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Active pharmaceutical ingredients (APIs) can enter the natural environment

during manufacture, use and/or disposal, and consequently public concern

about their potential adverse impacts in the environment is growing. Despite

the bulk of the human population living in Asia and Africa (mostly in low- or

middle-income countries), limited work relating to research, development

and regulations on APIs in the environment have so far been conducted in

these regions. Also, the API manufacturing sector is gradually shifting to

countries with lower production costs. This paper focuses mainly on APIs

for human consumption and highlights key differences between the low-,

middle- and high-income countries, covering factors such as population

and demographics, manufacture, prescriptions, treatment, disposal and

reuse of waste and wastewater. The striking differences in populations

(both human and animal), urbanization, sewer connectivity and other factors

have revealed that the environmental compartments receiving the bulk of

API residues differ markedly between low- and high-income countries.

High sewer connectivity in developed countries allows capture and treatment

of the waste stream (point-source). However, in many low- or middle-income

countries, sewerage connectivity is generally low and in some areas waste is

collected predominantly in septic systems. Consequently, the diffuse-source

impact, such as on groundwater from leaking septic systems or on land

due to disposal of raw sewage or septage, may be of greater concern. A

screening level assessment of potential burdens of APIs in urban and rural

environments of countries representing low- and middle-income as well as

high-income has been made. Implications for ecological risks of APIs used

by humans in lower income countries are discussed.
1. Introduction
Public concerns about the potential adverse impact of active pharmaceutical

ingredient (API) residues in the environment have increased during the past

decade. In addition to sub-lethal effects, such as in the case of endocrine disrup-

tion in fish [1,2], direct toxic effects of APIs on exposed organisms, with
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population level impacts, have been noted. Exposure to resi-

dues of the non-steroidal anti-inflammatory drug (NSAID)

diclofenac in tissues of cattle in Asia resulted in massive

declines (more than 95%) in the populations of some species

of vultures in Asia [3]. As a result, diclofenac was withdrawn

from veterinary use in India [4,5]. The ‘Asian vulture crisis’,

provides an example of an unexpected acute exposure route

that highlighted the potential ecological impact of these bio-

logically active compounds. Another area of concern relates

to ecological risks associated with environmental contamin-

ation by antibiotics, with potential for direct toxicity to

aquatic microorganisms and indirect impacts through prolifer-

ation of antibiotic resistance [6]. Despite these examples, there

has been a notable lack of studies that demonstrate effects of

APIs based on ecologically relevant assessments, with respect

to appropriate exposure concentrations and duration, ecotoxi-

cological endpoints and implications of mixture effects [7,8].

However, where ecologically appropriate exposures were

used, APIs have been demonstrated to cause effects in organ-

isms, such as behaviour and reproduction, which may have

broader ecological consequences [7,9–14].

APIs used to treat diseases in humans (and animals) can

enter the natural environment during the manufacturing pro-

cess [15] or, following therapeutic use, via some form of

wastewater collection and treatment system [16]. The excretion

or application of animal manures to agricultural land or water-

ways occur following veterinary/aquaculture use [17,18].

Generally, wastewater undergoes some level of treatment

which can be variably effective in removing APIs. However,

discharges of high concentrations of APIs in the environment

may occur due to lack or inefficiency of treatment facilities

or inappropriate disposal practices. A range of APIs have

been detected in different environmental compartments over

the years [19–22]. Some of these compounds (e.g. carbamaze-

pine, fluoxetine, fluroquinolones and tetracycline antibiotics)

may persist in the environment [23]. Consequently, increasing

attention is being placed globally on the impacts of APIs that

are present in the environment.

Despite the fact that a vast majority of the human popu-

lation live in Asia and Africa, the majority of research

(�75%) and most of the regulatory developments on APIs

in the environment have focused on the North American

and European situations [20]. A significant amount of work

has also been done in some Asian countries (e.g. China,

Japan and South Korea). However, much less information is

available for other regions of the world such as Oceania,

Africa, South America and parts of Asia. In addition to the

huge population pressure in these regions, there has been a

gradual shift in the global API manufacturing sector over

recent years due to outsourcing of drug manufacturing to

lower income countries [24].

A number of factors will determine the environmental

exposure of an API including: (i) population and demo-

graphics, (ii) access to health systems, (iii) size and nature of

the manufacturing sector, (iv) connectivity to sewerage and

sewage treatment systems, (v) ecology of the receiving

environment and (vi) the availability and effectiveness of regu-

latory frameworks. These factors are likely to differ between

high- and lower income economies, and consequently as are

the environmental risks of APIs.

In this paper, we examine the key differences between

some of the above risk factors relating to environmental

exposure in low-, middle- (e.g. in Asia, South America) and
high-income countries (e.g. from Australasia, North America

and Europe). We initially consider differences in factors driv-

ing the use of APIs and their release into the environment,

then move on to discuss differences in pathways into the

environment and the evidence for environmental contamin-

ation by APIs in lower income countries. Finally, we make a

relative assessment of the likely differences in factors among

selected low-, middle- and high-income countries contributing

to the environmental risk of APIs. As published data relating

to the presence of APIs in the aquatic environment have been

dominated by research from Europe and North America

[8,20,25], this paper focuses on low- and middle-income

countries as a means of comparing and contrasting with

high-income countries, the factors which can influence the

level of API residues in the environment. We provide selected

examples of sources and pathways of exposure and effects

of human APIs on ecosystem health to illustrate the most

important differences between low- and high-income nations.
2. Key contributing factors to ecological risks
associated with active pharmaceutical
ingredients in lower income countries

(a) Population and demographics
One of the key factors governing the total demand for APIs is

the size of the human population of a country and the acces-

sibility to healthcare. Some of the world’s most populous

countries are located in growing economies in the continents

of Asia, Africa and South America (electronic supplementary

material, table S1). Here, the contrast is the greatest between

low- to middle- and high-income nations. Nearly 78% of the

total global population is located in Asia and Africa, whereas

only about 16% is present in Europe and North America.

Indeed, nearly 40% of the global population lives in

three Asian countries, namely China, India and Indonesia

(electronic supplementary material, table S1).

On the basis of concentration of human population, one

would assume that the overall demand for APIs would be

higher in Asia and consequently expect a greater environ-

mental risk from a greater presence of APIs. The population

pressure (or lack of it) does not, however, directly translate

into environmental impact as there are other factors that

can moderate it. For example, the population density of Aus-

tralia is low but most of the population is congregated in

cities, leading to the concentration of waste streams. Simi-

larly, 13 of the 100 most populated urban agglomerations in

the world are located in South America (eight in Brazil)

with more than 3.5 million people in each of these. The

degree of urbanization (electronic supplementary material,

table S1) may be a good indicator of areas where discharge

of APIs to the environment is likely to be concentrated.

Age demographic is an important factor in determining

demand for pharmaceuticals. While the per capita demand

for medication increases with increasing age, the overall use

of APIs is a complex phenomenon. Not only the amount

but also the combination of particular pharmaceuticals that

are used are expected to be different for the ageing popu-

lation than that for a younger population. While only 7.1%

of the total population in Asia is currently more than 65

years old, the proportion of this group is 13.4% in North

America and more than double in Europe (16.4%). Most
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high-income countries, with the notable exception of the USA

(where growth is largely due to immigration), have sub-

replacement growth rates (electronic supplementary material,

table S1). By contrast, the populations in lower income econ-

omies are growing relatively rapidly. The population growth

rate during the past decade has been highest in Africa fol-

lowed by Asia and Latin America [26]. The population

pyramids of selected countries demonstrate the distribution

of age groups in low- (Bangladesh), lower middle- (India),

upper middle- (China) and high- (Australia, UK, USA)

income countries (electronic supplementary material, figure

S1). As the nature and extents of APIs used by young or

ageing populations are different, so may be their potential

ecological footprints.

(b) Factors influencing consumption patterns of active
pharmaceutical ingredients

The ecological risk associated with an API is dependent

on its consumption volume and pattern of use. Consumption

patterns and overall use of APIs within a country are

influenced by a range of country-specific factors, such as

demographics, economics, disease burdens, government pol-

icies and cultural tendencies. It is important to note that a

greater extent of resources available in high-income nations

allows better monitoring and regulation of API use, compared

with low-income nations.

There is no single method that allows an unbiased assess-

ment of the use of APIs in different nations, let alone the use of

APIs that are used illegally. However, a number of ways of

estimating consumption of APIs within a country has been

attempted. These include marketing data, surveys of APIs dis-

pensations, wastewater data [27], as well as estimation of total

volume available of an API (i.e. sum of manufactured and

imported APIs, minus exported APIs). Regional API consump-

tion has been estimated by monitoring concentrations of APIs

in sewerage systems and ‘back-calculating’ to get a figure relat-

ing to the average consumption in the area serviced by the

sewerage network. This approach has been applied for esti-

mating the usage of illicit drugs [28,29], for example.

However, this approach would become less viable in areas

where connectivity to sewers is low, which is often the case

in low-income countries (electronic supplementary material,

table S1). The other approaches to estimating API consumption

also have their own advantages and disadvantages [27], with

some able to provide a better estimation than others. For

example, while data relating to the sales of APIs in monetary

terms are readily available, this type of information is highly

dependent on a number of variables and is therefore not

easily translatable into the mass of APIs consumed.

Prescription numbers can provide a useful measure,

especially when the amount of API within a prescription is

known. Total volumes sold within a country can similarly

be converted into number of doses consumed within a

country. The use of the defined daily dose (DDD) or DDD

per capita concept, used by the World Health Organization

(WHO), allows a comparative measure that takes into

account the different potency of drugs (in humans) and of

drug consumption between population groups. One down-

fall of estimating inputs into the environment based on

volumes consumed within a country is that adherence to

API therapy, especially for long-term treatment, is around

50% in high-income countries and even less in lower
income economies [30]. Although this measure may therefore

represent an overestimation of API use, many of these unused

APIs can still be disposed of in a way that will ultimately lead

to environmental contamination [31].

(i) Differences in disease burdens
It is generally accepted that as a country’s population ages, the

demand for APIs increases [32]. Higher levels of urbanization

are associated with changes in lifestyle, along with a higher per
capita income, which is an important factor in the access to and

use of APIs. Increased affluence, through urbanization and

wealth, also influences the pattern of disease burden with a

subsequent occurrence of chronic or non-communicable dis-

eases comprising a higher burden, relative to acute or

infectious diseases, in higher income countries [32]. Some

chronic diseases such as diabetes are becoming prevalent in

a number of lower income countries [32] and APIs will

become an increasingly important mitigating factor in redu-

cing the disease burden. For example, more than 80% of

mortality worldwide attributable to diabetes occurs in low-

and middle-income countries [33]. According to projections

by WHO, the number of deaths due to diabetes will double

between 2005 and 2030. Mass drug administration (MDA) pro-

grammes which target whole communities are being used to

target neglected tropical diseases such as lymphatic filiariasis

and leprosy. These MDA programmes are occurring in

Asian, African, Latin American and Pacific nations [34] and

may result in increasing seasonal discharges of APIs to the

environment [35], resulting in greater exposure and impact

during such campaigns.

(ii) Healthcare policy
Healthcare policy, both internationally and nationally, is also

an important factor in preferential use of APIs. An essential

medicines list (EML) is published biennially by the WHO,

which includes APIs that are determined to be the minimum

number required for basic healthcare needs within a country.

The selection of APIs is based on their efficacy, safety and

cost-effectiveness in treating priority conditions. Individual

countries also publish their own EML, which often includes

additional APIs from the WHO EML. Non-steroidal and

non-opioid analgesics, for example, that are listed in the

WHO EML include acetylsalicylic acid, ibuprofen and para-

cetamol, while the majority of the 100 countries with

published EMLs had at least six APIs listed under this cat-

egory, commonly including diclofenac and indomethacin

[36]. This is reflected in the relatively high proportion of

diclofenac use in a number of countries, within the class of

NSAIDs (figure 1). Inclusion on the EML, however, does

not always reflect use of an API, as some NSAIDs such as

mefenamic acid have been found to be used in a greater pro-

portion in countries such as Indonesia and Pakistan (figure

1). The above adds to the complexity involved in establishing

regional trends in API consumption.

(iii) Economic cost of active pharmaceutical ingredients
Cost may carry a disproportionate weighting in the selection

and use of APIs. Global health expenditure and API use is

highly inequitable, with more than 80% of global expenditure

on APIs occurring in high-income countries which represent

18% of the global population. The median per capita con-

sumption of APIs in 2008 was 1042 standard units of API in
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high-income countries compared with 135–214 standard units

(a standardized measure of volume that can be converted to a

DDD) of API in low- and lower/middle-income countries [32].

Out-of-pocket expenses paid by patients in high-income

countries are less than 10% in European countries such as

France, the Netherlands and the UK [32]. Conversely, out-of-

pocket expenses in India range from 83% in rural areas to

77% in urban areas, and 98% of API consumption in Pakistan

is covered by individuals [32]. Many other local factors, such as

procurement and distribution practices and cultural prefer-

ences, will also influence API consumption [32]. In the case

of NSAIDs, for example, the median supply price of diclofenac

is as low as $US 0.0055 per tablet compared with $US 0.033 per

tablet for mefenamic acid [37] which is not reflected in their

proportionate use in Pakistan and Indonesia, in particular

(figure 1). Indeed, in Indonesia, phenylbutazone, mefenamic

acid and piroxicam make up nearly 72% of total NSAID use

[36], which all have higher median supply prices compared

with diclofenac and ibuprofen [37].

(iv) Self-medication and over-prescription
In many lower income countries most APIs can be purchased

without a prescription (so-called ‘self-medication’). WHO

defines ‘self-medication’ as the selection and use of APIs by indi-

viduals to treat self-recognized illnesses or symptoms [38]. This

is a common practice in many lower income nations in Asia,

Africa and Latin America, and has been a cause of concern for

WHO for a number of reasons including irrational use of anti-

biotics leading to development of resistance, iatrogenic effects,

allergic reactions and poisoning [39]. For example, a survey of

API dispensation patterns in three community pharmacies of

South India over a two-month period revealed that the ‘Schedule

H Drugs’ (APIs requiring a prescription) were extensively dis-

pensed by these pharmacies without a valid prescription [40].

However, the extent of this practice was highly variable

among the surveyed pharmacies (electronic supplementary
material, table S2). In addition to self-medication, over-prescrip-

tion or prescription on perceived patient demand is a problem in

lower income countries [41]. A doctor’s prescribing decisions

may be influenced by other factors including vested interests

(links to pharmacy, brand or manufacturing units) and any

incentives offered by the pharmaceutical industry [41]. This,

however, may not be a problem confined to lower income

countries only.

(v) Veterinary use of antibiotics and other active pharmaceutical
ingredients

Although the focus of this paper is on human APIs, the veter-

inary use of APIs is worth noting as there is often an overlap

between the two. In lower income countries, and especially

those located in Asia, substantial amounts of veterinary anti-

biotics are used, especially in animal husbandry and

aquaculture industries [42,43]. The total number and densities

of livestock in some Asian countries, such as China and

India, can be very high [44,45]. According to the United Nations

Food and Agriculture Organization (FAO), some 90% of the

total global aquaculture production comes from Asia, with

the majority of this occurring in China [45]. Alongside the com-

paratively large aquaculture industry in East Asia, a much

broader range of APIs, including antimicrobials and parasiti-

cides, have been reported to be used there within the

industry [42,43]. The potential risks associated with the use of

antibiotics in aquaculture for water quality, as well as the devel-

opment of microbial resistance, has received considerable

attention in recent years (e.g. [18,43,46]).

(vi) Consumption rates of active pharmaceutical ingredients
With respect to total NSAID use, a recent survey in a number

of Asia-Pacific countries [36] indicates that the usage patterns

(in terms of DDDs/1000/day) in low- or middle-income

countries are generally similar to those in high-income
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countries (figure 2). Comparatively higher use rates are noted

for countries such as Australia, New Zealand, China (Hong

Kong) and Taiwan. Lower use rates were noted for mainland

China, whereas no data were available for India, Japan and

Korea. A similar survey conducted in 2007 assessing the

usage rates of the antiepileptic carbamazepine [47], shows a

greater gap in the prevalence of use in low- and high-

income countries, where a substantially greater usage rate

is evident in Australia, China (Hong Kong), Japan, Korea,

New Zealand and Taiwan (figure 2).

Overuse or other misuses of antibiotics is a global concern

due to the potential for increasing antibiotic resistance [32]. A

survey on use of antibiotics in Delhi involving 33 000 patients

over a 1-year period in 2008 [49], when compared with

the national-level statistics on dispensed API consumption

in Australia in that year [50], indicated that a number of

similarities may exist between lower middle-income and

high-income countries (electronic supplementary material,

table S3). The comparison revealed that despite significant

differences between usage rates of some antibiotics, the overall

usage rates in Delhi and Australia were similar, with 16.5 and

17.5 DDD/1000/day consumed, respectively (electronic sup-

plementary material, table S3). Similarly, in non-hospitalized

Swedish patients, the use of antibiotics in 2008 totalled 13.53

DDD/1000/day [51]. Caution should be exercised in making

a direct comparison between countries, as the Swedish data

include all antibiotics used, whereas the Australian and New

Delhi data do not. Besides the Delhi survey is unlikely to be

representative of Indian rural population. When the usage

rate of APIs is converted into total volume consumed within

a country [52], however, the trends observed with usage pat-

terns are often reversed (figure 2). For example, although the

usage rates (DDD/1000/day) of diclofenac in Australia, Ban-

gladesh and Pakistan are similar, the number of tonnes of

diclofenac consumed in Bangladesh and Pakistan in 2011
were five and 10 times greater than in Australia, respectively

(electronic supplementary material, table S4). Constructing a

clear picture of trends in API utilization in lower income nations,

however, is considerably more challenging [27]. The same is true

for those high-income countries where national-level statistics

on dispensed APIs are not maintained.

(vii) Non-conventional active pharmaceutical ingredients: the
contribution of complementary and alternative medicines

Populations in the Asia region are much more reliant on

natural remedies than elsewhere in the world. Alternative

therapies using herbal medicines, such as Chinese traditional

medicines or Indian Ayurvedic medicines, are commonly

practiced in Asia. According to WHO [53], 80% of the popu-

lation may rely on complementary and alternative medicines

(CAMs) for primary healthcare, while also becoming increas-

ingly popular in high-income countries. The total sale of

herbal medicine in China was equivalent to US$ 14 billion

in 2005 and the revenue in Western Europe reached US$ 5 bil-

lion in 2003–2004. According to an estimate [54], annual sale

of four key CAMs products in the UK was approximately

£36 million per year with corresponding estimate of usage

of the CAMs ranging from 3 to 32 tons per year (electronic

supplementary material, table S5). The implications of

CAM residues in the environment with respect to ecosystem

health are currently not well understood.

(viii) Shifting global manufacturing base to Asia and other
regions

Some lower income countries are manufacturing APIs for

the international market. The manufacturing activities,

including synthesis of APIs and formulation into doses,

can create point-source problems related to APIs’ residues

through the industrial waste discharges, for example, to
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the riverine environment [55,56]. The Asian API market is

growing at 10–15%, which is double the rate of the G7

countries [24]. India’s domestic API market is the 14th

largest globally with an annual turnover of US$20 billion

and about 80% of the APIs used in India are produced in

the country [57]. According to an estimate, India supplies

some 22% (in terms of sale value) of the world’s generic

APIs, while about 36% of the total global APIs are exported

by China [58]. Indeed, there has been a gradual yet consist-

ent shift in the global API manufacturing sector over recent

years due to the expansion of low cost manufacturing in

Asia. Contract manufacturing was worth US$22 billion in

2009 and is expected to grow at about 11–12% this year

[59]. While the so-called BRIC countries (Brazil, Russia,

India and China) are considered established contract manu-

facturers, countries such as Vietnam, South Korea and

Bangladesh are rapidly emerging contract manufacturing

destinations for American and European markets [59].

It is also a common practice to discharge untreated or

poorly treated industrial wastewater into domestic waste-

water channels in some Asian countries [60,61]. This is for

at least two reasons, namely the lack of adequate treatment

facilities and/or poor regulatory enforcement. Larsson et al.
[62] and Fick et al. [55] published studies on wastewater

quality from the Patancheru Industrial Estate in Hyderabad,

India. This industrial estate has around 90 units manu-

facturing bulk APIs which collectively produce about

1.5 megalitres of wastewater daily. The treatment plant on

the site mixes the effluent with domestic wastewater to

enhance biodegradation. The water downstream of the treat-

ment plants as well as lakes in the region were found to

contain very high levels of API residues, in the order of

mg l21 [52], as opposed to ng l21 levels commonly reported

in Europe and North America. This is indicative of the ineffi-

cient wastewater treatment as well as unauthorized

discharges [55]. Similar reports are available from other

countries such as China [63], Taiwan [64] and Pakistan [55].

The presence of industrial wastewater in the sewage stream

can be a significant contributor to the environmental load

of APIs not only in lower income nations [60,62], but also

globally [15,65]. A companion paper in this issue [15]

discusses this aspect in the global context and demonstra-

tes the point-source pollution implications of the API

manufacturing sector.
(c) Exposure-related factors
From human therapeutic use alone, it would be expected that for

many APIs the potential environmental loadings would be con-

siderably greater in lower income countries based on the

relatively large populations compared with high-income

nations. The total volume of APIs entering the environment is

not only dependent on the total volume used within a popu-

lation but also the ratio of API that is consumed relative to

total sales, pharmacokinetics, wastewater flows and treatment

efficiency [47,66]. The absence of sewerage systems or rudimen-

tary treatment technologies can significantly affect API exposure

pathways. Where a high proportion of sewerage connectivity

exists, the entry of APIs into the environment is principally a

point-source issue, with discharge into surface waters. Other

environmental compartments, such as groundwater and the

terrestrial environment, may become proportionately more

impacted in lower income nations where sewer connectivity is
less common and reliance on septic systems or use of raw

sewerage for irrigation and fertilization is greater.

(i) Urbanization and sewer connectivity
Despite major improvements in sanitation and the hygiene

situation in lower income countries over two decades

(especially in Eastern Asia), in 2011 there were still about

2.5 billion people that did not have access to improved sani-

tation facilities and close to 15% of the total population

continued to defaecate in the open [67]. Improved sanitation

facilities include flush/pour flush to piped sewer systems,

septic tanks or pit latrines. As shown in the electronic sup-

plementary material, table S1, many countries in Africa and

Asia have half or more of their urban populations without

access to improved sanitation. The pathways of release of

excreta to the receiving environment (and, by inference, resi-

dues of APIs) are complex and unlike those from treated

wastewater effluents in high-income nations.

One of the key factors that differentiates the growing

economies from the high-income nations is the degree of

urbanization and the extent of sewer connectivity. Urban

population centres in high-income nations, being connected

to the sewerage system, produce concentrated waste streams

resulting in a point-source pollution problem. The opposite

(diffuse-source) is usually the case in countries with predomin-

antly rural populations and/or where sewer connectivity in

urban areas is low. This has a major implication on the distri-

bution and loadings of APIs in the environment. While the

urbanization in lower income South American countries,

namely Argentina and Brazil, is on par (85–90%) with

high-income countries, the highly populated countries in

Asia (Bangladesh, India, Pakistan and Vietnam) have a

much smaller proportion of population (28–36%) living in

urban centres (electronic supplementary material, table S1).

In terms of sewer connectivity, the contrast between the

lower and high-income countries is again stark. Unlike high-

income nations where more than 90% of the populations are

connected with sewers (e.g. Australia, USA, UK, Japan and

Korea), a much smaller fraction of the populations in lower

income countries is connected to sewerage systems. In several

lower income countries in Asia (e.g. Bangladesh, India, Paki-

stan and Thailand), even the urban population has less than

30% connectivity to sewers (electronic supplementary material,

table S1). Indonesia and Vietnam have extremely low sewer

connectivity of 2% and 4%, respectively, due to their reliance

on septic systems. Some 60–90% of the urban population in

Vietnam, Sri Lanka, Indonesia, Thailand and the Philippines

rely on septic systems [68]. The sum of populations in these

three countries (338 million) is equivalent to about 40% of the

total European population. In South America, connectivity

levels vary from high (more than 80%) in Chile and Peru, to

intermediate (more than 40%) in Brazil, Argentina and Bolivia,

and to low (less than 20%) in Paraguay and Guyana [69,70]. The

low degree of sewer connectivity in lower income countries,

therefore, makes a very different release scenario of APIs in

these countries, in comparison with high-income nations.

(ii) Sewage treatment infrastructure and efficiency
Treatment of sewage or septage (waste stored in septic systems)

from domestic sources or effluents from the API manufacturing

industry may play a major role in determining the extent of

environmental exposure to APIs, as some compounds can be
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quite effectively removed during treatment. Rojas et al. [71]

found that while some of the APIs (such as acetaminophen

and caffeine) are very susceptible to removal during treat-

ment (near 100%), others (e.g. carbamazepine and diclofenac)

are generally poorly removed (less than 50%). In a recent

study on six wastewater effluents of Argentina, where

sewage treatment is poor or absent, the ratio of caffeine/carba-

mazepine was found to be more than 10 [72]. Treatment

efficiencies of sewage treatment plants (STPs) depend on the

treatment technology employed, the physico-chemical proper-

ties of the APIs and the prevailing operating conditions

[67,69]. In a comparative study on removal efficiencies of

APIs in STPs from Canada, Germany and Brazil, Ternes et al.
[73] found that Brazilian STPs were more effective than the

other two countries, probably because of the warmer con-

ditions prevailing during treatment. While many of the lower

income countries are located in the tropics, the STPs in these

regions may not necessarily be more effective [58].

In lower income countries, the centralized treatment infra-

structures found in Europe and North America may either be

non-existent or ineffective. A study on water quality treatment

efficiency of STPs in Delhi by Jamwal et al. [74] found that the

effluent released from these STPs usually failed faecal coliform

criteria. Furthermore, this study highlighted the fact that only

about 50% of the total design capacity was used by the 17 sur-

veyed STPs, which serviced around 11.7 million people.

Irregular power supply was identified as one of the factors

which may be a common problem in the countries with

poor infrastructure investment in utilities. Similarly, for the

septage collected from septic systems, only a small fraction

of septage is currently treated (0–5%) [68]. The exceptions to

this are Malaysia, where 100% of the septage is treated, and

Thailand (30% treatment). In India, there is no treatment

of the septage from more than 160 million onsite sanitation

systems, which are mainly composed of septic systems [68].
(d) Populations contributing to the point-source
pollution

In terms of point source of API residues in the environment, the

average footprint of the urban population could perhaps be

assessed on the basis of sewer connectivity. The contributing

population equivalents (CPEs) to this source can be calculated

as a multiple of three factors: i.e. population � urbanization

fraction � sewer connectivity fraction (electronic supplemen-

tary material, table S1). These CPEs have been compared

against their total population in figure 3. This demonstrates

that many low- and middle-income countries, despite their

huge populations, rank much lower than less populous high-

income nations. For example, Indonesia, Vietnam, Nigeria and

Bangladesh have very low CPEs, with only 1–4% of the total

population contributing to point-source emissions. India has a

much lower CPE than the USA due to the lower extent of urban-

ization and sewer connectivity, where only about 10% of the

urban population contributes to the point source. In fact, with

the exception of Argentina and Brazil, most of the lower

income countries listed in the electronic supplementary

material, table S1, have less than 10% of the total population

contributing to the point-source problem. The lower income

economies of Asia and Africa together have lesser total popu-

lation contributing to the point-source footprint than the USA

alone. This is because many countries in Asia (such as Indone-

sia, Vietnam and Thailand) and Africa (such as Nigeria,

Ethiopia, Democratic Republic of Congo, Tanzania and

Sudan) have less than 10% sewer connectivity for the urban

population [67]. The estimated CPEs for point-source contri-

bution of the top five populous countries of Africa (Nigeria,

Ethiopia, Egypt, Democratic Republic of Congo and South

Africa) are about the same as that of the UK alone. This factor

has not been fully appreciated in the current literature, which

has mainly focused on monitoring of APIs in treated effluents
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and associated receiving environments. However, this does not

mean the risk to the environment is lower in low- to middle-

income nations, but the pathways of release or the receiving

environments may be very different than those of high-

income countries. This aspect is further discussed in §2e below.

(e) Receiving environments
(i) Surface water
Many lower income countries have major population centres,

with a population of more than 750 000, in landlocked regions

[75]. The two most populous countries in Asia, i.e. India and

China, have the majority of their urban agglomerations in land-

locked areas (electronic supplementary material, table S1). When

treatment levels of sewage discharges are poor in these urban

agglomerations then there is considerable pressure on freshwater

systems. Even in the case where major population centres are

located in coastal regions and dilution rates are considerable, resi-

dues of APIs such as antibiotics can still be measured in water at

relatively high concentrations [46,76,77]. Also, while high

dilution levels occur in marine and some freshwater systems,

association of APIs with sediments can make a significant

contribution to their overall environmental loading [78–81].

It is a common practice in many low- and middle-income

countries to discharge untreated sewage to rivers and other

water bodies, and to use these sewage-affected waters for irri-

gation. According to a study conducted in 71 Indian cities in

2009 [82], only 22% of the total 38 255 megalitres of sewage

generated per day in these cities was treated and 78% of

untreated sewage was disposed of in rivers, lakes and ground-

water. Most of Delhi’s 20 drains and effluent from 17 STPs is

discharged into the Yamuna River and is used for irrigation

downstream. With the exception of the monsoon season, the

river essentially becomes a drain for treated and untreated

wastewater. In Thailand, effluents from septic systems enter

waterways via urban canals and it is estimated that 86% of

sewage and 70% of septage are disposed of in waterways or

on land [68]. In some countries, like Argentina, costal and riv-

erside cities have good sewerage connectivity systems but

sewage is released (mainly raw or poorly treated) through

point sources into the surface receiving waters (i.e. Mar del

Plata, Buenos Aires, Rosario). In Buenos Aires, only 14% of

the total volume of effluent discharged into La Plata River

estuary during 2011 was treated [83].

Discharge of raw sewage is not just a problem for low- and

middle-income nations. Unintentional discharges of raw

sewage may occur in high-income countries due either to the

treatment system not being able to cope with the high flow

of wastewater or floods (e.g. Australia and USA), or through

damage to the infrastructure due to earthquakes (e.g. Japan

and New Zealand). For example, in a recent study on anti-

biotic-resistant bacteria in the waterways of New York,

Young et al. [84] found a strong link between the abundance

of antibiotic-resistant bacteria and sewage-associated bacteria

in Hudson River, indicating the presence of the untreated

sewage. Combined sewer overflow can be a problem in

any large cities with centralized sewage treatment and it is

estimated that some 27 billion gallons of raw sewage and

rainwater is discharged every year into the Hudson River.

(ii) Groundwater
In some lower income countries, which rely heavily on septic

systems for sanitation, groundwater may be impacted by
APIs. In many situations, septic systems have open or leaky bot-

toms and are only emptied sporadically. In Indonesia, as much

as 70% of the country’s groundwater contamination is caused

by leaking septic tanks and disposal of septage [68]. Small

inland cities in Argentina are dominated mainly by septic sys-

tems and cesspools mainly diffusely impacting chiefly on

groundwaters. Even where septage from septic systems is col-

lected, the question arises as to where the septage is disposed

of and where the residues of APIs end up. According to a

major study on several Asian countries [68], the management

of septage or the sludge that has accumulated in septic systems

is not a top priority for most countries. The study found that, in

the absence of public services, septage is often collected once in

3–5 years and is disposed of in drains, waterways, open land

and agricultural fields. Clearly, the groundwaters in countries

depending on septic systems are likely to be at a greater risk

of contamination with API residues than in those that are well

connected to a sewerage system.

(iii) Land
It is estimated that about 20 million ha of agricultural

land worldwide is irrigated with wastewater (treated and

untreated) and it is common practice in low- to middle-

income countries to use untreated or heavily polluted

wastewater for irrigation [85]. In dry areas of South America,

treated or poorly treated effluents are commonly used for irri-

gation; for example, primarily treated sewage effluents are

used for irrigation in Mendoza City (Argentina) [86]. API-

contaminated water used for irrigation has led to concerns

related to uptake in plants and soil organisms [87,88], as

well as potential for development and transfer of resistance

genes in soil-based pathogens [89]. Septage collected from

septic systems is often disposed of on open land or agricul-

tural fields [68]. In squatter settlements that are inaccessible

to vehicles, septage may be manually collected and disposed

of close to habitations. The disposal of untreated septage is

generally uncontrolled in many of these countries. Biosolids

collected from STPs or animal manures are applied to land

as fertilizers or soil amendments in some medium- and

high-income nations (e.g. Australia, Japan and China). How-

ever, some other nations (e.g. Korea) do not allow biosolids

or sewage sludge on food producing agricultural lands [90].

The impact of disposal of raw sewage on land has poten-

tial human and ecological health implications through

contamination of food and groundwater.
3. Environmental monitoring of active
pharmaceutical ingredients in lower
income countries

(a) Environmental monitoring studies in Asia and
South America

Comparatively few environmental surveys monitoring APIs in

STPs and receiving waters have been undertaken in Asia-Pacific

countries relative to North America and, in particular, Europe.

A recent comprehensive review of 236 monitoring studies in

peer-reviewed journals undertaken by Hughes et al. [20] high-

lighted this regional bias. For example, from a subset of 155

studies, 16% were based in Asia and, of these, the majority

were based in the Guangdong province of China and mainly
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included analysis of antibiotic residues [20,79,91]. A bias

towards high-income countries was also noted in a review of

anti-infectives by Segura et al. [6], which found that of 159

papers reviewed, only 16% represented low- to middle-

income countries (which includes China). Along with this

regional/economic bias, it was also noted that there was a dis-

tinct emphasis on monitoring APIs within the therapeutic

categories of the cardiovascular system, anti-infectives (specif-

ically antibiotics), nervous system (including antiepileptics

and analgesics) and the musculoskeletal system (specifically

NSAIDs) [20]. In the case of antiepileptics, this refers in particu-

lar to carbamazepine, which is the most commonly detected

API in Europe and North America and among the most com-

monly represented API in the Asian region (figure 4). Indeed,

Hughes et al. [20] noted that more than 50% of the studies

they reviewed were represented by only 14 APIs. More recent

studies published after this review [20] tend to highlight the

focus on antibiotics within their monitoring programmes

[18,79,91–97]. This is likely to be related to the perceived

irrational use of antibiotics in many Asian countries [79,98]. A

monitoring study on antibiotics in five tropical Asian countries

(India, Indonesia, Vietnam, Malaysia and the Philippines)

found concentrations of sulfamethoxazole that were consider-

ably higher than those reported in Europe, USA, Australia

and Canada [18]. The study estimated that some 12 tons of sul-

famethoxazole was annually discharged from the Mekong

River into the South China Sea. Indeed, similar masses of anti-

biotics were also estimated to be carried by a number of rivers in

China, amounting to hundreds of tonnes of combined anti-

biotics likely to be discharged per year [77,99]. With a number

of large river systems present in Asia, such as the Yellow

River with a flow of around 200 � 108 m3 yr21 considerations

to both comparative concentrations and amounts are important

in estimating potential risks.

The concentrations of the most frequently detected anti-

biotic and non-antibiotic APIs in China are similar to those

in other Asian countries (e.g. Taiwan, Japan and South

Korea), South America [100] as well as the rest of the world

(figure 4) [20,79,91]. While non-antibiotic APIs are generally

at ng l21 concentrations; salicylic acid, a metabolite of acetylsa-

licylic acid or aspirin, has been detected at a number of

locations at low mg l21 concentrations in surface waters [79].

As both salicylic acid and acetylsalicylic acid are highly sus-

ceptible to removal (more than 90%) during wastewater

treatment (especially during secondary and higher treatment)

[101,102], their mg l21 concentrations in surface water may be

indicative of either an extremely high level entering a STP or

of a low efficiency of treatment [103]. In South America

(Argentina and Brazil) also, APIs in surface waters are ubiqui-

tous and residues have been detected in the range from below

the limit of quantitation to about 10mg l21 depending on

the compound and sewage treatment, sometimes several

kilometres downstream of discharge points [94,97–100].
(b) Implications for understanding surface water
concentrations of active pharmaceutical ingredients
in Asia

The studies reviewed in §3a, especially those reporting very high

concentrations in surface waters (e.g. [15]) raise two important

points. First, the potential for inputs into surface waters from

manufacturing sources may be disproportionately high relative
to inputs from either human post-therapeutic use or from other

sources, such as veterinary inputs. Second, based on the limited

number of studies available, it is difficult to surmise whether

such extreme levels are indicative of a general trend or not.

This is highlighted by the notable bias in the relatively few pub-

lished monitoring studies, where STPs servicing more densely

populated areas were targeted. This bias is entirely understand-

able since researchers are usually attempting to identify whether

APIs are also present in their particular region, where there may

be limited or no precedent. Following well-developed sampling
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protocols, through monitoring urban municipal wastewater dis-

charges for a constrained set of target APIs, would therefore be

more likely to reveal similar trends between high- and lower

income countries. Indeed, the concentrations of the most com-

monly targeted APIs can be seen to be reasonably consistent

when comparing between the European, North American and

Asian regions (figure 4). The notable exception is ciprofloxacin,

which is heavily skewed by Indian sites [20,62,104], although

other manufacturing facilities in China, Taiwan and Pakistan

have also contributed to concentrations of antibiotics, analgesics

and NSAIDs being higher than expected [63,64,105]. With the

recent proliferation of manufacturing activity occurring in

countries with a lower quality of water treatment capacity, a

greater number of broadly representative monitoring studies

need to be undertaken to assess environmental concentrations

of APIs in Asia. Representative monitoring would need to take

into account spatial and temporal variations in concentrations of

APIs, sources of inputs and a broader range of APIs [106]. This,

however, remains a challenging goal, considering the number

of years of research effort by relatively well-resourced European

and North American laboratories to generate a reasonably limited

representation of marketed APIs that are presently detectable in

surface waters. Furthermore, the focus on monitoring concen-

trations of APIs in aquatic systems in both high- and lower

income nations has resulted in a correspondingly low level of

understanding relating to exposure to APIs in terrestrial ecosys-

tems [7]. Where there has been an assessment of APIs in soils,

the emphasis has been on antibiotics, particularly in sewage

sludge [78,91], which can be used as fertilizer to an appreciable

extent [107,108].
4. Implications for ecological risk of active
pharmaceutical ingredients in lower income
countries

The comparison of the limited published monitoring data

currently available in lower income countries does not

suggest a major difference in the average concentrations of

human API residues. There are a number of points, however,

that would suggest this may not be considering the broader

picture of the comparative burden of discharged APIs in

different countries. As was discussed in §3a, the studies tar-

geting APIs in low-income countries have been relatively

few in number and geographically constrained. Furthermore,

the majority of these studies focused on 14 APIs, which is a

substantial under-representation of marketed APIs [20].

This narrow focus would suggest that definitive evidence

for comparative environmental loads of APIs and associated

ecological risks, requires a considerably broader assessment

of the presence of APIs, both in terms of the class of API

and their loadings in geographical regions [106]. The identifi-

cation of obvious differences in use patterns of some APIs

(e.g. [36,47]) and environmental concentrations of APIs [62]

highlights the need for a broader assessment to determine

whether these are anomalies or part of a general trend.

(a) A qualitative assessment of ecological risks in lower
income countries

An integrated assessment based on key factors discussed in

this paper in §§2 and 3 has been summarized in table 1 as
a means of estimating the potential extent of API inputs

into the environment, and the implications for ecological

risk, in a selection of low-, middle- and high-income

countries. This table represents a qualitative assessment of a

number of factors that are likely to contribute to the environ-

mental input of APIs, irrespective of class of API, and

includes factors that influence consumption rates, removal

of APIs from wastewater streams post therapy and the general

state of the environment into which APIs may be discharged.

Each factor presented in table 1 may also take into consideration

a number of other factors. For example, while sewage connect-

ivity is important for general sanitation, it can also cause

environmental inputs of APIs to shift from a diffuse-source to

point-source situation. Where a point-source situation exists, a

consistently high degree of treatment is necessary to mitigate

entry of APIs into environments receiving discharges. While

the issue of inputs of veterinary APIs was only briefly dis-

cussed, this is highlighted in table 1 as it is likely to represent

an important input of APIs to rural environments, especially

when urbanization can be 50% or less in many low- to

middle-income countries (table 1).

In general, high-income countries were the only countries to

have a low-risk rating, while China and India were considered

to have the conditions that would constitute a high ecological

risk from APIs. Because each factor was weighted evenly, how-

ever, there was no clear factor, such as income status or

population size, that led to the overall risk level. In the case of

Australia and New Zealand, a relatively small population in

few urban centres, generally discharging highly centralized

STPs into the marine environment meant an overall low-risk

rating. This is despite an ageing population with high public

expenditure on healthcare (electronic supplementary material,

table S1). Although the income, age demographics and sewer

connectivity of China and India differ, they both have high

population pressures, a high proportion of these population

centres based in landlocked regions, a large and rapidly expand-

ing API manufacturing industry and a considerable terrestrial

and aquatic livestock density.

It would be expected that a considerably greater degree of

exposure risk exists where high connectivity to STPs with

poor treatment levels leads to highly concentrated effluent

streams entering aquatic ecosystems [55] (table 1). Other

exposure pathways that have limited parallels in high-

income countries also include APIs entering aquatic environ-

ments through diffuse sources of poorly treated wastewater

or through direct application of untreated or poorly treated

wastewater and sludges to terrestrial environments [68]. For

example, a substantial proportion of untreated or poorly trea-

ted sewage is used for irrigation in the Indian subcontinent.

In this region, a greater risk to terrestrial organisms may be

expected [87]. The rapidly growing aquaculture and livestock

industries of China and Southeast Asia (table 1), relying on

the use of antibiotics and anti-infectives [43], is resulting in

a greater exposure of aquatic and terrestrial organisms to

antibiotics [18,46,81,97,119] with implications for the devel-

opment of resistance to antibiotics [104]. Tropical regions of

Southeast Asia (including Indonesia, Malaysia, the Philip-

pines and Thailand), Africa and South America are

recognized biodiversity hot-spots from species richness,

threatened species or endemic species standpoints [120,121].

Some of these regions are also identified as having greater

API footprints in the terrestrial and aquatic environment

(table 1). There is a need for more research in these areas to



Table 1. Summary of the factors that contribute to the potential ecological risk of APIs to aquatic organisms leading to an overall risk rating for selected
countries. Each factor summarizes identified pathways into the environment of APIs, such as use patterns, manufacturing activity, sewage systems, veterinary
inputs and other environmental stressors, for each country. The relative risks are ranked on the basis of low, medium and high and summarized as an overall
ecological risk rating of APIs due to expected exposure levels and the general state of the environment. (Caption overleaf.)

country 

larurnabru

overall state of 
environmentg 

overall 
risk 
ratingh 

urban 
popula�on 
(% total 
popula�on) 
[75]a 

API 
consump�on 
[48,109]b 

manufacturing 
sector 
[110–112]c 

% sewage 
connec�vity/
treatment 
[67] 

receiving 
environment 
[67,75]d 

animal 
popula�on 
density 
(terrestrial) 
[44,113] 

aquaculture 
produc�on 
[113] 

use of 
veterinary 
medicines 
[45,114]e 

use of 
sewage in 
agriculture 
[115–117]f

Argentina 

43 million 
(92%); 
4 ci�es 
>750 000 
popula�on

median age: 31 
upper middle 
income 

API 
manufacturing 
present 

78%; low 
degree of 
treatment 

majority of 
discharge to 
coastal 
environment 
(75% coastal) 

moderate to 
high bovine, 
low poultry, 
low swine 
density 

0.003 × 106 

tonnes 
produced 

moderate 
animal density, 
aquaculture 
produc�on 

yes; high 
volume of 
water reuse, 
moderate level 
of treatment

rank 93rd EPI 
low level of water 
stressc; 
low/moderate 
threat to water 
security d 

medium 

Australia 

20 million 
(89%); 
5 ci�es 
>750 000 
popula�on

median age: 38 
high income 

API export value 
US$1–5 billion 
(2009) with 
~15% growth 
(2001–2009)

>90%; high 
degree of 
treatment 

majority of 
discharge to 
coastal 
environment 
(100% coastal) 

moderate 
bovine, 
low poultry, 
low swine 
density 

0.07 × 106 

tonnes 
produced

low animal 
density; CAFOsi 
[118] present 

yes; high 
volume of 
water reuse, 
high level of 
treatment

rank 3rd EPI 
high level of 
water stress; 
low/moderate 
threat to water 
security

low

Bangladesh 

43 million 
(28%); 
4 ci�es 
>750 000 
popula�on

median age: 24 
low income 

API 
manufacturing 
present 

11%; low 
degree of 
treatment 

majority of 
discharge to 
coastal 
environment 
(100% coastal) 

low bovine, 
moderate to 
high poultry, 
low swine 
density 

1.5 × 106 
tonnes 
produced 

high poultry 
density and 
aquaculture 
produc�on 

no data; poor 
level of 
treatment if 
used 

rank 169th EPI 
high level of 
water stress; high 
threat to water 
security

medium

Brazil 

166 million 
(85%); 
26 ci�es 
>750 000 
popula�on

median age: 30 
upper middle 
income 

API 
manufacturing 
present 

72%;low 
degree of 
treatment 

majority of 
discharge to 
inland 
environment 
(42% coastal) 

moderate to 
high bovine, 
moderate 
poultry, low 
swine density 

0.63 × 106 
tonnes 
produced 

moderate 
animal density 
and 
aquaculture 
produc�on 

yes; high 
volume of 
water reuse, 
moderate level 
of treatment 

rank 77th EPI 
low level of water 
stress; low/high 
threat to water 
security

medium

China 

681 million 
(51%); 
143 ci�es 
>750 000 
popula�on

median age: 36 
upper middle 
income 

API export value 
>US$5 billion 
(2009) with 
~20% growth 
(2001–2009) 

74%; low 
degree of 
treatment 

moderate 
discharge to 
inland 
environment 
(44% coastal) 

low to high 
bovine, low to 
high poultry, 
low to high 
swine densityj 

38.6 × 106 
tonnes 
produced 

high animal 
density and 
aquaculture 
produc�on 

yes; high 
volumes of 
reuse, poor 
level of 
treatment 

rank 118th EPI 
low/high level of 
water stress; high 
threat to water 
security

high

India 

388 million 
(31%); 
57 ci�es 
>750 000 
popula�on

median age: 27 
lower–middle 
income 

API export value 
~US$5 billion 
(2009) with 
~20% growth 
(2001–2009)

33%; low 
degree of 
treatment 

majority 
discharge to 
inland 
environment 
(37% coastal)

high bovine, 
moderate 
poultry, 

 low swine 
density 

4.6 × 106 

tonnes 
produced 

high bovine 
density and 
aquaculture 
produc�on 

yes; high 
volumes of 
reuse, poor 
level of 
treatment

rank 155th EPI 
high level of 
water stress; high 
threat to water 
security

high

Indonesia 

123 million 
(51%); 
15 ci�es 
>750 000 
popula�on

median age: 29 
lower middle 
income 

API 
manufacturing 
present 

2%;high 
reliance on 
sep�c tanks 

majority 
discharge to 
coastal 
environment 
(100% coastal) 

low bovine, 
high poultry, 
low swine 
density 

2.7 × 106 
tonnes 
produced 

high bovine 
density and 
aquaculture 
produc�on 

no data; poor 
level of 
treatment if 
used

rank 112th EPI 
low/moderate 
level of water 
stress; high threat 
to water security

medium

Japan 

115 million 
(91%); 
8 ci�es 
>750 000 
popula�on

median age: 46 
high income 

high value of 
produc�on 
(~US$67 billion 
in 2007) 

>95%; high 
degree of 
treatment 

majority 
discharge to 
coastal 
environment 
(88% coastal) 

moderate 
bovine, 
high poultry, 
low swine 
density 

0.56 × 106 
tonnes 
produced 

high poultry 
density and 
moderate 
aquaculture 
produc�on 

yes; high 
volume of 
water reuse, 
high level of 
treatment

rank 26th EPI 
low/moderate 
level of water 
stress; low threat 
to water security

medium

Korea
(Republic) 

40 million 
(83%); 
13 ci�es 
>750 000 
popula�on

median age: 40 
high income 

high value of 
produc�on 
(~US$21 billion 
in 2007) 

87%; high 
degree of 
treatment 

majority 
discharge to 
inland 
environment 
(30% coastal) 

moderate to 
high bovine, 
high poultry, 
moderate 
swine density 

0.51 × 106 
tonnes 
produced 

high animal 
density and 
moderate 
aquaculture 
produc�on

no

rank 43rd EPI 
low level of water 
stress; 
moderate/high 
threat to water 
security

medium

New 
Zealand 

3.8 million 
(86%); 
1 city >750 000 
popula�on

median age: 37 
high income 

API 
manufacturing 
present 

>95% (1990 
data); high 
degree of 
treatment 

majority 
discharge to 
coastal 
environment 
(100% coastal) 

moderate 
bovine, 
low poultry, 
low swine 
density 

0.11 × 106 
tonnes 
produced 

moderate 
bovine density 
and 
aquaculture 
produc�on 

no

rank 16th EPI 
low level of water 
stress; low threat 
to water security

low

Philippines 

46 million 
(49%); 
4 ci�es 
>750 000 
popula�on 

median age: 23 
lower middle 
income 

API 
manufacturing 
present 

37%; low 
degree of 
treatment 

majority 
discharge to 
coastal 
environment 
(100% coastal) 

moderate 
bovine, 
moderate 
poultry  
low swine 
density 

0.77 × 106 
tonnes 
produced 

moderate 
animal density 
and 
aquaculture 
produc�on 

no data; poor 
level of 
treatment if 
used

rank 114th EPI 
low level of water 
stress; high threat 
to water security

medium

Singapore 

5 million 
(100%); 
1 city >750 000 
popula�on 

median age: 34 
high income 

API 
manufacturing 
present 

100%; high 
degree of 
treatment and 
reuse 

Majority re-use 
(100% coastal) 

low bovine, 
high poultry, 
low swine 
density 

0.004 × 106 
tonnes 
produced 

high poultry 
density and low 
aquaculture 
produc�on 

�ny agricultural 
base, high level 
of treatment

rank 4th EPI 
low level of water 
stress; high threat 
to water security

low

Sweden 
8 million (85%); 
1 city >750 000 
popula�on 

median age: 42 
high income 

high value of 
produc�on 
(~€6.5 billion in 
2011) 

83%;high 
degree of 
treatment 

majority 
discharge to 
coastal 
environment 
(100% coastal) 

low bovine, 
low poultry, 
low swine 
density 

0.013 × 106 
tonnes 
produced 

low animal 
density and 
aquaculture 
produc�on 

yes

rank 9th EPI 
low level of water 
stress; low threat 
to water security

low

Thailand

24 million 
(34%); 
2 ci�es 
>750 000 
popula�on 

median age: 42 
upper middle 
income 

API 
manufacturing 
present 

9%; high 
reliance on 
sep�c tanks 

majority 
discharge to 
coastal 
environment 
(100% coastal)

moderate 
bovine, 
moderate 
poultry, 
low swine 
density

1 × 106 tonnes 
produced

moderate 
animal density 
and high 
aquaculture 
produc�on

yes

rank 78th EPI 
low level of water 
stress; 
moderate/high 
threat to water 
security

medium

UK

50 million 
(80%); 
7 ci�es 
>750 000 
popula�on 

median age: 40 
high income

high value of 
produc�on 
(~€20 billion 
2011) 

>95%; high 
degree of 
treatment 

moderate 
discharge to 
inland 
environment 
(55% coastal) 

moderate to 
high bovine, 
low poultry, 
low swine 
density 

0.18 × 106 
tonnes 
produced 

moderate 
bovine density 
and 
aquaculture 
produc�on 

no

rank 12th EPI 
low level of water 
stress; 
low/moderate 
threat to water 
security

medium

USA

43 million 
(82%); 
4 ci�es 
>750 000 
popula�on 

median age: 37 
high income 

high value of 
produc�on 
(~US$179 billion 
in 2007) 

>95%; high 
degree of 
treatment 

moderate 
discharge to 
inland 
environment 
(56% coastal) 

moderate to 
high bovine, 
low to high 
poultry, 
low to high 
swine density 

0.4 × 106 
tonnes 
produced 

low/high 
animal density 
and 
aquaculture 
produc�on; 
CAFOs present 

yes; high 
volume of 
water reuse, 
high level of 
treatment

rank 33rd EPI 
low/high level of 
water stress; 
low/moderate 
threat to water 
security

medium

Vietnam 

28 million 
(31%); 
5 ci�es 
>750 000 
popula�on 

median age: 29 
lower middle 
income 

API 
manufacturing 
present 

4%; high 
reliance on 
sep�c tanks 

majority 
discharge to 
coastal 
environment 
(100% coastal) 

moderate 
bovine, 
high poultry, 
moderate 
swine density 

2.8 × 106 
tonnes 
produced 

moderate to 
high animal 
density and 
high 
aquaculture 
produc�on 

yes; high 
volumes of 
reuse, poor 
level of 
treatment

rank 136th EPI 
moderate level of 
water stress; high 
threat to water 
security

medium
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aThe ranking has been based on a combination of level of urbanization, total urban population and number of cities with population more than 750 000.
bBased on medicine consumption in high-income countries approximately 2 times greater than upper-middle, approximately 5 times greater than lower-middle
and approximately 10 times greater than low income [32].
cThe ranking has been based on degree of treatment, while sewage connectivity relates to extent of concentration of contaminants in receiving environment.
dThe percentage discharge relates to the geographical location of major cities ( population more than 750 000), although this does not preclude into marine/
estuarine discharge of wastewater for landlocked urban centres or freshwater/land discharges for coastal urban centres. A higher likelihood of coastal discharge
suggests a higher degree of contaminant dilution in marine ecosystems.
eThe ranking of the use of veterinary medicines was based on animal density and volumes of aquaculture production.
fRanking is based on level of treatment and volume of use.
gWater stress relates to annual average water scarcity in major river basins 1996 – 2005. Water security relates to cumulative impact of 23 factors on water resources.
hOverall ranking: red¼ 3, amber ¼ 2, green ¼ 1; overall score: 10 – 16¼ low risk, 17 – 24 ¼ medium risk, more than 24¼ high risk.
iCAFO ¼ Concentrated animal feeding operation; an agricultural operation where animals are fed and raised in confined situations.
jHigh density relates to eastern China.
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develop a better understanding of potential impacts of APIs

on the biodiversity of these unique and fragile ecosystems.

Despite being a qualitative assessment, the rating frame-

work used in table 1 may be a useful way of comparing the

current relative risks that APIs are likely to pose to the

environment and focus future research efforts. As these econ-

omies grow further, some of the risk factors may be

downgraded, whereas others may be upgraded. For example,

the increasing urbanization occurring in many low- to

middle-income countries presents two potential outcomes;

increased urbanization can lead to the development of

point sources of APIs, along with other pressures on sur-

rounding environments, while on the other hand, greater

urbanization can lead to greater wealth and subsequent

investment in infrastructure and sanitation to mitigate

more effectively inputs of APIs. In combination with other

proposed strategies for targeting relevant APIs in particu-

lar countries, this rating framework could contribute to

more effective allocation of resources for the assessment of

potential risks of APIs.

(b) Observations on ecological risks in lower income
countries

The majority of published literature relating to lower income

countries has focused only on the environmental exposure

aspects of APIs. Indeed, as discussed in §2c, it is primarily

the exposure that is likely to be different in these countries

(e.g. volume and type of APIs used, lack of treatment facili-

ties, differences in the size and nature of sources). However,

a number of examples, mainly from China and India, demon-

strate the comparatively high environmental risk that can

occur due to the levels of exposure. Analysis of surface

water samples collected in northern China, in conjunction

with a review of predicted no-effect concentrations for sensi-

tive species, showed that measured concentrations of 11 of 14

anti-infectives represented a high risk at least once at 13

different sites [119]. Three anti-infectives had concentrations

that were considered to be a high risk at all 13 sites. More

generally, the highest measured concentrations of two anti-

infectives, sulfamethoxazole and ofloxacin, in wastewater

and natural waters reviewed in three different regions

(Europe, North America and Asia) were at levels close to,

or overlapping, lowest observable effect concentrations

(LOECs) or 50% effective concentrations (EC50) [6]. While

overlap with LOECs and EC50 values was more significant
in undiluted wastewater samples, the authors suggested

that even a weak overlap could have an important impact

on the most sensitive species (such as bacteria and algae),

as well as contributing to the development of anti-infective

resistance [6]. Even in the case where effects specific to a par-

ticular mode of action (e.g. effects of antibiotics on

microorganisms) are not evaluated, the risks to aquatic

organisms can still be high. One of the few examples that

assessed the ecotoxicity of wastewaters in a lower income

country, containing high (mg l21 to mg l21) concentrations

of a range of APIs, demonstrated that clear effects occur

during the developmental stages of frogs (Xenopus tropicalis)

and fish (Danio rerio), even at 1 in 500 dilutions of the effluent

[122]. Slightly lower dilution levels of this effluent sourced

from Indian API manufacturers also had effects on microbes

(Vibrio fisheri), invertebrates (Daphnia magna) and plants

(Lactuca sativa) [62].

As noted in §3a, it is difficult to determine whether the

comparatively high concentrations measured in a limited

number of studies in lower income countries are representa-

tive of a general trend [6,20]. Based on the summary of risk

factors presented in table 1, large urban populations were

considered to represent a high-risk situation where pharma-

ceuticals are released in concentrated streams to receiving

aquatic environments. This is particularly the case where

there is a high degree of sewage connectivity with a poor

level of treatment, as is the case in Argentina, Brazil and

China (table 1). The relative impacts of APIs derived from

wastewater are also expected to be greater in freshwater sys-

tems, compared with marine systems, where there is a lesser

degree of dilution or spatial accumulation of impacts [115].

There is, however, a substantial knowledge gap associated

with exposure and effects of APIs in marine ecosystems

[123], although the exposure factors that have been raised

here would suggest a greater relative risk would occur in

lower income countries. This is due to factors such as poor

wastewater treatment in urban coastal environments and a

high volume of aquaculture production, which is especially

concentrated in Asian countries (table 1).

So far, comparatively little research has been conducted

on environmental fate and exposure of APIs in terrestrial sys-

tems, let alone their ecological impacts. Many terrestrial

studies relating to toxicity of APIs mainly focus on veterinary

APIs, such as antibiotics and parasiticides, which relate to

their post-therapeutic use in livestock [124]. It is also recog-

nized that the application of wastewater or sludge on land
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can also contribute to APIs entering terrestrial environments

where they can be taken up by plants but their ecological

implications are unclear [125]. It is likely, however, that the

release of APIs through the disposal of poorly treated waste-

water and sludges on land may lead to a greater extent of

exposure in lower income countries.

Indeed, it is likely that the exposure of organisms in all

receiving environments are generally going to be at higher

levels in a number of lower income countries than that experi-

enced in high-income countries. This, however, will not be in

isolation from other environmental stressors, including over-

all pollution, unsustainable water use and rapid urbanization,

which have contributed to a global decline in biodiversity

[115,126]. In lower income countries, such environmental

stressors are likely to be considerably greater than in high-

income nations [115–117], which will decrease the ecological

resilience for coping with the additional burdens of API

contamination.
 9:20130586
5. Concluding remarks
From the preceding discussion, it is clear that the situation of

APIs in the environment in lower income countries is likely

to be quite different than in higher income countries. While

78% of the world’s population lives in Asia and Africa

(mostly in lower income nations) the high population pressure

does not directly translate to greater impact of APIs on the

environment. In addition to factors such as population

density, a myriad of other factors, such as sanitation and

hygiene, urbanization and sewer connectivity, treatment

chain or lack of it, and the presence of an API manufacturing

sector can influence the relative footprint of APIs in these

countries. The lack of data on environmental occurrence in

emerging economies in comparison to developed countries

makes it difficult to understand the exposure pathways and
presence of residues of APIs in the environment in lower

income countries.

The use of many herbal medicines and natural products,

common in Asia, has been demonstrated to have implications

for toxicity based on their biological activity or through inter-

actions with other medicines in the realm of human therapy

(e.g. [126,127]). These traditional or herbal medicines can con-

tain a vast array of biologically active ingredients, either

identified or unidentified [128], sometimes in conjunction

with conventional APIs [129]. The potential impact of comp-

lementary and alternative medicines on the environment into

which they are released is, therefore, unknown and should be

taken into consideration in future assessments of environmental

risks from APIs [8].

The pace of development in many of the lower income

countries is likely to lead to greater wealth, access to the

healthcare system and greater spending on healthcare,

improvement in sanitation and hygiene and connectivity to

centralized sewerage systems in coming years. This would

mean there is likely to be a rapid convergence towards a

point-source nature of dispersals of APIs in the environment

in lower income countries. In the meantime, the increasing

global attention being directed towards the issue of APIs in

the environment may facilitate research, development and

understanding of the risks associated with these compounds

and may help the lower income nations more effectively to

allocate resources to better manage the problem.
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