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Numerous prescribed drugs and herbal and dietary supplements have been reported to cause drug-induced acute liver injury,
which is a frequent cause of acute liver failure (ALF). It is a tremendous challenge with ever-increasing drug application in the
medication system for huge populations. Drug-induced acute liver injury can lead to diverse pathologies similar to acute and
chronic hepatitis, acute liver failure, biliary obstruction, fatty liver disease, and so on. Recently, extensive work demonstrated that
isoflavones play an essential and protecting role in drug-induced liver injury (DILI). .e isoflavones mediated hepatoprotection
by modulating specific genes linked with control of cellular redox homeostasis and inflammatory responses. Isoflavones
upregulate oxidative stress-responsive nuclear factor erythroid 2-like 2 (Nrf2), downregulate inflammatory nuclear factor-κB
(NF-κB) signaling pathways, and modulate a balance between cell survival and death. Moreover, isoflavones actively inhibit the
expression of cytochromes P450 (CYPs) enzyme during drug metabolism. Moreover, isoflavones are also linked with farnesoid X
receptor (FXR) activation and signal transducer and activator of transcription factor 3 (STAT3) phosphorylation in hep-
atoprotection DILI. In vivo and in vitro studies clearly stated that isoflavones bear strong antioxidant potential and promising
agents for hepatotoxicity prevention and stressed their potential role as therapeutic supplements in DILI. .e current review will
elaborate on isoflavones’ preventive and therapeutic potential concisely and highlight various molecular targets to exert a
protective effect on DILI.

1. Introduction

Drug-induced liver injury (DILI) is a highly recognized issue
that leads to withdrawal of the drugs from the market due to
its prognosis with significant adverse effects such as
asymptomatic transaminitis, acute and chronic hepatitis,
cholestasis, and even death. It is caused not only by pre-
scribed medicines such as nonsteroidal anti-inflammatory
drugs (NSAIDs), anti-infective drugs, and anticancer drugs
but also by herbal and dietary supplements (HDS) [1, 2],

particularly acetaminophen (APAP), which is a crucial cause
of acute liver failure (ALF) [3].

Acute DILI takes about three months to develop. .e
type of injured target cells set helps to classify acute DILI into
three types using R� (ALT patient/ULN)/(ALP patient/
ULN). .ese types include (1) hepatocellular type: ALT≥ 3
ULN and R≥ 5, (2) cholestatic type: ALP≥ 2 ULN and R≤ 2,
and (3) hepatocellular-cholestatic mixed type: ALT≥3ULN,
ALP≥ 2 ULN, and 2< R< 5 [1]. DILI is the frequent cause of
ALF and accounts for 20–40% of all instances of fulminant
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hepatic failure throughout the United States and Europe
[4, 5]. .e incidence of DILI is as low as 1 in 10,000 to
100,000 [6]. It is difficult to find any particular drug ascribed
to hepatic injury. Recent studies indicated the involvement
and association of multiple factors in developing DILI. .ese
DILI inducing factors include various environmental factors
[1], genetic background [7], drug types [8], age [9], gender
[10], pregnancy [11], and underlying liver diseases [12, 13].

.e in-time diagnosis of DILI is a big challenge. .e viral
diseases (hepatitis A, B, C, and E virus, cytomegalovirus, and
Epstein-Barr virus), autoimmune (antinuclear antibody and
antismooth muscle antibody), and metabolic (Wilson’s
disease and α1-antitrypsin deficiency) disorders mostly
mimic any form of acute hepatocellular DILI [14]. .erefore,
it is necessary to exclude other liver diseases before clinical
diagnosis and treatment of DILI. .e frequently used tool for
DILI diagnosis is the Roussel Uclaf causality assessment
method (RUCAM) [15], which remains highly rational,
comprehensive, and convenient. To date, the severity of
acute DILI can be classified into five grades, namely, grade
0–5, where 0 is no liver injury, 1 is mild liver injury, 2 is
moderate liver injury, 3 is severe liver injury, 4 is acute liver
failure, and 5 is lethal [16].

Different people who are exposed to certain potential
hepatotoxic drugs may react differently. .e tolerators or
nonsusceptible will not have the clinical manifestation of
DILI. Mild and transient liver injury can recover naturally
after withdrawal of the toxic drug. In certain serve liver injury
cases, timely clinical salvage is also needed. Isoflavones are
polyphenolic compounds having strong bioactivities pri-
marily found in fruits, flowers, and vegetables. Moreover,
isoflavones have been reported to possess estrogen-like effects
and hence often called phytoestrogens [17]. .e isoflavones
have drawn much attention and are considered promising
molecules to cure cancer, liver injury, neurodegenerative
diseases, osteogenic issues, cardiovascular diseases, and
hematotoxicity problems [18–20]. Common isoflavones
(biochanin A, formononetin, and genistin) are often found as
glycosides are also recognized as mild antioxidants, whereas
gut flora help convert these glycosides into aglycones [21]. .e
isoflavones found in soy are reported to replenish the progress
of acetaminophen-mediated hepatotoxicity in vivo by ame-
liorating the glutathione levels [22]. .e isoflavones protect
against fatty liver disease (FLD) through multiple cellular
pathways involving the β-oxidation of fatty acid, biosynthesis
of lipids, and modulation of reactive oxygen species (ROS).
Moreover, aldose reductase (AR)/polyol pathway leads to the
development of FLD by modulating the production of
fructose in liver, peroxisome proliferator-activated receptor
PPAR-α protein, cytochrome P450 (CYP)2E1 expression, and
inflammatory factors expressed by certain endotoxins re-
leased by the gut flora. .e isoflavones have been reported as
potent AR inhibitors and hence reduce the onset of FLD [23].
.e presence of complex compounds such as biochanin A,
calycosin, daidzein, genistein, kakkalide, and tectorigenin in
isoflavones made it a vital plant compound bearing various
pharmacological properties. Herein, we will elaborate on the
updated pharmacological activities of those isoflavones being
applied in DILI.

2. Pathophysiology of DILI

.e nature of DILI is highly complex pathogenesis work in
a sequence of effects or simultaneous effects through series
of mechanisms along with numerous risk factors, which has
not been yet fully explained yet. During drug metabolism,
drugs arrive in liver cells via blood circulation, and hence
initial drug transport into the hepatocytes begun via influx
transporters [24]. .e drug in the form of the parent drug is
metabolized by phase I and II drug-metabolizing enzymes
(DMEs) and products of many reactive metabolites [25].
Phase I metabolism mainly includes cytochrome P450-1
and P450-2 (CYP1 and CYP2) and flavin-containing
monooxygenases (FMO) [26]. Human cytochrome P450
2E1 (CYP2E1) metabolizes various drugs, including anti-
tubercular compounds, alcohol, and anesthetics [27]. .e
mutation in phase I DME genes is a common factor causing
the quick incidences of adverse drug reactions (ADRs),
which altered the activity of proteins during drug meta-
bolism to induce liver injury [28]. .e parent drug, reactive
metabolites, and heavier products will then discharge into
the bile by efflux transporters [24]. .rough phase II DMEs,
reactive metabolites with a heavy side chain will be
deactivated as toxic compounds [25]. .e action of phase II
DMEs is to replace the reactive aldehyde and alcohol
functional groups with more significant but less reactive
functional groups. Conjugated metabolites can be pro-
duced and lead the drug to get out in excretion and toxicity
via the efflux transporters. In the meantime, conjugated
metabolites can also create specific protein adducts that
participate in reactive oxygen species- (ROS-) mediated
oxidation to damage the cells. While both phases I and II
DMEs can clear the parent drug and drugs metabolic
products, the phase II metabolized drugs are the most
stable and common form of the drug metabolism, with a
general tendency to cause cholestasis and DILI during the
clearance [29].

3. Potential Damage and Mechanism in DILI

3.1.DILI andReactiveMetabolites. During phase I reactions,
biotransformation of the parent drug involves necessary
steps to complete the subsequent phases of detoxification,
which altered the compound highly hydrophilic. .e parent
drug turned to reactive metabolites in phase I metabolism by
adding certain functional groups such as hydroxyl, carboxyl,
amino, or thiol groups [25]. .ese functional groups are said
to be highly reactive with proteins compared to the parent
drug. ROS and reactive nitrogen species (RNS) that create
these reactive metabolites are produced by the interaction of
drugs with the proteins and lipid at cellular membranes
through oxidative stress [30, 31]. Moreover, they can disrupt
the cellular redox homeostasis that leads to lymphocyte-
signaled apoptosis [31].

Furthermore, it can also lead to the development of
inflammations by releasing proinflammatory cytokines [32].
In addition, the upregulation of AMP-activated protein
kinase (AMPK) and the overexpression of Forkhead box O 1
(FoxO1), which was inhibited by drugs, can increase the
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synthesis of triglycerides (TG). Fatty acid biosynthesis aids
in the occurrence of hepatic steatosis, hepatic fibrosis, and
even hepatocellular carcinoma [33].

3.2. DILI Induces Mitochondrial Hazards. Mitochondria are
cellular energy suppliers, if damaged, resulting in apoptosis
and/or hepatic necrosis, even leading to the activation of the
apoptotic signaling pathway if the mitochondrial damage
exceeds a specific limit [34]. Excessive ROS are produced
during the process of DILI. .e interaction between ROS
and the hepatic mitochondrial membranes is a vital factor of
oxidative stress. For example, D-galactosamine/lipopoly-
saccharide (D-GalN/LPS), a high production level of MDA
and an end-product of lipid hydroperoxide (LPO), may lead
to decreased membrane fluidity and hence induce severe
mitochondrial membranes damage [35]. Few studies have
shown that the ethanol treatment can enhance the release of
cytochrome C and apoptosis-inducing factor (AIF), re-
stricted to the mitochondria but released into the cytosol
[36]. Cytochrome C can trigger caspase-3 activation, which
results in apoptosis. At the same time, proapoptotic protein
AIF is independent of the caspase pathway and directly
induces apoptosis of hepatocytes [31].

Moreover, mitochondrial permeability transition pore
(MPTP) plays a significant role in maintaining mitochon-
drial physiology. In acute severe hemorrhagic shock, ROS
sharply increased, leading to the opening of mitochondrial
permeability transition pore (MPTP), resulting in the im-
balance of H+ on the inner mitochondrial membrane,
destroying membrane proteins, inhibiting ATP synthesis,
and causing mitochondrial swelling [37]. All these may
exacerbate necrosis or apoptotic cascades, leading to rapid
cell death [24, 38].

3.3. DILI Regulates Hepatic Transporters. Drug transporter
proteins are crucial factors in clearing reactive metabolites in
the liver, intestine, kidney, and brain [39]. According to the
mechanism of action and location on the hepatocyte cell
membrane, hepatic transporter proteins can be classified
into the solute carrier (SLC) and the ATP-binding cassette
(ABC) transporter family. Generally, SLC proteins are influx
transporters, which bring drugs from the plasma into the cell
[25, 40], while ABC transporters are efflux transporters,
transforming metabolized drugs from the cytoplasm to the
cell’s exterior in the bile [41].

.e transporter protein families in the hepatocytes in-
clude organic anion transporting polypeptides (OATPs),
organic cation transporters (OCTs), multidrug-resistant
proteins (MDRs), bile salt export pump (BSEP), breast
cancer resistant proteins (BCRP), and multidrug resistance-
associated proteins (MRPs) [41, 42]. It has been found that
OATP1B and sodium-dependent taurocholate cotransporter
(NTCP) significantly affect drug transport of all the influx
transporters [39, 43], while ABC transport protein (ABCC2-
4) is essential for liver cells to clear the chemicals and biliary
excretion. .e drugs induced mutations in ABC transporters
cannot metabolize drugs to remain inside the hepatocytes
and cause impaired canalicular bile flow. .is situation

generally appears as cholestasis and fatty liver disease [44].
Widely, inhibition of BSEP leads to the accumulation of
toxic bile salts in hepatocytes, which are correlated with the
incidence of cholestatic liver disease [41]. .erefore, drugs,
such as troglitazone, ketoconazole, nefazodone, and lapa-
tinib [45], which express inhibitory effects on BSEP, can
have hepatotoxic potential [46]. Furthermore, age and race
play an important role in the morbidity of ADRs from
variations in the expression of transporter genes, leading to
decreased expression of these functional transporters [47].

3.4. DILI Modulates Immunological Response. .e immune
response is also indispensable in DILI. Long-term drug
exposure may cause inflammations in a healthy liver, drug-
induced autoimmune hepatitis (DIAIH), or acute liver
toxicity [48, 49]. In the adaptive immune response, the drug
and its metabolites act as haptens that bind to liver protein
cytochrome p450. .e drug-protein adduct is then processed
by an antigen-presenting cell (APC), while antigen associ-
ates with major histocompatibility complex (MHC) class II
molecules. After that, CD4 T-cell is activated, resulting in
adaptive immune response, which then triggers CD8 cy-
totoxic T-cell activation, leading to FasL, TNF-α, and other
proteins that mediate cell death [50].

.e nuclear factor kappa-light-chain enhancer of acti-
vated B cells (NF-κB) is a dimer protein, which plays an
essential role in releasing inflammatory cytokines. It is
generally composed of two functional subunits (P65 and
P50) that bind to its natural inhibiting factor, IκB, pre-
venting NF-particles from entering the nucleus and tar-
geting downstream associated genes. Toll-like receptor 4
(TLR4)/myeloid differentiation factor 88 (MyD88) receptor
receives the irritant cytokines, activates the mitogen-acti-
vated protein kinases (MPAK) signaling pathway to induce
inflammation, and has three subunits (p38, JNK, and ERK)
[51]. .e activation of the NF-κB signaling pathway can
increase the risk of inflammation and cell damage. High-
mobility group protein box 1 (HMGB1) is reported to play
an essential role in sepsis, and it can activate innate immune
cells that result in antigen-presenting cells [52, 53]. Many
studies reported that SRT1720 reduces the release of in-
flammatory cytokines (TNF-α and IL-6) and hence blocks
the inflammatory reactions. Additionally, immune-based
DILI can also connect with gender, age, race, and current
immune state [54].

4. Health Benefits of Isoflavones

4.1. AsAntioxidants. Oxidative stress, caused by imbalanced
cellular ROS levels, is a critical phenomenon in chronic
diseases, cardiopathy, and hepatotoxicity. Many studies
showed that soybean isoflavones (daidzein and genistein)
and red clover isoflavones (biochanin A) potentially protect
from DILI [55–57]. Isoflavones play an essential role as
dietary antioxidants by scavenging free radicals and deac-
tivating detoxifying enzymes [57, 58]. Recently, it has been
showing that germinated and fermented soybean extracts
(GFSE) effectively inhibit the expression of NADPH oxidase
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4 (Nox4), which is responsible for the synthesis of ROS
[57–59]. Reduced metabolic activation of drugs by mono-
oxygenase (P450 2E1) system depresses the initial formation
of ROS and some intermediate toxic products, resulting in
reduced lipid peroxidation [60, 61]. .ese isoflavones
treatments were found to increase the mRNA and protein
expression level of CYP2E1 and regulate the JNK/CYP7A1
signaling pathway [62, 63]. In addition to CYP450, the
inhibition of phase II detoxifying enzymes, such as UDP-
glucuronyltransferase (UGTs), can also have a resistance to
oxidative stress [64].

Recently, huge reports highlighted the antioxidant de-
fenses of isoflavones, including both the nonenzymatic
(mainly GSH) and enzymatic antioxidant defenses (SOD,
CAT, GSP, GST, and GR) [58, 60, 65, 66]. Nevertheless, this
way has not already been confirmed in the antioxidant
protection after GalN administration [67]. Formononetin
(FMN) is one of the significant isoflavonoid constituents
from red clover, and it showed that the pretreatment of FMN
significantly enhanced Nrf2 protein expression, stimulated
mRNA expression of antioxidant enzymes, and restored
GSH level and cell viability upon APAP exposure [68]. Nrf2
regulates and induces its downstream heme oxygenase 1
(HO-1) enzyme, which is reported to have antioxidant ac-
tivity. Biochanin A upregulated the expression of Nrf2 and
HO-1 in a dose-dependent manner and helped resist LPS/D-
GalN-induced acute liver injury [69].

.e dose and route of isoflavones have different effects
on resisting oxidative stress. It has been suggested that the
efficacy of a high dose of biochanin A (BCA) is lower than a
medium dose of BCA, and it is metabolized initially into
genistein. Nevertheless, excessive BCA, which was metab-
olized into genistein and daidzein, could be the primary
reason for the high dose of BCA, while BCA is lower than the
medium dose of BCA [57]. Many phytochemicals, such as
kakkalide, make contact with intestinal microflora and
change it into irisolidone in the alimentary tract. .e reports
showed that irisolidone was intraperitoneally administered
to mice or kakkalide was orally administered to mice. Both
exhibited potent hepatoprotective activity. Nevertheless,
intraperitoneally administration of kakkalide did not exhibit
hepatoprotective activity [70–72].

4.2.Antiapoptosis. Recent studies have shown that high ROS
concentrations may contribute to apoptotic cell death and
DNA damage. Some studies indicated that puerarin (PR)
could inhibit apoptosis due to the suppression of caspase-3
activity and alteration of Bcl-2/Bax ratio, which can alleviate
raised lead-induced hepatic dysfunction and histopathologic
changes rat liver [73]. Further, a downregulation in Bcl-2
and an upregulation in Bax induced by 7,12-dimethylbenz
[α]-anthracene (DMBA) treatment were also decreased by
daidzein [74]. Genistein treatment, on the other hand, also
downregulates Bcl-2 levels [75]. Meanwhile, the metabolite
tectorigenin from Puerariae Flos (isoflavones tectorigenin
and tectoridin) prevents liver injury because of its inhibited
ion of β-glucuronidase and apoptosis rather than its anti-
oxidant activity [76, 77]. In addition, overexpression of

GSK-3β activates caspase series to activate apoptosis, but
puerarin (PR) may inhibit the GSK-3β-induced apoptosis by
attenuating inflammatory responses via regulating the GSK-
3β/NF-κB pathway [78].

4.3.Anti-InflammatoryandAntifibrosisEffects. With alcohol
becoming popular in social life, inflammation is relatively
easy to find in most clinical cases, especially alcohol-induced
liver damage. .e inflammatory responses are mainly linked
with the activation of TNF-α mediators and the production
of IL-1α, IL-6, and released hepatic stellate cells (HSC)
following activation to recruit cytokine-mediated immu-
nological attack/lesions.

It is further revealed that isoflavones play an essential
role in removing inflammation-related issues. A study found
that puerarin (PR) treatment significantly downregulated
TLR4 and p38 phosphorylation levels in mouse livers to
inhibit Ni-induced oxidative stress and inflammatory re-
sponses. However, p38 also can regulate inflammatory re-
sponse by activating cAMP response element-binding
protein (CREB). .e TLR4/p38/CREB pathway plays a
crucial role in activating transcription factor NF-kB, which
plays a fundamental role in regulating gene expression of
inflammatory mediators such as PGE2, COX-2, IL-6, and IL-
8, by activating NF-kB and MAP Kinases [79]. NLRP3
inflammasome is responsible for the processing and se-
cretion of the mature IL-1α. .e BCA inhibits thioredoxin-
interacting protein (TXNIP) expression and the interaction
between NLRP3 and TXNIP induced by GalN/LPS, which
may be due to the reduced expression of TXNIP [69].

Most of the studies showed a strong relationship between
the inflammatory processes and fibrosis. Alcoholic liver
disease (ALD) can cause a high death rate, which leaded liver
fibrosis, cirrhosis1, and hepatocellular carcinoma [80].
Acetaldehyde, the primary metabolic product of alcohol,
activates hepatic stellate cells (HSCs) that play a vital role in
liver fibrosis. Herbal medicines have been regarded as new
and promising drugs to resist liver fibrosis. It is confirmed
that isoflavones (genistein) significantly decreased the ex-
traordinarily high level of TGF-1α and Smad 3, which is the
activator of HSCs [75]. Tyrosine kinase, one of the factors of
HSC activation, is a crucial factor in the proliferation and
activation of HSCs. Another study showed that genistein can
prevent the activation and proliferation of HSC by inhibiting
tyrosine kinase from reducing acute and chronic inflam-
mation and liver fibrosis [61, 65]. Meanwhile, a study shows
that ethyl acetate fraction (Beac) from Butea monosperma
bark can inhibit thioacetamide-induced liver cancer and
fibrosis via suppression of PI3K/Akt/mTOR pathway [81].

4.4. Antihematotoxicity. Hematotoxicity referred to the
influence of drugs on the formation and function of blood,
including the inhibition of red and blood cells, platelet
count, and hematopoietic function of bone marrow cells. It
is illuminated that daidzein pretreatment in rats had a
potential beneficial effect on the hematopoietic system by
elevating RBCs, Hb levels, and PCV and increasing platelet
count against cisplatin-induced hematotoxicity markers.
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Table 1: Hepatoprotective effects of isoflavone and extracts.

Isoflavone and extracts Drugs Injury Mechanism Refs

Biochanin A

Arsenic Hepato/hematotoxicity Increasing free radical scavenging properties [57]
CCl4 Acute liver injury Increasing antioxidant [60]

LSP/D-
GalN

Acute liver injury Activation of the Nrf2 pathway [69]

Formononetin APAP Hepatotoxicity Enhancing Nrf2 activity [68]

Calycosin

TAA Oxidative stress Reducing ROS and expression of CYP2E1 [62]
APAP NASH Activating FXR [85]
HFD NAFLD Activating FXR [86]

CCl4 Acute liver injury
Activating FXR/increasing expressions of STAT3, Bcl-xl, and

SOCS3
[87]

Daidzein

LSP/D-
GalN

Hepatic failure
Suppressing production of TNF-α; increasing caspase-3

activity
[56]

D-GalN Liver injury Activating PG-liposome-based system [67]

DMBA Liver oxidative injury
Activation of antioxidant enzymes and Bcl-2; upregulation of

caspase-3 and Bax
[74]

Cisplatin Hepato/hematotoxicity
Increasing free radical scavenging properties; reducing bone

marrow suppression
[82]

Puerarin

CCl4
Liver oxidative injury/

hyperlipidaemia
Inhibiting JNK/c-Jun/CYP7A1 pathway/ROS generation [63]

Alcohol Acute liver injury
Decreasing activity of oxidant enzyme (MDA)/increasing

activity of antioxidant enzymes (SOD and GPX)
[66]

Lead
Liver oxidative injury/

hyperlipidaemia
Reducing ROS production/hepatic metabolism genes

expression; increasing activation of antioxidant enzymes
[73]

Alcohol Chronic liver injury Inhibiting GSK-3β/NF-κB pathway [78]

Nickel
Liver oxidative stress/

immunotoxicity
Inhibiting TLR4/p38/CREB pathway [79]

Genistein

TAA
Liver inflammatory/

fibrosis
Inhibiting tyrosine kinase/activation of HSC [61]

APAP Liver injury Increasing expression of UGTs; inhibiting CYP2E1 [64]

Alcohol Hepatic injury/fibrosis
Increasing activities of ADH and ALDH; downregulating

expression of TIMP-1, MMP-2, and Bcl-2
[75]

Endotoxin Shock/MODS
Decreasing expression of iNOS and COX-2 protein;

attenuating the vascular hyporeactivity to NA; inhibiting the
activity of protein tyrosine kinase

[84]

Fructose NAFLD
Activating AMPK and suppressing SREBP-1 cleavage
processing and de novo lipogenesis in hepatocytes

[88]

Kakkalide Ethanol Hepatic injury

Orally administered kakkalide and intraperitoneally
administered irisolidone have the protective effect; kakkalide

can be metabolized to form the bioactive irisolidone by
intestinal microflora

[71, 72]

Tectorigenin
TBHQ Apoptosis in liver injury Inhibiting β-glucuronidase activity [77]

Ethanol Liver steatosis
Increasing expression of PPAR-α; ameliorating mitochondrial

function
[89]

Flemingia macrophylla CCl4 Acute hepatotoxicity
Inhibiting ROS generation; preventing lipid peroxidation;

strengthening antioxidant systems
[58]

Fraxin isolated from
Acer tegmentosum

CCl4 Acute hepatotoxicity Lowering AST and ALT [91]

GFSE TBHQ Hepatotoxicity
Downregulating NOX4; upregulating the mRNA levels of

antioxidant enzymes
[59]

Butea monosperma TAA Liver injury Deregulation of PI3K/Akt/mTOR signaling [81]

AST: aspartate aminotransferase; ALT: alanine aminotransferase; ADH: alcohol dehydrogenase; ALDH: aldehyde dehydrogenase; APAP: acetaminophen;
CCl4: carbon-tetrachloride; CYP2E1: cytochromeP450, family 2, subfamily E, polypeptide1; COX: cyclooxygenase; DMBA: 7,12-dimethylbenz[a]-an-
thracene; FXR: farnesoid X receptor; GFSE: germinated and fermented soybean extract; GSK-3β/NF-κB pathway: glycogen synthase kinase-3β/nuclear factor
kappa-B pathway; HFD: high-fat diet; iNOS: inducible nitric oxide synthase; JNK/c-Jun/CYP7A1 pathway: c-Jun NH2-terminal kinase/c-Jun protein/
cholesterol 7a-hydroxylase pathway; LSP/D-GalN: lipopolysaccharide/D-galactosamine; LPO: lipid peroxides; MMP-2: matrix metalloproteinases; MODS:
multiple organ dysfunction syndrome; NASH: nonalcoholic steatohepatitis; NAFLD: nonalcoholic fatty liver disease; NOX4: nicotinamide adenine di-
nucleotide phosphate oxidase 4; PI3K/Akt/mTOR: phosphatidylinositol 3-kinase/Akt/mammalian; SOCS3: suppressor of cytokine signaling 3; STAT3: signal
transducer and activator of transcription 3; TAA: thioacetamide; TLR4/p38/CREB pathway: Toll-like receptor 4/cAMP response element-binding protein;
TIMP-1: tissue inhibitors of metalloproteinases; TBHQ: tert-butyl hyperoxide.
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.erein, enhancement of erythrocyte count by daidzein may
be linked to either stimulation of erythropoiesis or pre-
vention of bone marrow cell inhibition or decreasing cho-
lesterol effects [82, 83]. In addition, the antihematotoxicity
protective effect of isoflavones can also be related to the dose
administered. Fine shreds of evidence claimed that only low-
dose BCA had a significant ameliorative effect on arsenic-
induced hematopoietic, especially the RBC indices [57].

4.5. Anticirculatory Failure and Organ Dysfunction Effects.
.e progression of anticirculatory failure (shock) to multiple
organ dysfunction syndromes (MODS) is related to in-
creased mortality. With the increasing number of organ
failures, mortality is also progressively increased. .e en-
dotoxic shock in rats was regarded as the anticirculatory
failure model. Different kinds of isoflavones have different
effects on these models. It was found that genistein atten-
uated the vascular hyperactivity to noradrenaline (NA), but
it did not reduce the hypotension elicited by LPS. Daidzein
did not revive the circulatory failures caused by LPS. Ad-
ditionally, both tyrphostin and genistein improve the liver
and pancreatic injuries, hypoglycemia, and lactic acidosis
caused by LPS, while daidzein did not prevent organ dys-
function or LPS-mediated lactic acidosis. Genistein reduced
the high level of LPS-induced TNF-α and suppressed the
expression of iNOS and COX-2 proteins and activity in the
lung, but not daidzein [84]. .us, genistein can be regarded
as a novel and effective drug to improve LPS-induced cir-
culatory failures.

4.6. Antisteatohepatitis. .e risk of steatohepatitis has a
rapid increase over the last decade because of the bountiful
lifestyles and poor eating habits. Nonalcoholic steatohepa-
titis (NASH) and alcoholic steatohepatitis are two wide-
spread types of steatohepatitis in clinic cases. NASH, being
the frequent form of chronic liver disease, may be induced
from nutritional (high-fat diet and high fructose diet), ge-
netic, and immunologic factors, which cause disorders in
lipid metabolism and hepatic fibrosis. It is further reported
that calycosin is a main active component isolated from
Radix Astragali and has strong anti-NASH activity. Caly-
cosin treatment has significantly changed the liver histo-
pathology, hepatocytes apoptosis, liver bile acid overload,
and hepatocyte mitosis by inhibiting triglycerides (TG)
synthesis, increasing fatty acid β-oxidation, and inhibiting
HSCs activation, which helps prevent triglyceride accu-
mulation and fibrosis [85]. It has been shown that calycosin
that prevents HFD-induced NAFLD may be attributed to
farnesoid X receptor (FXR-α and NR1H4) activation that
modulates lipid metabolism and restoration of glucose
homeostasis [86].

Furthermore, few studies reported that the protective
effects of calycosin are in association with FXR activation
and STAT3 phosphorylation. .e phosphorylated STAT3
can activate the expressions of Bcl-xl and suppressor of
cytokine signaling 3 (SOCS3), which can reduce NASH by
preventing liver apoptosis and hemorrhagic necrosis [87].
In addition, it was also found that the treatment of

sophoricoside, an isoflavone glycoside (genistein-4′-O-
β-D-glucopyranoside), decreased the hepatic cholesterol
and triglyceride levels and serum low-density lipoprotein-
cholesterol (LDL) and apolipoprotein-B levels and ele-
vated the serum high-density lipoprotein-cholesterol
(HDL) and apolipoprotein-A1 levels [88]. Alcoholic
steatosis may progress to hepatitis and fibrosis, which
eventually leads to liver cirrhosis. Tectoridin, an iso-
flavone glycoside from the flower of Pueraria lobata,
protected against ethanol-induced liver steatosis mainly
through decreasing the expression of PPARα and its
downstream target genes and ameliorating mitochondrial
functions [89].

4.7. Antihyperlipidemia. Puerarin is a potent isoflavone,
which seems to be a potential hepatoprotective drug used to
inhibit hyperlipidemia, which can decrease serum choles-
terol, triglycerides (TG), and LDL and increase HDL level.
Hepatic HMGR and hepatic CYP7A1 are peroxisomal en-
zymes sequentially used in rate-limiting steps during cho-
lesterol biosynthesis and the biosynthesis of bile acids
formation. It has been shown that puerarin remarkably
inhibited hyperlipidemia by influencing the expression of
hepatic lipid biosynthesis and metabolic-related genes, in-
cluding cholesterol 7α-hydroxylase (CYP7A1), HMGR, and
low-density lipoprotein receptors (LDL-R) in the liver of
lead treated rats [90]. Moreover, puerarin could also inhibit
hyperlipidemia by regulating the JNK/CYP7A1 signaling
pathways [63].

5. Conclusions

With the improvement of living standards and lifestyles,
diseases, especially chronic conditions, have increased
rapidly. Among various reasons, mainly lousy eating habits
and DILI have become the common pathogenic factors.
.erefore, specific therapeutic methods have been eagerly
sought by many researchers. Recently, the traditional me-
dicinal herbs got the attention. In current essays, puerarin,
calycosin, and red clover contain isoflavones that have
substantial effects on improving liver injury and circulatory
system diseases. All the studies are summarized to elucidate
the roles of isoflavones (Table 1) reported in the last decade
and we hope it can offer help and convenience in the process
of searching for drug treatments.
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