier [RM] (i.e., 0.1 to 2, by increments of 0.1, and also RM of 3, 5, 7 and 10) within the Maxent

modeling framework for the three sets of occurrence data (i.e., no thinning, thinned to 30 km,

and thinned to 50 km) and the environmental variables described (i.e., 12 PCs) [31,64,65];

regarding selection of environmental variables, we noted Maxent’s ability to assign zero-value

lambda coefficients (variable weights in models) and included all 12 PCAs. An expanded dis-

cussion on our model selection approach can be found in the S1 File.

Model evaluation

Models for B. anthracis were generated using a random sample of 50% of occurrence data for

calibration and the remaining 50% for model testing [31,64,65]. We used a three-step frame-

work to evaluate and select model outputs recently automated in the kuenm package in R

(https://github.com/marlonecobos/kuenm) [66]. First, we assessed statistical significance using

the partial area under curve of the Receiver Operating Characteristic (pROC; [67]). Statistically

significant models were assessed using omission rates to select those with the best performance

using a threshold of 5% training omission rate [32,64]. Finally, models selected through both

metrics were further discriminated using the Akaike information criterion corrected for sample

size (AICc) to obtain models with low complexity and good fit to the underlying data

[64,68,69].
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For Bcbva, owing to small sample size, we used a leave-one-out approach [70] developed

for such situations (e.g., less than 25 points) [71,72] to assess statistical significance of models.

We calculated p-values for each model through the software PvalueCompute.exe provided in

[70]. Then, we used minimum training presence (MTP) omission rates obtained with the

ENMeval package in R [64] to threshold models; independent subsets of occurrence data were

overlaid on these binary predictions to calculate omission error as a measure of performance.

We calculated AICc values for all Bcbva models except those using 50 km thinned occurrences,

for which the number of parameters was higher than the number of available occurrences

[68,69]. An expanded discussion on each metric and the current approach can be found in the

S1 File.

For pROC and omission rate evaluation metrics, Maxent outputs were assessed in logistic

format while for AICc, outputs were based on raw outputs [63,64,73]. All raster data manipula-

tion and evaluations were performed using ArcGIS 10.3 (ESRI, Redlands, CA) and R software

(https://www.r-project.org/). Packages used for raster manipulation, model calibration, model

evaluations, etc are listed in the S1 File.

Final models

Parameters identified as the best for each combination of occurrence data (i.e., no thinning,

thinned to 30 km, and thinned to 50 km) and environmental variables, were used to develop a

final model set for B. anthracis and Bcbva. We used the selected parameters and Maxent’s logis-

tic output (i.e., a continuous scale from 0 as non-suitable to 1 suitable prediction) in a bootstrap

with ten replicates to calculate the median as a representation of suitability for each species; we

used the difference between maximum and minimum values (i.e., range) in each pixel as a

representation of model uncertainty [32,34] for each case. Final model outputs were classified

into binary suitable and non-suitable categories, based on MTP, and an adjusted MTP in

which we sought the highest threshold that included 95% and 90% of calibration points (i.e.,

E = 5%, E = 10%, respectively, [67]), among all the modeling sets for B. anthracis [67]. Given

the limited number of records available for Bcbva, we used MTP and E = 5% as thresholds [67].

Model interpretation for final Bcbva models was constrained to its calibration area to avoid

extrapolation of final model parameters to the rest of the African continent.

Niche similarity

We used a background similarity test to assess possible differences between the potential

niches of B. anthracis and Bcbva and their associated environmental profiles (i.e., temperature,

humidity, soils, and NDVI separately, and all together) [74,75]. We used a one-tailed test

based on Schoener’s D values to compare the observed overlap between the niche models for

the two species to a null distribution; the latter was generated using the occurrence points of

one of the species, with randommodels generated from the environmental background of the

other species and vice versa; we rejected the null hypothesis of niche similarity if the empiric

overlap fell in the lower 5% of the null distribution [74]. Additionally, we used the first two

PCs of all environments and the first two PCs of each environmental dimension for B. anthra-

cis and Bcbva to develop a background similarity test in environmental space, using a scale-

free kernel density approach across a gradient of environments as implemented by [76]. All

comparisons were performed in R software using the ENMTools R-package available at

https://github.com/danlwarren/ENMTools. Calculation of p-values was done following the

methodology of [77] for one-tailed permutation tests.
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Results

Our modeling approach with three sets of occurrences (i.e., no thinning, thinned to 30 km,

and thinned to 50 km), four combinations of feature types, and 24 values of regularization

multiplier, allowed us to develop an initial set of 288 models for each of B. anthracis and Bcbva

from which to identify a best-fitting model for each pathogen species (Table 1). Overall, our

three-step model selection framework (i.e., statistically significant pROC + low omission rate

+ low AICc) identified different features and regularization multipliers (i.e., parameters) for

best models depending on the thinning scheme used. Models developed without thinning

occurrences (B. anthracis n = 57, Bcbva n = 14) were overfitted, and had restricted predictive

ability, especially for Bcbva (S1 Fig).

Models for B. anthracis with 30 km spatial filtering yielded a broader prediction with less

uncertainty (features = LQP, RM = 10; Table 1 and Fig 2, top). Binary models at MTP showed

a larger area of suitability than binary models with other thresholds, despite minor differences

between them (i.e., E = 5% and E = 10%, Fig 2, top right-hand panel). We found an east-west

corridor of suitable areas for B. anthracis in the sub-Saharan region from Senegal, Sierra

Leone, and southern Mali to Ethiopia. Binary maps with different threshold rules also showed

consistent suitability in northern areas of Guinea, Côte d’Ivoire, Ghana, Nigeria, Cameroon,

Central African Republic, South Sudan, and Uganda. Further, suitability was predicted for the

majority of Togo and Benin, and southern parts of Burkina-Faso, Chad, and Sudan, all show-

ing low levels of uncertainty (Fig 2, top). Other countries, such as Gabon, Equatorial Guinea,

Eritrea, and Republic of the Congo, presented patchy areas of suitability for B. anthracis with

varying levels of uncertainty (Fig 2, top). Consistent suitability from binary maps with low

levels of uncertainty was also indicated for Zimbabwe; northern parts of Namibia, Botswana,

South Africa, and Tanzania; and southern parts of Ethiopia, Somalia, Kenya, Zambia, and

Angola (Fig 2, top).

For Bcbva we found, as in the previous case, that the model output with occurrences

thinned at 30 km produced the best-performing model. Model uncertainty was low across the

predicted region (Fig 2, bottom center). Binary maps were built using only MTP and E = 5% as

thresholds considering the limited number of occurrences available; both thresholds depicted

similar predictions with limited differences between them (Table 1 and Fig 2). Suitability for

Bcbva with low uncertainty was indicated for Liberia, Gabon, Equatorial Guinea, Republic of

the Congo, and southern regions of Ghana, Nigeria, and Cameroon by both binary rules (Fig

2, bottom); none of these areas was predicted as suitable for B. anthracis. Small areas of

Guinea-Bissau showed patches of suitability, although with high uncertainty (Fig 2). Predic-

tions for B. anthracis and Bcbva followed the overall suitability pattern described when using

50 km thinned occurrences (S2 Fig). Areas of overlapping suitability for B. anthracis and

Bcbva within the Bcbva calibration area were identified using the MTP threshold in southern

Table 1. Parametrization of selected Bacillus anthracis and Bcbva models. Parameters for models selected after a three-step selection framework (pROC, omission
rates, and AICc), considering the different sets of occurrences and environments explored. Features: L = linear, LQ = linear + quadratic, LQP = linear + quadratic + prod-
uct; RM: regularization multiplier; pROC: partial area under the Receiver Operating Characteristic; AICc: Akaike information criterion corrected for sample sizes.

Species Occurrence thinning (km) Occurrences Selected features Selected RM Significance Omission rate AICc Parameters

B. anthracis 0 57 LQP 10 <0.05 0.034 1267.62 9

B. anthracis 30 40 LQP 10 <0.05 0.1 943.57 8

B. anthracis 50 34 LQ 3 <0.05 0.059 792.12 13

Bcbva 0 14 L 0.8 <0.05 0.071 315.97 10

Bcbva 30 7 L 10 <0.05 0.14 166.05 2

Bcbva 50 5 L 0.6 <0.05 0.4 NA 9

https://doi.org/10.1371/journal.pntd.0008131.t001
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Cameroon and Republic of the Congo, northern Gabon and small areas of Burundi and

Rwanda (Fig 3, left). These areas represent potential transitional environments from Bcbva to

B. anthracis suitability and areas with the potential for pathogen co-occurrence. Contribution

of each of the variables and response curves for the selected models can be found in the S1 File.

Using the background similarity test with all variables (i.e., 12 PCs), we found statistical

support for B. anthracis being less similar to Bcbva than expected at random (D = 0.212,

p = 0.001), and for Bcbva being less similar to B. anthracis than expected at random

(D = 0.195, p = 0.029) (Fig 4). In individual environmental dimensions, we found statistical

support for B. anthracis as less similar to Bcbva than expected at random when comparing

temperature, humidity, and soil conditions, but we could not reject the null hypothesis of simi-

larity when comparing NDVI (Fig 5). The converse test (i.e., Bcbva vs. B. anthracis) failed to

reject the hypothesis of similarity when comparing temperature and NDVI; however, we effec-

tively rejected the hypothesis of similarity when comparing humidity (D = 0.330, p = 0.039)

and soils (D = 0.194, p = 0.001) in which Bcbva was less similar to B. anthracis than expected at

random (Fig 5). Comparisons between B. anthracis and Bcbva in environmental space failed to

reject the hypothesis of similarity when comparing all variables and when comparing each

individual environmental dimension (S3 and S4 Figs). Inspecting environments available for

the two anthrax lineages inside each of the calibration areas, we can see that in no case do the

environments represented in the twoM regions overlap (i.e., for the two species; Fig 6 and S5

Fig).

Fig 2. Model outputs for Bacillus anthracis and Bcbva.Models using 30 km thinned occurrence data are depicted for B. anthracis
(top) and Bcbva (bottom), as maps of continuous suitability (left), uncertainty (center), and binary maps using different thresholds
(right). For B. anthracis (top), binary maps were built using thresholds based on minimum training presence (MTP) in yellow,
E = 5% in orange, and E = 10% in red. For Bcbva (bottom), binary maps were built using MTP (yellow) and E = 5% (red) thresholds.
Maps were developed using shape files of Africa from the public domain repository of Natural Earth (http://www.naturalearthdata.
com/) and built with ArcGIS 10.3 (ESRI Redlands, CA, USA).

https://doi.org/10.1371/journal.pntd.0008131.g002
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Discussion

This investigation is the first to map and assess the potential distribution of Bcbva, and to quan-

tify similarities and differences between environments identified as suitable for B. anthracis

and Bcbva across Africa. Model results provide valuable insight into the potential distribution

of the emerging pathogen Bcbva, while identifying areas that may be at risk for coexistence of

these two similar pathogens. We used an updated approach to model calibration and selection,

Fig 3. Overlapping regions for both pathogens. Bacillus anthracis (light blue) and Bcbva (light orange) suitability as relates to the
Bcbva calibration area (orange line) using a minimum training presence threshold among the best performing models.
Environments in these areas are characterized via a sample of 5000 points (right panels, same color scheme) considering four
individual environmental variables (mean annual temperature, mean annual specific humidity, soil pH, and soil cation exchange
capacity) and the first principal component (PC1) of the four environmental dimensions explored in this manuscript (temperature,
specific humidity, vegetation greenness or NDVI, and soils). Maps were developed using shapefiles summarizing political borders of
Africa from the public domain repository of Natural Earth (http://www.naturalearthdata.com/) and built with QGIS 2.18 ‘Las
Palmas’.

https://doi.org/10.1371/journal.pntd.0008131.g003

Fig 4. Background similarity test between Bacillus anthracis and Bcbva using all environments in geographic
space. The comparison was done using all variables (i.e., 12 PCs) and calculating Schoener’s D statistic. Significant p-
values (asterisk) indicate less similarity than expected when comparing to a random distribution.

https://doi.org/10.1371/journal.pntd.0008131.g004
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generating multiple combinations of variables and parameter settings to identify the most

robust model for prediction. Transparency in reporting model uncertainty and effects of differ-

ent training data sets on model outputs provides a thorough set of information to ensure accu-

rate model interpretation when observing local geographic areas [32,78]. Additionally, we

focused our modeling effort on georeferenced confirmed cases of B. anthracis and Bcbva for

model calibration. Confirmation is a critical component to robust modeling because several

wildlife and livestock diseases can cause sudden death and present similar to anthrax, introduc-

ing the potential for spurious model results [79].

Predicted distributions of potentially suitable environments for B. anthracis in sub-Saharan

Africa corresponded well to regions with confirmed and suspected anthrax cases. Specifically,

model results identified suitable regions across the transition from humid tropical to semi-arid

environments, from Senegal in West Africa across the continent to Ethiopia in East Africa

(Figs 2 and 3). This transition zone consists of brush, grass, and savanna landscapes, highly

suitable for livestock and wildlife grazing [80].

Model outputs identified suitable environments in locations with reports of suspected

anthrax within Ethiopia, Kenya, Tanzania, and Uganda, despite having fewer georeferenced

laboratory confirmed cases to use in model calibration (i.e., n = 40 for selected models; Fig 2).

For example, model predictions indicated suitable environments for B. anthracis in and

around Serengeti National Park in Tanzania, where Lembo et al (2011), found several animals

testing seropositive for anthrax [81]. Model outputs for Kenya included suitability correspond-

ing to several locations where suspected anthrax outbreaks occurred, such as southern Sam-

buru District, where livestock, Grevy’s zebras, and plains zebras died from suspected anthrax

in 2005–2006 [82]. Similarly, Uganda experienced devastating outbreaks of anthrax among

wildlife in 2004–2005 and 2010 [83,84]. The burden of anthrax on both countries prompted a

collaborative assembly of medical, veterinary, and wildlife experts to identify anthrax as a top

priority, when implementing a One Health Zoonotic Disease Prioritization Tool in 2015 for

Kenya [85] and in 2017 for Uganda [86].

Fig 5. Background similarity tests between Bacillus anthracis and Bcbva for each individual environmental dimension.
Comparisons were performed using three principal components for each environment, namely temperature, humidity, NDVI, and
soils for B. anthracis vs. Bcbva (left) and Bcbva vs. B. anthracis (right). Significant p-values (asterisk) indicate less similarity than
expected when comparing to a random distribution.

https://doi.org/10.1371/journal.pntd.0008131.g005
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Models identified potentially suitable environments for B. anthracis across areas in south-

ern Africa, including parts of Zambia, Malawi, Mozambique, Zimbabwe, Swaziland, Lesotho,

South Africa, Botswana, Namibia, and Angola (Fig 2). Most notable are areas within several

wildlife reserves, where enzootic and epizootic anthrax are known to impact wildlife. Best-

known are Kruger National Park in South Africa and Etosha National Park in Namibia [87],

where seminal studies on relationships between anthrax and soil pH and calcium were con-

ducted [88]. Model outputs suggested suitable environments across much of both parks, in

addition to the Caprivi region in the panhandle of Namibia, where a large anthrax outbreak in

hippopotami occurred in 2017 [89]. Additional georeferenced laboratory-confirmed locations

will help to refine model results, providing valuable information for model calibration and

facilitating a more complete representation of suitable environments for anthrax across sub-

Saharan Africa, particularly in transition zones from savanna environments into humid for-

ested areas. While aggregate empirical evidence suggests that B. anthracis is not present within

humid forest environments, additional sampling in transition zones may reveal a slightly

Fig 6. Kernel density plots around each point of Bacillus anthracis and Bcbva for temperature, humidity, NDVI, and soils depicted
in the environmental space. Principal components one and two (PC1 and PC2) from each dimension were used to depict an
environmental space to show regions occupied by B. anthracis (blue) and Bcbva (orange). Pathogens are using non-overlapping regions
in each case.

https://doi.org/10.1371/journal.pntd.0008131.g006
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broader environmental breadth than is appreciated currently, particularly given the present

focus on livestock and savanna wildlife deaths.

On the other hand, model outputs for Bcbva suggested a more compact environmental dis-

tribution than B. anthracis, limited to areas with humid tropical forested environments (Fig 2).

The predicted distribution of Bcbva indicated potential suitability across much of the Congo

Basin and in patches along the coast of the Gulf of Guinea in West Africa. Limited calibration

data could be constraining model outputs to environments specific to sampling schemes, but

this investigation provides a first look at potential distributions of this emerging pathogen. An

incomplete picture of uncertainty in model predictions for Bcbva is likely owing to the smaller

number of calibration points (i.e., n = 7 in selected models, Fig 2), which is also the reason why

we avoided extrapolation of final Bcbva models to a broader region than the calibration zone,

depicting potential overlap between both pathogens only inside the Bcbva calibration area (Fig

3). Considering the disjunct geographic distribution of Bcbva isolates, humid tropical forested

areas identified as suitable provide a reference by which further surveillance and investigation

can be guided. Finally, although the possibility of previous unknown Bcbva outbreaks in other

regions is present, the long-time surveillance efforts for B. anthracis in Africa would have

found Bcbva outside forested environments at earlier times, a situation never reported before

the 2000’s [20].

Background similarity results indicated significant differences between the ecological niches

of B. anthracis and Bcbva (Fig 4), although only partially when comparing individual variables

between Bcbva and B. anthracis (Fig 5). While this result may seem counter-intuitive, the out-

come is clear, when considered in the context of comparing two species where one niche is rela-

tively known (i.e., B. anthracis), while the other is only incompletely characterized (i.e., Bcbva);

also, the imbalance in sample sizes may create differences in statistical power and consequent

ability to detect real differences. In this context, our results suggest with confidence that suitable

temperature, humidity, and soils environments for the well-characterized B. anthracis are less

similar than expected to those observed for Bcbva, indicating that the humid forested environ-

ments from which Bcbva has been isolated are not associated with historical or current observa-

tions of B. anthracis in sub-Saharan Africa. Additional georeferenced locations of laboratory-

confirmed Bcbva cases or isolates, particularly in transition zones between humid forest and

savanna environments, will contribute to a more robust characterization of the niche of Bcbva,

improving model predictions and comparisons between environments suitable for Bcbva vs. B.

anthracis.

Soils and humidity values were a significant differentiating variable when comparing B.

anthracis to Bcbva and when comparing Bcbva to B. anthracis. Associations between elevated

soil pH values and B. anthracis are a key factor associated with spore survival and identification

of geographic areas at risk for anthrax from B. anthracis [7,16], and our analysis suggests that

soil attributes may continue to provide important information, when assessing risk for B.

anthracis vs. Bcbva. Furthermore, humidity has been also incriminated as another of the envi-

ronmental determinants of sporulation for B. anthracis and its role in the maintenance of

spores for Bcbva should also be explored empirically [7,26].

On the other hand, NDVI proved not to be a differentiating variable when comparing B.

anthracis to Bcbva and when comparing Bcbva to B. anthracis. This result was interesting,

given the differences between spectral signatures from dry savanna environments vs. humid

forested environments [56]. One possibility is that distribution of variance of NDVI values in

this data set occurred across a greater number of PCs than we included in this analysis. The

first three PCs explained 91.5% of the variance for NDVI values, compared to>97% explained

variance for temperature, humidity, and soils, respectively. A refined analysis of NDVI and

perhaps exploration of enhanced vegetation indices, in the context of greater numbers of
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georeferenced occurrence data for both pathogens, could reveal differences not observed here.

While not explored in this study, additional abiotic factors such as wind strength and direction

might also impact the distributions of B. anthracis and Bcbva. Although wind clearly drives

distributions of spore-forming bacteria, further assessment of its role as a macro-ecological

determinant of anthrax outbreaks remains to be conducted [7,15,16].

Additionally, results from background similarity tests using the kernel density approach

across a gradient of environments did not yield results consistent with those of the geographic-

space and binary model comparisons; this was explained when analyzing the environments of

the occurrences for B. anthracis and Bcbva as shown in Fig 5 and S5 Fig. Without an overlap,

the statistical power of environmental-space comparisons to detect differences is nil: one never

can “see” one species using or not using the environments used by the other species.

In sum, the full niche breadth of Bcbva remains unknown, particularly whether Bcbva

occurs beyond humid forested environments within ecological transition zones moving

toward drier savanna environments common to B. anthracis. A logical next step is to investi-

gate for presence of Bcbva in transition zones from forested to savanna environments in West

Africa where our models based on MTP thresholds showed a potential overlap for both patho-

gens (Fig 3). The information obtained from the analyses presented here can be used to iden-

tify areas of interest for increased surveillance of animal deaths compatible with Bcbva to spur

additional sampling and testing, while also considering the similarities regarding virulence

between B. anthracis and Bcbva [26]. In this context, recent research efforts have started to

identify Bcbva-specific proteins with immunogenic potential expressed by Bcbva and not by B.

anthracis (i.e., pXO2-60, [90]) which can be used as a first antibody-based discriminatory diag-

nostic tool for in-field serological surveys; notably, transition zones where both pathogens may

be present could occur in multiple regions in sub-Saharan Africa, including in Cameroon, and

the southwestern of the Republic of Congo (Fig 3). As additional information becomes avail-

able for Bcbva, it will be important to investigate this hypothesis further to determine whether

humans and animals in these transition zones are at greater risk for exposure to this emerging

pathogen.
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S1 Table. Occurrences of Bacillus anthracis and Bcbva used in the study.
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S2 Table. Environmental dimensions considered in the present study.
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S1 File. Details on methods, evaluation metrics, R packages used in the manuscript, vari-

able contribution, and response curves.
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S1 Fig. Model outputs for Bacillus anthracis and Bcbva (no thinning).Models using all

occurrences (no thinning) are depicted for B. anthracis (top) and Bcbva (bottom), as maps of

continuous suitability (left), uncertainty (center), and binary maps using different thresholds

(right). Maps were developed using shape files of Africa from the public domain repository of

Natural Earth (http://www.naturalearthdata.com/) and build with ArcGIS 10.3 (ESRI Red-

lands, CA, USA).

(TIF)

S2 Fig. Model outputs for Bacillus anthracis and Bcbva (50 km thinning).Models using 50

km thinned records are depicted for B. anthracis (top) and Bcbva (bottom), as maps of
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continuous suitability (left), uncertainty (center), and binary maps using different thresholds

(right). Maps were developed using shape files of Africa from the public domain repository of

Natural Earth (http://www.naturalearthdata.com/) and build with ArcGIS 10.3 (ESRI Red-

lands, CA, USA).

(TIF)

S3 Fig. Background similarity test in environmental space between Bacillus anthracis and

Bcbva. Comparison was performed calculating Schoener’s D statistic on kernel density func-

tions on an environmental space delimited by the first two principal components of the overall

set. Results are depicted for B. anthracis vs. Bcbva (left) and Bcbva vs. B. anthracis (right).

(TIF)

S4 Fig. Background similarity tests in environmental space for individual variables

between Bacillus anthracis and Bcbva. Comparison was performed calculating Schoener’s D

statistic on kernel density functions on an environmental space delimited by the first two prin-

cipal components of each corresponding set (i.e., temperature, humidity, NDVI, and soils).

Results are depicted for B. anthracis vs. Bcbva (left) and Bcbva vs. B. anthracis (right).

(TIF)

S5 Fig. Kernel density plots around each point of Bacillus anthracis and Bcbva in the envi-

ronmental space. Principal components one and two (PC1 and PC2) from all the available

environments (i.e., 12 variables) were used to depict an environmental space to show regions

occupied by B. anthracis (blue) and Bcbva (red). Pathogens are using non-overlapping regions.

(TIF)
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