studies in physical and theoretical chemistry 53

POTENTIAL ENERGY HYPERSURFACES

PAUL G. MEZEY

Department of Chemistry and Department of Mathematics, University of Saskatchewan, Saskatoon, Canada S7N OWO

ELSEVIER Amsterdam — Oxford — New York — Tokyo 1987

CONTENTS

FORI	DREWORD		
INTR	ODUCI	TION	1
Chap	ter I	THE MOLECULAR ENERGY EXPECTATION VALUE	4
I.1		Y, THE FUNDAMENTAL QUANTUM MECHANICAL	
	OBSER		4
1.2		ORN-OPPENHEIMER APPROXIMATION AND	
10138/845		ONCEPT OF NUCLEAR GEOMETRY	6
I.3.		ALIZATIONS OF NUCLEAR COORDINATES	18
I.4		L AND LOCAL COORDINATE SYSTEMS AND THE	
		PT OF NUCLEAR CONFIGURATION SPACE	21
	I.4.1	Global cartesian coordinate systems	21
		Local internal coordinate systems	27
	I.4.3	Symmetry coordinates and normal coordinates	
		of the small amplitude vibrational problem	30
	I.4.4	Special global coordinate systems	45
	I.4.5	Special purpose coordinate systems for small molecules	47
I.5	INTERS	SECTIONS OF ENERGY HYPERSURFACES:	
	ADIAB.	ATIC AND DIABATIC REPRESENTATIONS	51
Char	oter II	GEOMETRICAL PROPERTIES OF ENERGY	
-		HYPERSURFACES	61
II.1	ENERG	BY DERIVATIVES: FORCES AND FORCE CONSTANTS	61
	II.1.1	The Hellmann-Feynman theorem	61
II.2	MINIM	A, SADDLE POINTS AND GENERAL CRITICAL POINTS	66
	II.2.1	Classification of critical points	69
	II.2.2	Interrelations among critical points:	
		critical point inequalities	77

VII

VIII

II.3	MINIMUM ENERGY PATH AND THE INTRINSIC REACTION COORDINATE	81
	II.3.1 Steepest descent paths and stationary paths	83
	II.3.2 Steepest descent paths and the intrinsic reaction coordinate	86
	II.3.3 Symmetry properties of transition structures and	00
	steepest descent paths	87
	II.3.4 Steepest descent approach to critical points	94
II.4		98
11,4	DITERENTAL GEOMETRY OF ENERGY HITERSORFACES	70
Chap	ter III CALCULATION AND REPRESENTATION OF	
onup	ENERGY HYPERSURFACES	117
III.1	THE HARTREE - FOCK - ROOTHAAN - HALL METHOD FOR	
	THE CALCULATION OF MOLECULAR WAVEFUNCTIONS	117
III.2		
	AND THE CORRELATION ENERGY	143
III.3	CALCULATION OF SEMIEMPIRICAL AND	
	EMPIRICAL POTENTIAL FUNCTIONS	149
	III.3.1 Semiempirical Quantum Chemical Methods	150
	III.3.2 Molecular Mechanics Method and	
	Empirical Potential Functions	151
III.4	THE FORCE METHOD AND CALCULATION OF	
	HIGHER DERIVATIVES	152
III.5	MINIMUM SEARCH METHODS FOR THE DETERMINATION	
	OF STABLE CHEMICAL SPECIES	155
	III.5.1 Non-gradient Methods of Energy Minimization	156
	III.5.2 Gradient Methods for Minimum Search	161
III.6	SADDLE POINT SEARCH METHODS FOR THE	
	DETERMINATION OF TRANSITION STRUCTURES	163
III.7	FITTING OF POTENTIAL ENERGY HYPERSURFACES,	
	POLYNOMIALS, SPLINES AND TRIGONOMETRIC FUNCTIONS	170
Chap	ter IV THE QUANTUM CHEMICAL CONCEPT	
	OF MOLECULES REVISITED	181
IV.1	QUANTIZATION AND CONTINUITY	181
IV.2	WAVE PACKET TOPOLOGY	185
IV.3	THE TOPOLOGY OF NUCLEAR CONFIGURATIONS	191

Chapter V		MOLECULAR TOPOLOGY	198
V.1	THE R	EDUCED NUCLEAR CONFIGURATION SPACE:	
	METRIC	C SPACE M	198
	V.1.1	An equivalence relation and a general	
		correspondence principle	198
	V.1.2	Metric properties of the reduced	
		nuclear configuration space M	204
	V.1.3	Continuity of energy hypersurfaces as	
		functions of internal configurations K	215
	V.1.4	Reflection properties of the reduced nuclear	
		configuration space M: a tangent criterion	219
V.2	CATCH	IMENT REGIONS OF POTENTIAL ENERGY HYPERSURFACES:	
	THE RI	EPRESENTATION OF CHEMICAL SPECIES	227
	V.2.1	The intuitive concept of catchment regions	227
	V.2.2	Relaxation of formal nuclear configurations	
		in the laboratory frame	235
	V.2.3	Catchment regions in Euclidean	
		nuclear configuration space ^{3N} E	236
	V.2.4	Catchment regions in the reduced	
		nuclear configuration space M	246
	V.2.5	Exciplex and excimer topologies: catchment regions	
		of excited state potential energy hypersurfaces	257
V.3	MANIF	OLD THEORY OF POTENTIAL ENERGY SURFACES	
	AND C	CATCHMENT REGIONS	262
	V.3.1	Manifold Theory of a General	
		Nuclear Configuration Space ⁿ R	263
	V.3.2	Manifold Structure of the Reduced	
		Nuclear Configuration Space M	270
	V.3.3	The Number of Chemical Species Along a Hypersurface	280
V.4	POTEN	TIAL DEFYING CHEMICAL SPECIES	301
	V.4.1	The intrinsic kinetic energy along	
		potential energy hypersurfaces	303
	V.4.2	The construction of approximate $\Delta E^0(\mathbf{r})$ functionals	308
	V.4.3	Local geometric criteria for	
		potential defying chemical species	313
	V.4.4	Global topological criteria for	

potential defying chemical species 319

IX

Х

V.5	THE ROLE OF NUCLEAR CHARGES AND RELATIONS BETWEEN	
	POTENTIAL SURFACES: CONVEXITY THEOREMS IN SPACE WZ	324
	V.5.1 The abstract nuclear charge space ^w Z	
	and the product space ${}^{n}R \otimes {}^{w}Z$	327
	V.5.2 Level sets of the electronic energy functional	
	in space ^w Z	329
	V.5.3 A simple relation between nuclear charges and	
	potential energy hypersurfaces: a concavity	
	condition for molecular total energies	346
V.6	CATCHMENT REGIONS AND SYMMETRY	364
Chap	ter VI REACTION TOPOLOGY	369
VI.1	TOPOLOGICAL REACTION PATHS AND QUANTUM CHEMICAL	
	REACTION MECHANISMS	369
VI.2	THE ALGEBRAIC STRUCTURE OF THE COMPLETE SET OF	
	REACTION PATHS	377
	VI.2.1 The fundamental groupoid of reaction paths	378
	V1.2.2 Tunneling and the extension of the fundamental	
	groupoid of reaction paths into a semigroup	382
VI.3		384
	VI.3.1 The fundamental group and	
	fundamental reaction mechanisms	385
	VI.3.2 Comparing systems of reaction mechanisms:	
	homomorphisms and isomorphisms	
	of fundamental groups	390
	VI.3.3 Generators for the fundamental group of	
	reaction mechanisms	393
	VI.3.4 Energy dependence within the family of	
	groups of reaction mechanisms	401
VI.4	THE REACTION GLOBE, THE REACTION POLYHEDRON, AND	
	HOMOLOGY GROUP THEORY OF REACTION MECHANISMS	409
	VI.4.1 The construction of the reaction globe H(F)	
	and reaction polyhedron P(F)	412
	VI.4.2 Chains, cycles, and homology groups	
	of catchment regions	419
	· · · · · · · · · · · · · · · · · · ·	

VI.5. QUANTUM CHEMICAL REACTION NETWORKS	429
VI.5.1 Pointed sets of the nuclear configuration space ⁿ R	
and reaction networks	429
VI.5.2 Analysis of reaction graphs and	
networks of reaction mechanisms	438
VI.5.3 Theorems on shortest reaction mechanisms	
and reachability matrices	445
VI. 6 THE FUTURE OF COMPUTER BASED QUANTUM CHEMICAL	
SYNTHESIS DESIGN AND MOLECULAR ENGINEERING	453
CLOSING REMARKS	459
APPENDIX 1 REVIEW OF TOPOLOGICAL CONCEPTS	460
APPENDIX 2 PHYSICAL UNITS AND CONVERSION FACTORS	495
REFERENCES	497
SUBJECT INDEX	527

XI