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Nonrelativistic clamped-nuclei energies of interaction between two ground-state hydrogen
molecules with intramolecular distances fixed at their average value in the lowest rovibrational state
have been computed. The calculations applied the supermolecular coupled-cluster method with
single, double, and noniterative triple excitations �CCSD�T�� and very large orbital basis sets—up
to augmented quintuple zeta size supplemented with bond functions. The same basis sets were used
in symmetry-adapted perturbation theory calculations performed mainly for larger separations to
provide an independent check of the supermolecular approach. The contributions beyond CCSD�T�
were computed using the full configuration interaction method and basis sets up to augmented triple
zeta plus midbond size. All the calculations were followed by extrapolations to complete basis set
limits. For two representative points, calculations were also performed using basis sets with the
cardinal number increased by one or two. For the same two points, we have also solved the
Schrödinger equation directly using four-electron explicitly correlated Gaussian �ECG� functions.
These additional calculations allowed us to estimate the uncertainty in the interaction energies used
to fit the potential to be about 0.15 K or 0.3% at the minimum of the potential well. This accuracy
is about an order of magnitude better than that achieved by earlier potentials for this system. For a
near-minimum T-shaped configuration with the center-of-mass distance R=6.4 bohrs, the ECG
calculations give the interaction energy of −56.91�0.06 K, whereas the orbital calculations in the
basis set used for all the points give −56.96�0.16 K. The computed points were fitted by an
analytic four-dimensional potential function. The uncertainties in the fit relative to the ab initio
energies are almost always smaller than the estimated uncertainty in the latter energies. The global
minimum of the fit is −57.12 K for the T-shaped configuration at R=6.34 bohrs. The fit was applied
to compute the second virial coefficient using a path-integral Monte Carlo approach. The achieved
agreement with experiment is substantially better than in any previous work. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2975220�

I. INTRODUCTION

Thermophysical properties of hydrogen gas are impor-
tant in many research areas as well as for industrial applica-
tions. Measured values of quantities such as virial coeffi-
cients, viscosities, and thermal conductivities are available.
The experimental techniques are well developed and the un-
certainties in measured quantities have been brought to near
the minimal values possible with the current technology. Fur-
ther significant reduction in these uncertainties is not likely.
The same quantities can also be obtained from statistical me-
chanics calculations based on ab initio intermolecular poten-
tials. For helium, this approach led to theoretically predicted
thermophysical properties that are significantly more accu-
rate than the measured ones.1–15 Since the hydrogen mol-

ecule has only two electrons, similar to the helium atom, the
ab initio approach may be a fruitful route in this case as well.
However, ab initio calculations of the �H2�2 interaction po-
tential are more difficult than those for He2. Even for a single
configuration, the computational effort at a given level of
theory and basis set is larger for �H2�2 due to the twice larger
size of the basis set and lower symmetry of the system. The
calculation of the potential is even harder since the He–He
potential is only one-dimensional whereas that for H2–H2 is
six-dimensional �four-dimensional if rigid monomers are as-
sumed as in the present work�. Thus, it is unlikely that one
can achieve the He2-level accuracy of Ref. 12 in the case of
the H2–H2 potential. However, matching or exceeding the
current accuracies of the measured thermodynamic proper-
ties may be within reach.

Knowledge of an accurate H2–H2 potential is also very
important for simulations of para-hydrogen clusters in he-a�Electronic mail: patkowsk@udel.edu.
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lium nanodroplets. These simulations are motivated by ex-
perimental indications that molecular hydrogen may exhibit
superfluidity in nanodroplet environments16 or in small
clusters.17 These findings are supported by theoretical
studies;17–19 see Ref. 20 for a recent review.

There exists a large number of published H2–H2 inter-
action potentials. Until the very recent work of Hinde21 �see
Sec. VI�, the four-dimensional potential of Diep and
Johnson22 was believed to be the most accurate. The calcu-
lations of Diep and Johnson22 used the coupled-cluster
method with single, double, and noniterative triple excita-
tions �CCSD�T�� and orbital basis sets up to augmented qua-
druple zeta quality. The results were extrapolated to the com-
plete basis set �CBS� limit using the values calculated in the
aug-cc-pVTZ and aug-cc-pVQZ bases.23,24 No estimate of
accuracy was given by Diep and Johnson.22 The changes in
the potential due to the corrections introduced in the Erratum
of Ref. 22 are of the order of 2 K or 4% near the minimum.
The room-temperature virial coefficient computed from the
original Diep–Johnson �DJ� potential25 deviates from the
measured value by more than the experimental uncertainties,
and the agreement is worse at lower temperatures. Thus, the
accuracy of this potential is clearly far from that needed for
replacement of measured thermophysical properties by theo-
retically computed ones. As we will discuss later on, one
reason for this problem could be some apparent inaccuracies
in the CCSD�T� interaction energies computed by Diep and
Johnson.22

The system of four hydrogen atoms is also a frequently
used model for investigating the dynamics of chemical reac-
tions. There have been a large number of H4 potential energy
surfaces developed for this purpose. Such surfaces always
include the intramonomer coordinates and often are com-
puted also for excited electronic states of the system. How-
ever, these surfaces are of low accuracy in the van der Waals
region of interest to the present work since low-level meth-
ods and small basis sets have been used so far. For example,
the most elaborate such work to date26 used a multireference
configuration interaction �CI� method with double excita-
tions only and a �4s3p1d� basis set. The surface of Ref. 26
was used in close-coupling calculations of rotationally in-
elastic cross sections in H2–H2 collisions and gave rate co-
efficients an order of magnitude too small.27 In contrast, the
DJ surface gave a reasonable agreement with experiment.

Once an accurate H2–H2 potential is known, one can in
principle calculate many important thermophysical proper-
ties of hydrogen, such as the second virial coefficient and the
low-density limits of the viscosity and thermal conductivity.
However, such calculations are also significantly more diffi-
cult than in the case of helium. Similar to helium, hydrogen
is a highly quantum system. Thus, classical or semiclassical
calculations of these properties would be inadequate except
at high temperatures �room temperature and above�. For he-
lium, it is possible to use exact quantum formulas that re-
quire knowledge of �quantum� scattering cross sections in a
broad range of scattering energies. Calculations of such ex-
tensive scattering data for H2–H2 would be a daunting task.
For an example of state-of-the-art close-coupling calcula-
tions for H2–H2, see Ref. 27. For heavier linear molecules,

quantum scattering calculations needed for thermophysical
properties can be adequately replaced by classical-trajectory
calculations �see, for example, Refs. 28 and 29�, and for
H2–H2 this approach can be used at high temperatures.
Some properties, such as the second virial coefficient, can be
extracted from path-integral Monte Carlo �PIMC� calcula-
tions for two hydrogen molecules. However, it is not clear if
this method can be applied to other properties of interest
such as viscosity or thermal conductivity. For the virial co-
efficient, one can also use the effective potential
approximation30,31 which should give an accurate account of
the quantum effects at moderate and high temperatures.

We present here a development of a new four-
dimensional potential for H2–H2. The hydrogen molecules
were assumed to be rigid at their average bond length in the
ground rovibrational state. The assumption of rigidity was
needed since it would not be feasible at present to perform
calculations of interaction energies with the desired level of
accuracy at the number of configurations necessary to de-
velop a six-dimensional potential �the number of configura-
tions would have to be at least an order of magnitude larger
than that in the case of a four-dimensional potential�. More-
over, calculations of the scattering cross sections with a six-
dimensional potential would be very difficult. One may hope
that the inclusion of intramonomer vibrational motion is not
very important for hydrogen as the energy of the lowest vi-
brational excitation is high �5987 K, Ref. 32� compared to
thermal energies of interest. For a model study of the vibra-
tional couplings in H2–H2, see Ref. 33. A more important
monomer-flexibility effect could be the stretch of the H–H
bond in rotational excitations of H2 molecules. The latter
effect could be investigated by computing a four-dimensional
potential with one of the hydrogen molecules frozen at the
average separation in the ground vibrational and the first
excited rotational state. One can also compute a six-
dimensional surface at a lower accuracy level than that in the
present calculations and use it to determine corrections to
thermophysical properties due to monomer flexibility.

The initial aim of this work was to obtain a potential
with an uncertainty below 0.5 K or 1% in the region of the
potential minimum and to reach the same percentage accu-
racy for larger intermolecular separations. For smaller sepa-
rations, the absolute uncertainties on the negative part of the
repulsive wall and for small positive potential values should
preferably be similar to those near the minimum. The uncer-
tainties in the strongly repulsive region should be below 1%.
Realization of these goals would increase the accuracy of the
H2–H2 potential by about an order of magnitude compared
to the DJ potential.22 We will demonstrate that our initial
accuracy goals were actually surpassed by our calculations.

II. ORBITAL CALCULATIONS

The geometry of a dimer composed of two rigid hydro-
gen molecules �with the intramonomer distances frozen at
the average value in the ground rovibrational state, i.e., at
1.448 736 bohrs,34,35 where 1 bohr�0.529 177 2
�10−10 m� is defined by four coordinates: the center-of-
mass �COM� separation R and three angles �1, �2, and �. In
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the coordinate system where both monomers’ COMs lie on
the z axis, �1 and �2 are defined as the angles between the
positive half of the z axis and the H–H bond line of the first
and second monomer, respectively, whereas � is the dihedral
angle between the planes containing the z axis and one of the
monomers, see Fig. 1. Because of symmetry, it is sufficient
to consider the values �all angles are given in degrees here
and throughout the rest of the work� 0��2��1�90 and 0
���180. Moreover, whenever �2=0, the angle � becomes
arbitrary and it will be set to �=0. Finally, if �1=90, the
configurations obtained for � and 180−� are equivalent for
any �2, and it is enough to assume that 0���90 in this
case.

For a given R, the basic angular grid used in our calcu-
lations consists of all ��1 ,�2 ,�� triplets such that �1 ,�2

� �0,30,60,90�, �� �0,45,90,135,180�, and the
symmetry-related conditions defined in the previous para-
graph are satisfied. This grid contains 28 symmetry-distinct
angular configurations. Our main batch of grid points was
formed by 5�28=140 configurations corresponding to R
=4.0, 5.0, 6.0, 7.0, and 8.0 bohrs. The grid used in our final
fit consists of 213 points: 140 points from the main batch, the
near-minimum geometry �R ,�1 ,�2 ,��= �6.4,90,0 ,0�, 67 ad-
ditional points along the radial cuts ��1 ,�2 ,��= �0,0 ,0�,
�90,0,0�, �90,90,0�, and �90,90,90� placed every 0.25 bohr
such that 3.0�R�9.0 bohrs and the calculated energy does
not exceed 5000 K, and 5 points along the angular cut
�R ,�1 ,�2�= �6.5,90,90�, �=15,30,45,60,75. For the pur-
pose of testing the quality of our analytical fit, we have also
calculated some ab initio points in the asymptotic regime, as

well as 20 geometries G1 , . . . ,G10,G1� , . . . ,G10� chosen such
that Gn �Gn�� is as far away as possible from all grid points
�from all main-batch points� and from all Gi �Gi��, i
=1, . . . ,n−1, with an additional restriction 4.0�R
�9.0 bohrs. For this purpose, the distance d�Ci ,C j� between
two configurations �quadruplets of Cartesian coordinates of
atoms� Ci= �Pi1 ,Pi2 ,Pi3 ,Pi4� and C j = �P j1 ,P j2 ,P j3 ,P j4�,
where the atom pairs at �Pi1 ,Pi2�, �Pi3 ,Pi4�, �P j1 ,P j2�, and
�P j3 ,P j4� are the ones that form covalent bonds, is defined as

d�Ci,C j� =�	
k=1

4

�dik − djk�2, �1�

where the quadruplets �di1 ,di2 ,di3 ,di4� and �dj1 ,dj2 ,dj3 ,dj4�
are composed of the nonbonded interatomic
distances �
Pi1Pi3
 , 
Pi1Pi4
 , 
Pi2Pi3
 , 
Pi2Pi4
� and �
P j1P j3
,

P j1P j4
 , 
P j2P j3
 , 
P j2P j4
�, respectively, sorted in ascending
order. All CCSD�T� calculations employed the MOLPRO

code.36,37 The full configuration interaction �FCI� calcula-
tions were done using the LUCIA program38 and the
symmetry-adapted perturbation theory �SAPT� calculations
using the SAPT2006 codes.39

The computational resources needed to perform calcula-
tions for a given geometry, especially at the FCI level of
theory, vary greatly with the point-group symmetry of the
dimer. For different angular configurations, the Abelian spa-
tial symmetry of the dimer varies from C1 �no symmetry� to
D2h �eightfold symmetry�. Note that in the latter case the
symmetry of a system composed of one monomer and ghost
centers in place of the other monomer’s atoms, needed for
counterpoise40 calculations, is lower than D2h; however, this
fact is of no practical importance since the dimer calculation
is the time- and memory-limiting step. The calculations per-
formed for all the grid points had to employ basis sets small
enough to be feasible without any point-group symmetry
present. Consequently, the largest bases determining the po-
tential were aug-cc-pV5Z+ �33221� at the CCSD�T� level
and aug-cc-pVTZ+ �332� at the FCI level. The numbers in
parentheses denote basis functions placed on the intermo-
lecular bond �halfway between the monomer COMs�. The
�33221���3s3p2d2f1g� set is composed of primitive Gauss-
ian functions with exponents equal to 0.9, 0.3, and 0.1 for sp,
0.6 and 0.2 for df , and 0.35 for g symmetry, and the �332� set
is the �3s3p2d� subset of �33221�. On the other hand, for
symmetric configurations we were able to perform calcula-
tions with significantly larger basis sets. A comparison of the
CCSD�T� and FCI interaction energies calculated in various
bases is presented in Table I for the near-minimum T-shaped
configuration �C2v symmetry� with R=6.4 bohrs and in
Table II for the linear configuration with R=6.0 bohrs. Apart
from the aug-cc-pVXZ �denoted aXZ for short� basis sets of
Dunning et al., with or without midbond functions, we have
employed doubly augmented bases, dXZ=d-aug-cc-pVXZ
�however, the dXZ results are incomplete because of the lin-
ear dependencies encountered�, as well as the modified
Dunning-type bases amXZ�aug-mcc-pVXZ constructed �for
hydrogen only� in Refs. 41 and 42. The bases amXZ, of the
same sizes as regular aXZ, were intended to form a more
regular sequence than the original bases �in order to facilitate

θ1

θ2

φ

FIG. 1. Geometry of the H2 dimer.
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CBS extrapolations�. However, as Tables I and II show, the
differences between the amXZ and aXZ interaction energies
of the H2–H2 dimer, both computed for a given X and ex-
trapolated, are virtually negligible. The bases amXZ are
available for X up to 8 �Ref. 43�, whereas the regular aXZ
bases are only available up to X=6. For the linear configu-
ration, we were able to utilize the X=7 set at the CCSD�T�
level, and Table II presents results in bases containing as
many as 801 functions, whereas for the T-shaped minimum
configuration, we employed basis sets up to X=6, the largest
of those containing 697 functions. At the FCI level, the larg-
est bases we were able to use contained 229 and 206 func-
tions, respectively.

The CBS extrapolation technique employed is the most
popular and has been supported by numerous analytical and
numerical studies.7,44–49 Specifically, all post-self-consistent
field �SCF� contributions to the interaction energy, i.e., the
correlation contribution to the CCSD�T� interaction energy,

�Eint
CCSD�T� = Eint

CCSD�T� − Eint
SCF, �2�

or the contribution beyond CCSD�T�,

�Eint
FCI = Eint

FCI − Eint
CCSD�T�, �3�

where Eint
T denotes the interaction energy computed at a T

level of theory, have been extrapolated according to the X−3

formula, i.e., we assumed that the energies E�X� calculated in
X-tuple zeta basis sets approach their CBS limit E��� like
E���+AX−3 for some constant A. Since the SCF interaction
energies exhibit much faster, exponential convergence to the
CBS limits,50 these energies were not extrapolated. All the
extrapolated energies listed in Tables I and II for a given
X-tuple zeta basis set have been obtained as described above
from energies calculated in this basis set and in a basis set of
the same type with X lower by one �e.g., the result given in
the a6Z row has been extrapolated from the values calculated
in bases a5Z and a6Z�. All the supermolecular interaction
energies were computed in the counterpoise-corrected way to

TABLE I. Comparison of the CCSD�T� and FCI interaction energies �in K� for the minimum geometry, which
is a T-shaped configuration ��1 ,�2 ,��= �90,0 ,0� with R=6.4 bohrs and the intramonomer distance of
1.448 736 bohrs, calculated and CBS-extrapolated with the X−3 formula from various basis sets. The values
obtained using the basis sets employed for the entire surface have been marked in boldface.

Basis Size CCSD�T� CCSD�T�/CBS FCI �FCI �FCI /CBS

aDZ 36 −34.99 −36.87 −1.89
aTZ 92 −50.46 −55.86 −52.44 −1.97 −2.01
aQZ 184 −53.70 −55.84 −55.61 −1.91 −1.86
a5Z 320 −54.41 −55.21
a6Z 508 −54.76 −55.21
aDZ+ �332� 58 −53.14 −55.15 −2.01
aTZ+ �332� 114 −53.91 −54.67 −55.87 −1.96 −1 .94
aQZ+ �332� 206 −54.63 −54.99 −56.52 −1.89 −1.84
a5Z+ �332� 342 −54.85 −55.04
a6Z+ �332� 530 −54.95 −55.10
aQZ+ �33221� 229 −54.77
a5Z+ �33221� 365 −54.91 −55 .02
a6Z+ �33221� 553 −54.99 −55.10
dTZ 128 −51.02 −53.00 −1.98
dQZ 248 −54.06 −56.06
d5Z 420 −54.63 −55.29
d6Z 652 −54.90 −55.24
dTZ+ �332� 150 −54.04 −56.00 −1.96
dQZ+ �332� 270 −54.69 −55.03
d5Z+ �332� 442 −54.89 −55.06
d6Z+ �332� 674 −54.98 −55.11
dQZ+ �33221� 293 −54.80
d5Z+ �33221� 465 −54.94 −55.05
d6Z+ �33221� 697 −55.01 −55.09
amTZ 92 −50.19
amQZ 184 −53.63 −55.86
am5Z 320 −54.41 −55.29
am6Z 508 −54.75 −55.21
amTZ+ �332� 114 −53.89
amQZ+ �332� 206 −54.62 −54.99
am5Z+ �332� 342 −54.85 −55.06
am6Z+ �332� 530 −54.96 −55.10
amQZ+ �33221� 229 −54.76
am5Z+ �33221� 365 −54.91 −55.05
am6Z+ �33221� 553 −54.99 −55.10
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remove the basis set superposition error.4,40,51–53

The values in Table I indicate that the CBS limits for the
CCSD�T� interaction energy and for the �Eint

FCI contribution
are close to −55.09 and −1.84 K, respectively, for the mini-
mum geometry. For the linear configuration at R=6 bohrs
�Table II�, these contributions amount to 38.36 and −3.60 K,
respectively. These values should be compared with the ones
obtained using basis sets employed for the entire potential
energy surface, set in boldface in Tables I and II and referred
to below as “whole-grid” values. Thus, judging from our best
CBS-limit estimations, our CCSD�T� component of the po-
tential is in error by about 0.07 K at the minimum and 0.15
K for the linear configuration considered. The corresponding
uncertainties in the �Eint

FCI term are about 0.10 and 0.18 K,
respectively. One can clearly see from the results in Tables I
and II that the CBS-extrapolated whole-grid values are much
closer to the best-estimate CBS limits �inferred from calcu-
lations in larger basis sets than used for the whole grid� than
the nonextrapolated results obtained using the same basis
sets both for the CCSD�T� and �Eint

FCI contributions, even
though in the latter case the extrapolation involves results

calculated in a very small aDZ+ �332� basis set. Thus, we
have used the extrapolated CCSD�T� and FCI contributions
for our final H2 dimer potential surface. Note that, for the
configurations investigated in Tables I and II, the basis set
incompleteness errors at the CCSD�T� and FCI levels exhibit
strong mutual cancellation. Even without this cancellation,
however, the errors of our potential are well within our 0.5 K
goal in the minimum region.

When larger-basis results are not available, a simple es-
timate of the basis set incompleteness error at a given level
of theory can be obtained as the magnitude of the difference
between the value extrapolated from �X−1�-tuple zeta and
X-tuple zeta bases �i.e., our final approximation to the inter-
action energy at this level of theory� and the value calculated
in the X-tuple zeta basis set. As shown in Ref. 49, such an
estimate is usually very conservative, and often the true un-
certainties are much smaller. The respective error estimates
for the Eint

CCSD�T� and �Eint
FCI terms in the whole-grid basis �val-

ues given in boldface in Tables I and II� obtained in this way
amount to 0.11 and 0.02 K, respectively, at the minimum and
to 0.14 and 0.08 K, respectively, at the linear geometry.

TABLE II. Comparison of the CCSD�T� and FCI interaction energies �in K� for the linear geometry
��1 ,�2 ,��= �0,0 ,0� with R=6.0 bohrs and the intramonomer distance of 1.448 736 bohrs calculated and CBS-
extrapolated with the X−3 formula from various basis sets. The values obtained using the basis sets employed for
the entire surface have been marked in boldface. Some doubly augmented bases have not been included because
of CC convergence problems.

Basis Size CCSD�T� CCSD�T�/CBS FCI �FCI �FCI /CBS

aDZ 36 55.01 51.00 −4.01
aTZ 92 44.98 37.89 41.03 −3.95 −3.93
aQZ 184 40.10 37.60 36.36 −3.74 −3.59
a5Z 320 39.12 38.29
a6Z 508 38.73 38.19
aDZ+ �332� 58 37.35 33.30 −4.05
aTZ+ �332� 114 39.49 39.36 35.63 −3.86 −3 .78
aQZ+ �332� 206 39.06 38.68 35.35 −3.71 −3.60
a5Z+ �332� 342 38.75 38.51
a6Z+ �332� 530 38.58 38.36
aQZ+ �33221� 229 38.87 35.18 −3.69
a5Z+ �33221� 365 38.65 38.51
a6Z+ �33221� 553 38.53 38.36
dTZ 128 44.14
dQZ 248 39.73 37.47
dTZ+ �332� 150 39.53
dQZ+ �332� 270 39.00 38.61
dQZ+ �33221� 293 38.85
amTZ 92 45.18
amQZ 184 40.17 37.59
am5Z 320 39.17 38.30
am6Z 508 38.75 38.17
am7Z 756 38.55 38.23
amTZ+ �332� 114 39.73
amQZ+ �332� 206 39.06 38.60
am5Z+ �332� 342 38.76 38.49
am6Z+ �332� 530 38.58 38.36
am7Z+ �332� 778 38.49 38.34
amQZ+ �33221� 229 38.87
am5Z+ �33221� 365 38.65 38.50
am6Z+ �33221� 553 38.53 38.37
am7Z+ �33221� 801 38.46 38.36
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Comparison with the CBS-limit energies shows that whereas
the error estimates at the CCSD�T� level are very reasonable,
the �Eint

FCI errors are underestimated. This fact may indicate
that the true convergence pattern of the �Eint

FCI term might be,
at least for some distances, closer to AX−1 or AX−2 than to
AX−3. Such a different convergence behavior has indeed been
observed49 for some components of the helium dimer inter-
action energy, at least for intermonomer distances around the
van der Waals minimum. There is, however, no conclusive
evidence supporting any particular choice of the exponent �
in AX−�. Therefore, we have used the conventional value of
�=3 to extrapolate �Eint

FCI as well as �Eint
CCSD�T� but, to be on

the safe side, we arbitrarily enlarged the uncertainty in the
former term by a factor of 2. In other words, we have chosen
	=	CCSD�T�+2	FCI �added linearly�, where 	CCSD�T� and
	FCI are the differences between the extrapolated and calcu-
lated results, as specified above, as the error estimate for our
ab initio points. Since our error bars are not rigorous in any
event, this level of confidence should be adequate. The error
estimates obtained in this way are about 0.15 K or 0.3% at
the minimum of the potential. These estimates do not exceed
0.5 K in the negative-energy region, 1 K in the positive-
energy region below 100 K, and 0.7% on the repulsive wall
above 100 K. In the strongly repulsive region above 1000 K,
the relative uncertainties are below 0.3%. For R larger than
the distances of the radial minimum, the uncertainties are
usually smaller than 0.3% except for near-linear configura-
tions where such uncertainties are smaller than 0.07 K. The
larger relative uncertainties in the latter case are due to
strong cancellations between the electrostatic and dispersion
energies for such configurations. The interaction energies
and error estimates for the potential grid points and for all
additional points are given in the supporting information.54

A numerical comparison with the results of Diep and
Johnson22 is difficult since these authors included in their
paper the computed values only for one point �all other re-
sults were given only in figures�. Table III compares our
computed values for the same dimer configuration �T shaped
with R=3.4 Å, using Diep and Johnson’s22 intramonomer
distance of 1.449 bohrs�, the same levels of theory, and the
same aug-cc-pVDZ basis set as used in Ref. 22. The results
obtained using many-body perturbation theory with the
Møller–Plesset �MP� decomposition of the Hamiltonian
through the second �MP2� and fourth �MP4� orders agree to
within 0.02 K. The reason for the small discrepancies could
be different integral thresholds in the calculations of Diep
and Johnson22 or perhaps a slightly different geometry �at the

same time, these results show that the effects of possible
differences in the geometry are minor�. However, for the
CCSD�T� and FCI energies, the discrepancies are dramatic,
amounting to 2.54 and 0.76 K, respectively. The reasons for
the discrepancies are unknown. We can only speculate that
the convergence thresholds in the calculations of Diep and
Johnson22 might have been significantly too large. We have
checked our CCSD�T� result by computing it independently
with the MOLPRO �Ref. 36� and DALTON �Ref. 55� packages
and the results were identical to all digits given in Table III.
Thus, in addition to errors of a couple percent due to the
basis set and theory level truncation, Diep and Johnson’s22

results may have some random errors due to the numerical
inaccuracy of their CCSD�T� calculations.

More extensive comparisons are possible with the fitted
potential of Diep and Johnson.22 The interaction energies ob-
tained from our ab initio calculations, from our analytical fit
described in Sec. IV, and from the fit of Diep and Johnson22

are plotted in Figs. 2–5 as functions of R for the angular
configurations ��1 ,�2 ,��= �0,0 ,0�, �90,0,0�, �90,90,0�, and
�90,90,90�, respectively. Another one-dimensional cut of the
potential, along the � coordinate for R=6.5 bohrs and �1

=�2=90, is presented in Fig. 6 �note that considering only
0���90 is sufficient in this case because of symmetry�.
The uncertainties in our ab initio points are always smaller
than the sizes of the squares representing these points �except
for the point �5.5,90,0,0� in Fig. 3 where the error bars are
slightly larger than the size of the square�. Figures 2–6 show
that our potential is noticeably deeper than the potential ob-
tained by Diep and Johnson,22 although, interestingly, the
difference between the two potentials is very small for the
minimum angular configuration �90,0,0�. To explain the dif-
ferences between our results and those of Diep and
Johnson,22 we have performed calculations at the theory
level used by Diep and Johnson22 �i.e., CCSD�T� in bases
aug-cc-pVTZ and aug-cc-pVQZ without bond functions, fol-
lowed by the CBS extrapolations of the total interaction en-
ergies according to the X−3 scheme� for all our grid points.
These DJ-level energies are also plotted in Figs. 2–6 together
with their error bars inferred from the CBS extrapolation in
the same way as for our energies. The resulting �pointwise�
potential is indeed shallower than our highest-level one, al-
though in most cases the DJ-level grid-point energies are
closer to our results than the energies predicted by Diep and
Johnson’s22 analytical fit. For some configurations, in par-
ticular, for �90,90,0�, the uncertainties in this fit are quite
substantial, on the order of 1 K. We have chosen R=6.0 and
7.0 bohrs, two distances from the general region of radial
minima, and computed the differences between the DJ-level
ab initio results �from values calculated by us� and our
highest-level ones for all 28�2 angular configurations.
These differences are highly anisotropic and amount to 0.51–
1.81 and 0.75–1.10 K for R=6.0 and 7.0 bohrs, respectively,
depending on the angular configuration. These values are
actually smaller than the effects beyond the CCSD�T� level
of theory, neglected by Diep and Johnson22 and estimated by
us to range from −1.94 to −3.78 K for R=6.0 bohrs and
from −0.83 to −1.51 K for R=7.0 bohrs. Thus, the DJ-level
results exhibit some fortuitous cancellation of errors between

TABLE III. Comparison of the H2–H2 interaction energies computed in the
basis aug-cc-pVDZ in the present work with those of Ref. 22. The calcula-
tions were performed for the T-shaped configuration with R=3.4 Å and the
intramonomer distance of 1.449 bohrs �as used in Ref. 22�. All energies are
in kelvins.

Method Present Reference 22

MP2 −28.155 −28.135
MP4 −37.914 −37.924
CCSD�T� −35.445 −37.987
FCI −37.292 −38.050
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the post-CCSD�T� contribution and the basis set incomplete-
ness effects at the CCSD�T� level. Despite this cancellation,
the DJ-level energies differ from our results by up to 5–6%
even for R=8.0 bohrs, where the uncertainties in our
highest-level potential are more than an order of magnitude
smaller than these differences. For some orientations, in par-
ticular, for �90,0,0�, the inaccuracies in the fit provide addi-
tional cancellations, leading to near overlap of the DJ fit with
our fit in Fig. 3.

Our experience from the helium dimer calculations12

shows that, for large intermonomer separations, the accuracy
of the CCSD�T�/FCI approach employed here is matched or
even surpassed by the accuracy of an approach utilizing
SAPT interaction energies56,57 supplemented by the FCI cor-
rection. Therefore, we have checked the results for all grid
points with R=8.0 bohrs, as well as for additional points
along the linear and angular cuts presented in Figs. 2–6, by
performing SAPT calculations using the same basis sets as

for the CCSD�T� method. The SAPT interaction energies
were calculated at the conventional second-order level. The
residual Hartree–Fock correction was omitted as recom-
mended for dimers composed of nonpolar monomers,58 i.e.,
the quantity ESAPT

�2� , defined, e.g., in Ref. 59, was chosen as
the SAPT result. The final extrapolated energy was then ob-
tained in the same way as for the CCSD�T�/FCI approach,
i.e., as a sum of the SCF-level SAPT energy calculated in
basis aug-cc-pV5Z+ �33221�, the correlated-level SAPT en-
ergy extrapolated from bases aug-cc-pVQZ+ �33221� and
aug-cc-pV5Z+ �33221�, and the FCI contribution missing in
SAPT, extrapolated from bases aug-cc-pVDZ+ �332� and
aug-cc-pVTZ+ �332�.

We have estimated the uncertainties in the total energy
�including the FCI correction� obtained in the SAPT/FCI ap-
proach in an analogous way as described above for the
CCSD�T�/FCI approach. We found that the former uncertain-
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ties are larger than the latter in 25 out of 28 cases, indicating
that, similarly as for the helium dimer,12 the FCI correction
beyond SAPT is harder to extrapolate to the CBS limit than
an analogous FCI correction beyond CCSD�T�. Therefore, in
our potential fit we employed results from the CCSD�T�/FCI
approach for all geometries, including the large-R ones. The
SAPT calculations still form a valuable independent check of
the accuracy of the ab initio points. One should emphasize
that the differences between the SAPT/FCI and CCSD�T�/
FCI results are very small: if SAPT/FCI results were plotted
in Figs. 2–6, the curves would be indistinguishable from the
CCSD�T�/FCI curves.

Without the FCI correction, the SAPT results for the H2

dimer are generally of similar quality as the CCSD�T� re-
sults, but the van der Waals well predicted by SAPT is for
most configurations too deep rather than too shallow, as is
the case for CCSD�T�. This is clearly visible in Figs. 7–11,
where we plotted one-dimensional cuts through the potential

analogous to Figs. 2–6. The plots contain both SAPT and
CCSD�T� results calculated in the aug-cc-pV5Z+ �33221�
basis set. Note that these results are neither extrapolated nor
augmented by the FCI correction. These plots show that the
SAPT results are in most cases slightly farther from the
benchmark than the CCSD�T� ones. When the intermonomer
distance increases, the SAPT results become more accurate
than the CCSD�T� ones. At R=8.0 bohrs, the accuracy of the
CCSD�T� and SAPT theories is comparable: the absolute
value of the FCI correction is smaller for CCSD�T� for 16
angular configurations from our grid and smaller for SAPT
for the 12 remaining ones.

The SAPT calculations also provide important insights
into the nature of the H2–H2 interaction as the SAPT inter-
action energy is a sum of well-defined terms corresponding
to the electrostatic, induction, dispersion, and exchange
effects.56,57 These four physical components of the H2–H2

interaction potential, obtained from calculations in the
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aug-cc-pV5Z+ �33221� basis set, have been presented in
Figs. 7–11 for the same one-dimensional cuts through the
potential surface as depicted in Figs. 2–6. As expected, the
main binding force in the H2 dimer originates from the dis-
persion interactions, while the electrostatic and especially in-
duction effects are much smaller. The electrostatic energy,
exhibiting different signs for different relative orientations of
the monomers, is the primary source of anisotropy of the
potential. For asymptotic separations, this energy can be well
described by the interaction of monomers’ quadrupole mo-
ments. For finite R, this is largely also the case, as indicated
by the potential cut along the � coordinate, Figs. 6 and 11.
The fitted potential of Diep and Johnson,22 whose depen-
dence on � is assumed solely as a quadrupole-quadrupole
term, recovers the anisotropy of the potential along this cut
fairly well.

III. EXPLICITLY CORRELATED CALCULATIONS

In addition to the CCSD�T�/FCI and SAPT calculations,
at the two geometries presented in Tables I and II, we used

the method of explicitly correlated Gaussian �ECG� func-
tions to better assess the achieved accuracy and as an inde-
pendent check of our results. In the ECG method, the eigen-

function of an N-electron electronic Hamiltonian Ĥ is
approximated as


 = AN��N,S,MSP̂c0�0 + 	
k=1

M

ck�k�1,2, . . . N��� , �4�

where AN is the N-electron antisymmetrizer, �N,S,MS is one
of the N-electron spin functions corresponding to spin quan-

tum numbers S and MS, P̂ is the point-group symmetry pro-
jector, and ck are variational parameters. The functions
�k�1,2 , . . . ,N� have the form

�k�1,2, . . . ,N� = �
i=1

N

e−�ki
ri − Aki

2 �
i�j=1

N

e−kij
ri − rj

2
, �5�
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where �ki, kij, and Aki are nonlinear variational parameters.
Due to the nonorthogonality of the basis functions and the
necessity of a nonlinear optimization, this approach is too
expensive for all but very small systems. However, it has
been used with much success for a number of two-, three-,
and four-electron systems �see Ref. 60 and references
therein�, where it invariably leads to accuracy levels un-
reachable for traditional orbital-based methods. The term �0

in Eq. �4�, which does not undergo nonlinear optimization,
can be included if a good approximation �also in the form of
an ECG expansion� to the total wave function is available,
which usually results in a faster convergence toward the
M =� limit. Such a favorable situation occurs in the case of
weakly bound dimers, and it was exploited in Refs. 61 and
62 to construct very accurate wave functions of He2. Specifi-
cally, using a two-electron ECG function of monomer X
�where X=A or X=B�,


X = A2����1��2� − �1���2��P̂	
l=1

L

dl�l
X�1,2�� , �6�

where �l
X�1,2� are defined by Eq. �5� for N=2, the function

�0 in Eq. �4� can be written as

�0 = 	
l=1

L

	
m=1

L

dldm�l
A�1,2��m

B�3,4� . �7�

Two-electron ECG optimizations are relatively inexpensive,
and this so-called monomer-contraction �MC� technique al-
lows the four-electron term �0 to be obtained with little ef-
fort.

Since L2 is usually much larger than M, the calculation

of the matrix elements ��0
Ĥ
�k� with k�0 �repeated many
times during the nonlinear optimization of �k�, scaling as
L2M, dominates the computational cost. Hence, it is essential
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to generate accurate yet compact �very well optimized�
monomer expansions of Eq. �6�. Another possibility, which
we explored for the first time in the present paper, is to
perform a separate optimization of the contraction part of Eq.
�4�, i.e., of the function

�̃0 = A4��4,S,MSP̂�0� , �8�

using a more general form of Eq. �7�:

�0 = 	
l=1

L�

dl�̄l
A�1,2��� l

B�3,4� , �9�

where the functions �̄l
A and �� l

B still have the form of Eq. �5�
but are mutually independent and Eq. �9� does not represent
a product of two two-electron expansions. The linear param-
eters dl and the nonlinear parameters contained in the func-
tion of Eq. �9� are optimized by minimizing the sum of

monomer energies, ��̃0
Ĥ0
�̃0� / ��̃0 
 �̃0�, where Ĥ0 is the

Hamiltonian of two noninteracting monomers,

Ĥ0 = ĤA + ĤB. �10�

During the optimization, in order to avoid the exchange in-
teractions between A and B, the permutations mixing elec-
trons from both monomers are switched off in the antisym-
metrizer, i.e., A4 is replaced by

Ã4 = 1
8 �1 − P12��1 − P34��1 + P13P24� , �11�

where Pij interchanges electrons i and j.
The use of the optimized form of function �8� leads to

much shorter expansions of the monomer contraction at the
same level of accuracy, as discussed below. Moreover, sepa-
rating the optimization of �̃0 from the optimization of the
other terms in Eq. �4� is advantageous for at least two rea-
sons. First, the optimization of �̃0 is computationally much
less demanding than that of the remaining part of 
 because
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of many vanishing terms in the integrals �due to the lack of
interactions between monomers A and B�. Second, �̃0 is op-
timized only once and then used for each geometry of the
dimer.

Table IV compares the errors of the sum of the monomer
energies �with respect to the exact energy of two isolated H2

molecules� in the older MC method and in the new approach.
The energy of the hydrogen molecule with the interatomic
distance equal to 1.448 736 bohrs was calculated by us from
a carefully optimized 2400-term ECG expansion and
amounts to −1.174 077 876 74 hartrees �1 hartree
�4.359 744�10−18 J�, where all the listed digits are exact.
Note that H4 has �in general� C1 symmetry, while in the
optimizations of the 
X and �̃0 functions the Gaussian cen-
ters were restricted to the molecular axis and the symmetry

operator P̂=1+ î �î being the inversion through the molecular
midpoint� was used to enforce the �g

+ symmetry. Therefore,
after switching off the symmetry, these functions have
double expansion lengths �2L and 2L�, respectively�. Table
IV illustrates clearly that the new method of generating the

monomer contraction, i.e., the use of �̃0 from the direct op-
timization of the four-electron partly antisymmetrized wave
function of noninteracting monomers, yields large computa-
tional gains. Namely, to achieve a similar accuracy of the
noninteracting part of the dimer wave function, much shorter
expansions �by about one order of magnitude� of the zeroth
term in Eq. �4� are necessary compared to the old MC
method. Thus, the optimization of the remaining terms, de-
scribing the intermonomer interaction, is faster by the same
factor.

To optimize the interaction part, we used the 7200-term
�in C1 symmetry� function �̃0, yielding the energy of nonin-
teracting monomers with an error of 47 mK, and expansions
of different lengths for the interaction part, with M =150,
300, 600, 1200, and 2400. In the final step, the 7200-term
function �̃0 was replaced by a more accurate, 360 000-term
function resulting from a product of two 300-term monomer
functions and exhibiting the error of only 0.9 mK �see Table
IV�. The dimer energies became lower by 38 �for the linear
configuration and M =2400� to 44 mK. The fact that this
lowering was smaller than 46 mK �the difference between
the accuracies of the two monomer contractions� results from
partial recovery of the missing monomer effects during the
dimer optimization, especially for longer interaction part ex-
pansions. Table V presents the final results for the same
T-shaped and linear configurations as in Tables I and II. The
interaction energies were obtained by subtracting twice the
exact energy of H2 quoted above. Hence, all the results for
finite values of M given in Table V represent strict upper
bounds to the respective exact values.

TABLE IV. Comparison of ECG expansion lengths and errors �E �in
kelvins, with respect to the exact energy of two noninteracting H2 mol-
ecules� obtained by optimizing the H2 wave function �upper� and by opti-
mizing the antisymmetrized wave function of two noninteracting H2 mono-
mers �lower�. The intramonomer distance was 1.448 736 bohrs.


H2

H2

·
H2

L terms 4L2 termsa �E

75 22 500 0.753
106 44 944 0.150
150 90 000 0.029
212 179 776 0.0065
300 360 000 0.0009


H2+H2

L� terms 2L� termsb �E

1200 2400 0.523
2400 4800 0.107
3600 7200 0.047

aTerms of the form of Eq. �7�, with relaxed point-group symmetry.
bTerms of the form of Eq. �9�, with relaxed point-group symmetry.

TABLE V. Interaction energies �in kelvins� for the T-shaped configuration with the COM distance of 6.4 bohrs
and for the linear configuration with the COM distance of 6.0 bohrs obtained using the product of two 300-term
H2 wave functions �reproducing the sum of the monomer energies with an error of 0.9 mK� and M terms in the
interaction part of Eq. �4�. The ECG bases were optimized using the 7200-term �̃0. Boldface numbers denote
the recommended ECG values. The orbital CCSD�T�/FCI results are included for comparison. The intramono-
mer distance was 1.448 736 bohrs.

M T-shaped Linear

150 −54.3468 37.0560
300 −55.7869 35.6170
600 −56.4469 35.0862
1200 −56.7062 34.8889
2400 −56.8213 34.8286

Extrapolated −56.895�0.047 34.790�0.025
Corrected for optimization incompleteness �56.905�0.057 a 34.785�0.030 b

Orbital �whole-grid basis� −56.96�0.16 c 34.74�0.30 c

Orbital �largest basis� −56.93�0.19 c 34.77�0.32 c

aWith an optimization incompleteness correction of −0.010�0.010 �see text�.
bWith an optimization incompleteness correction of −0.005�0.005 �see text�.
cEstimated as 	CCSD�T�+2	FCI, where 	CCSD�T�/FCI is the magnitude of the difference between the result com-
puted in a basis set with cardinal number X and the results extrapolated from bases with cardinal numbers
X−1 and X.
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There is some empirical evidence63 that for optimized
ECG functions, the ratio

�M =
EM/4 − EM/2

EM/2 − EM
�12�

is approximately independent of M. Thus, the increments in
energies upon doubling of M approximately form a geomet-
ric series with the quotient 1 /�M. In the present case, the six
values of �M that can be derived from the data in Table V
range from 2.18 to 3.27. The assumption of �M =2.18 for all
M �2400 leads to the extrapolated values of −56.9188 and
34.7775 K for the T-shaped and linear configurations, respec-
tively, whereas taking �M =3.27 leads to −56.8720 and
34.8020 K. At each configuration, we take the midpoint of
the two predictions as the recommended result of our CBS
extrapolation scheme and the full difference between these
predictions as the uncertainty estimate.

The CBS extrapolation described above would have
been final if our optimizations of nonlinear parameters had
been completely converged for each M. This is not the case,
however, and we have to take into account small residual
uncertainties, especially in the case of the very time-
consuming optimizations of the M =2400 functions. By ana-
lyzing the optimization cycle convergence, we estimated
these residual uncertainties to be about 5–15 mK for the
T-shaped configuration and several millikelvins for the linear
geometry. With some safety margin, we assumed that com-
pletely converged optimizations could lower the energy by
any value between 0 and 20 mK for the T-shaped structure
and by any value between 0 and 10 mK for the linear one.
Therefore, we have lowered the CBS limits determined
above by 0.010 and 0.005 K for the T-shaped and linear
configurations, respectively, and enlarged the respective error
bars by 0.010 and 0.005 K. This leads to the recommended
CBS limits of −56.905�0.057 and 34.785�0.030 K for the
two geometries. The very small residual error in the mono-
mer contraction used in the final calculations �not larger than
0.9 mK, see the discussion before Eq. �12�� can be neglected
relative to the much larger uncertainties discussed so far.

As can be seen in Table V, the ECG calculations are
significantly more accurate than the orbital calculations, with
uncertainties three times smaller for the T-shaped geometry
and ten times smaller for the linear geometry. The recom-
mended ECG values are higher than the orbital predictions.
It is seen in Tables I and II that, at least for the basis sets with
bond functions, the CCSD�T� energies converge from above
while the FCI corrections converge from below and that this
is true for both calculated and extrapolated results. Hence,
even though the FCI correction is about 30 times �10 times�
smaller in absolute value than the CCSD�T� energy for the
T-shaped �linear� geometry, the former quantity seems worse
converged. One reason is undoubtedly the fact that smaller
basis sets were used to evaluate the FCI part. As already
mentioned in Sec. II, it is also possible that the convergence
of this quantity is inherently slower and that the X−3 extrapo-
lation used by us underestimates the distances between the

calculated values and the CBS limits. On the other hand, the
predictions of both methods in Table V are mutually consis-
tent; in fact, the orbital results in the largest basis set are
within the ECG error bars and those in the whole-grid basis
are nearly so. This consistency indicates that our method of
extrapolating the orbital results and estimating their uncer-
tainties is indeed reliable but probably too conservative as
the magnitude of the difference between the ECG and the
whole-grid-level orbital results is three �six� times smaller
than the estimated uncertainty in the latter result for the
T-shaped �linear� configuration.

IV. FITTING PROCEDURE

To develop a functional representation of our potential,
we used the set of 213 ab initio data points described in Sec.
II. The functional form of the fit, the same as used in an
earlier work on the CO2 dimer,64 is composed of a short-
range part, Ush, and an asymptotic part, Uas,

U�R,�1,�2,�� = Ush�R,�1,�2,�� + Uas�R,�1,�2,�� . �13�

The short-range part is defined by

Ush�R,�1,�2,�� = G�R,�1,�2,��eD��1,�2,��−B��1,�2,��R,

�14�

where G is a polynomial in R with orientation-dependent
coefficients,

G�R,�1,�2,�� = 	
i=0

3

Ri 	
l1�l2,l

gi
l1l2lAl1l2l

s ��1,�2,�� . �15�

The angular functions Al1l2l��1 ,�2 ,��, members of a com-
plete basis set, are defined as

Al1l2l��1,�2,�� = 	
m=−l�

l� � l1 l2 l

m − m 0
�Cl1m��1,��

�Cl2−m��2,0� �16�

and are symmetrized according to

Al1l2l
s ��1,�2,�� = Al1l2l��1,�2,�� + Al1l2l��2,�1,�� , �17�

where Clm�� ,��= �4��1/2�2l+1�−1/2Ylm�� ,�� is the spherical
harmonic in the Racah normalization, l� is the smaller of l1

and l2, and the large brackets denote the Wigner 3j symbol.
The exponential parameters of Eq. �14� are expanded as
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D��1,�2,�� = 	
l1�l2,l

dl1l2lAl1l2l
s ��1,�2,�� , �18�

B��1,�2,�� = 	
l1�l2,l

bl1l2lAl1l2l
s ��1,�2,�� . �19�

The asymptotic part of the potential is defined as

Uas�R,�1,�2,�� = 	
l1l2,l,n

fn�B��1,�2,��R�
Cn

l1l2l

Rn

�Al1l2l��1,�2,�� , �20�

where fn�x� is the Tang–Toennies damping factor,65

fn�x� = 1 − e−x	
k=0

n
xk

k!
. �21�

We have used the nonsymmetrized functions Al1l2l��1 ,�2 ,��
in Eq. �20� since the literature van der Waals constants Cn

l1l2l

utilized by us �see below� are defined relative to such func-
tions. The values of n ranged from 5 to 10 in Eq. �20�. The
constants Cn

l1l2l were held fixed during the fitting process. In
the angular expansion of Eqs. �15�, �18�, and �19�, we used
eight, five, and five functions Al1l2l

s , respectively. The total
number of adjustable fit parameters amounts to 42 �8 gi

l1l2l

parameters for each of the four powers of R, 5 dl1l2l param-
eters, and 5 bl1l2l parameters�. The fitting algorithm, includ-
ing the choice of the initial values of the adjustable param-
eters, was the same as that employed in Ref. 64. The
ab initio interaction energies E�R ,�1 ,�2 ,�� were given
weights w=wEwR, with the energy-dependent and distance-
dependent weighting factors defined as

wE = ��Ew

E
�2

for E � Ew

e2�1−E/Ew� for E � Ew,
� �22�

wR = � R

Rw
�3

, �23�

where Ew=200 K and Rw=6.5 bohrs.
The van der Waals constants Cn

l1l2l were taken from Table
IX of Ref. 66 �note that the coefficients Vlalbl

n from that table
must be multiplied by the factor �2l+1 to yield Cn

l1l2l� except
for the constants with n=6 and those originating from the
interaction of the permanent multipole moments of the
monomers. Note that these constants describe all asymptotic
interactions: electrostatic, induction, and dispersion. We used
newer, more accurate values of C6 computed by Bishop and
Pipin,67 and the values of C5, C7, and C9 were derived from
the multipole moments calculated by Komasa and Thakkar.68

In both cases, the authors employed highly accurate expan-
sions in explicitly correlated wave functions and these are
the highest-level asymptotic data available. All the van der
Waals constants used in the fit were calculated at the intra-
monomer distance equal to 1.449 bohrs rather than

1.448 736 bohrs as employed in our ab initio calculations.
We checked that the uncertainties introduced in this way are
negligible by comparing two sets of ab initio energies at R
=12 bohrs using both monomer geometries.

To check how the chosen asymptotic expansion agrees
with our ab initio interaction energies, we calculated ten ad-
ditional ab initio points for R=12 and 15 bohrs and
��1 ,�2 ,�� equal to �0,0,0�, �90,0,0�, �90,90,0�, �90,90,90�,
and �60,30,180�, applying exactly the same method as in the
calculations for all the grid points used in the fit. The differ-
ences between the energies calculated ab initio and from the
asymptotic formula are 1% or less, with the exception of the
�0,0,0� configurations, where these differences are larger:
3.5% �2.4 mK� at R=12 bohrs and 1.3% �1.6 mK� at R
=15 bohrs. The reason the �0,0,0� configuration has the larg-
est relative deviations is most likely the fact that for a given
R the closest distance between atoms belonging to different
monomers is smallest in this case, and that the electrostatic
contribution is repulsive for this configuration. Moreover, for
the �0,0,0� angular orientation the sign of the interaction en-
ergy changes from negative to positive between R=12 and
15 bohrs, and the magnitude of the interaction energy at R
=12 bohrs is very small compared to those in other angular
configurations tested. To improve the fit for larger R, one
would have to compute more accurately the asymptotic con-
stants. In particular, one needs the C11 and C12 constants
since the C10 /R10 term contributes as much as −45 mK at
R=12 bohrs in the �0,0,0� configuration. These improve-
ments would have a small effect, however, on our overall fit
since at R smaller than about 10 bohrs the short-range part of
the fit makes up for all inaccuracies of the asymptotic
constants.

The value of the root-mean-square error �rmse� of our fit
for all the fitted points amounts to 1.64 K, while the rmse for
all the points with negative interaction energies is 0.018 K.
For most of the points, the difference between the calculated
energy and the fit value is less than the uncertainty in the
former. The same is true for the ten test configurations
G1 , . . . ,G10, chosen as described in Sec. II, which have the
rmse of 0.494 K for all points and 0.016 K for points with
negative energies. It appears, therefore, that the quality of
our fit is more than adequate despite the relatively small
number of grid points computed by us. The high quality of
the fit is also visible in Figs. 2–6, where the calculated en-
ergy points lie virtually exactly on the fit curve. The global
minimum of the fit is −57.118 K for R=6.34 bohrs and the
angular configuration �90,0,0�.

In addition to the four-dimensional interaction energy
surface U�R ,�1 ,�2 ,�� of H2–H2, we have developed an iso-
tropic potential for this complex. It should be noted that the
isotropic potential cannot be obtained directly from
U�R ,�1 ,�2 ,�� by setting all anisotropic coefficients equal to
0. This is because the analytical form of the surface, defined
by Eqs. �13�–�21�, is a nonlinear function of the angular
basis set components. Therefore, to obtain the isotropic po-
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tential Uiso�R�, the following procedure has been employed.
For values of Ri every 0.25 bohr between 4.0 and 20.0 bohrs,
the potential surface U�Ri ,�1 ,�2 ,�� was numerically inte-
grated over the angular coordinates with the isotropic basis
function A000

s �2 to obtain values of the isotropic interaction
energy, Uiso�Ri�. To analytically represent this set of isotropic
interaction energies, we assumed a formula of the same form
as that used to represent U�R ,�1 ,�2 ,�� but with terms other
than those containing A000

s omitted. The long-range compo-
nent of such an isotropic potential is defined by the coeffi-
cients Cn

000, n=6,8 ,10. The short-range part has six free pa-
rameters whose values have been fitted to Uiso�Ri�.

The FORTRAN subroutines computing our U�R ,�1 ,�2 ,��
and Uiso�R� potentials are included in the supporting
information.54

V. SECOND VIRIAL COEFFICIENT

A. Background

One way to test a pair potential is to compare with ex-
periment its prediction of the second virial coefficient B�T�, a
thermodynamic quantity �representing the leading-order de-
viation from the ideal-gas law� that depends only on the pair
potential. For sufficiently accurate potentials, it is possible to
reverse the typical process and use pair potentials to predict
values of B�T� with better accuracy than obtained by
experiment.10,69 Fairly good B�T� data for pure hydrogen ex-
ist from a number of sources over a range of temperatures;
here we will compare with the two studies generally consid-
ered to be the most accurate and comprehensive. Goodwin
et al.70 analyzed previously published compressibility data
for para-hydrogen71 and reported second virial coefficients
at temperatures ranging from 24 to 100 K. Michels et al.72

reported B�T� for normal hydrogen between approximately
98 and 423 K.

The calculation of B�T� for hydrogen from a pair poten-
tial is complicated by quantum effects due both to the small
mass and small moment of inertia of H2. While B�T� can be
calculated at the fully quantum level for atomic gases, such
calculations would be difficult for anisotropic potentials.
Harvey and Hodges25 used a semiclassical approach to ana-
lyze the effect of anisotropy on B�T� for the DJ pair poten-
tial. Significant deviations were observed between the calcu-
lated second virial coefficients and the experimental data of

Michels et al.,72 but it was unclear whether this was due to
incomplete inclusion of quantum effects or due to deficien-
cies in the DJ potential. The DJ paper on the H2–H2

potential22 also included PIMC calculations of B�T�, al-
though restricted to isotropic potentials. Since that work,
Schenter31 showed how to calculate B�T� for anisotropic po-
tentials with the PIMC method, which should approximate
the exact quantum solution in the limit of infinite computer
time. Here, we use the PIMC technique to produce values of
B�T� that are accurate to within small uncertainties. In order
to elucidate the role of quantum effects and anisotropy, we
also report semiclassical calculations with our pair potential
and fully quantum calculations with the isotropic version of
our potential.

B. Path-integral methodology

The fully quantum expression of the second virial coef-
ficient for a gas of rigid linear rotors of mass m and inertia
moment I in the approximation where the Bose or Fermi
nature of the particles can be neglected is given by31,73

B�T� = −
1

2
��

3

qrot
2 Tr�exp�− ĥ2� − 1�� , �24�

where =1 /kBT, ��=h /�2��kBT is the de Broglie thermal
wavelength of a particle with reduced mass �=m /2, and
qrot=	l�2l+1�exp�−�l�l+1�� is the partition function of a
free rotor given the rotational constant �=�2 /2I. The Hamil-

tonian ĥ2 is given by

ĥ2 =
p̂2

2�
+

Ĵ1
2

2I
+

Ĵ2
2

2I
+ Û�r,�1,�2� , �25�

where Û�r ,�1 ,�2� is the intermolecular potential as a func-
tion of the COM distance r and the orientations �1 and �2 of

the two rotors. The operators Ĵ1 and Ĵ2 describe the angular
momenta of the rotors and p̂ is the linear momentum conju-
gated to the COM separation.

The trace appearing in Eq. �24� can be evaluated using
path-integral methods and we chose to proceed by perform-
ing a Trotter factorization of order P and inserting complete-
ness relations between the various terms. Using as basis the
complete set given by the product of eigenfunctions of linear
and angular positions 
x�i��1

�i��2
�i��, where the index i denotes

each of the P Trotter factors, the final expression for the
second virial coefficient turns out to be

B�T� = −
1

2
� d3rd3��1�d3��2�

¯ d3��P−1�d�1
�1�d�1

�2�
¯ d�1

�P�d�2
�1�d�2

�2�
¯ d�2

�P�

�F������1����2��exp−


P
	
k=1

P

U�
x�k�
,�1
�k�,�2

�k��� − 1� , �26�
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where we have introduced the coordinates ��i�=x�i+1�−x�i�

with the understanding that x�P+1�=x�1� and ��P+1�=��1�. The
variable r�x�1� has been introduced for later convenience
and we have denoted by �, �1, and �2 the set of all the
coordinates ��i�, �1

�i�, and �2
�i�, respectively. Notice that one

can write x�j�=r+	n=1
j−1 ��n�.

The quantities F and � are expressed as74,75

F��� = ��
3 �

i=1

P

�x�i�
exp�− 
p̂2

2�P
�
x�i+1��

= ��
3�P3/2

��
3 �P

exp�−
�P

��
2 	

i=1

P


��i�
2� , �27�

���� =
1

qrot
�
i=1

P

���i�
exp�− 
Ĵ2

2IP
�
��i+1��

=
1

qrot
�
i=1

P

	
j=0

�
2j + 1

4�
Pj�cos �i,i+1�

�exp�− j�j + 1��/P� , �28�

where Pj�cos �� is a Legendre function and �i,i+1 is the angle
between the directions described by the solid angles ��i� and
��i+1�. The functions F and � describe the probability distri-
bution of the internal coordinates of an ideal-gas ring
polymer74 and the probability density for the orientation of
the rotors,75 respectively.

The integration appearing in Eq. �26� is performed over
a bundle of P rotors whose COMs are fixed at the origin and
whose directions �1 are distributed according to the function
���1�. These rotors interact with a ring polymer of P beads
whose relative distances � are distributed according to the
function F���. Each of the beads of this ring polymer is
associated with a rotor, and the orientations of these P rotors
are distributed according to the function ���2�. The interac-
tion between these rotors is such that it only occurs if they
have the same superscript �i� �corresponding to the same
“time slice” in the path-integral formalism�.

One can then define, similarly to what has been done by

Schenter,31 an effective radial potential Ū�r� such that

exp�− Ū�
r
�� =�exp−


P
	
i=1

P

U�
x�i�
,�1
�i�,�2

�i���� ,

�29�

where the average is performed over the ring polymer con-
formations � and the rotor orientations �1 and �2 according
to the distribution functions F and �. With this definition,
Eq. �26� can be written as

B�T� = − 2��
0

�

r2dr�exp�− Ū�r�� − 1� , �30�

which is equivalent to the expression given by Schenter.31

The main difference between our approach and the one
of Diep and Johnson22 and of Schenter31 is that we have
performed a canonical transformation to the COM and rela-

tive coordinates before applying the Trotter factorization �see
Eq. �24��, following the idea first put forward by Fosdick and
Jordan76 in their pioneering calculation of the second virial
coefficient of 4He using path-integral methods. The COM
coordinate can be integrated out because it commutes with
all the other coordinates, and one is left with the relative
coordinate r only, greatly reducing the computational effort
needed to evaluate the second virial coefficient. Notice that
in the path-integral formalism this relative coordinate de-
scribes the position of one of the beads of the ring polymer
that corresponds to the relative distance between the two
original quantum particles and not the distance between the
centroids.

We have calculated the Boltzmann factor of the effective
potential of Eq. �29� at 400 equispaced values of the radial
distance r up to a cutoff of rmax=40 Å and interpolated the
values at arbitrary distances using a cubic spline. The second
virial coefficient has been obtained by evaluating the integral
in Eq. �30� with an adaptive Gauss–Kronrod method. For
each value of the distance r, the average has been performed
by using N=105 ring polymers and rotational configurations.
The ideal-gas ring polymers have been generated using the
interpolation formula due to Levy and reported in Ref. 76,
whereas the rotational directions have been generated by per-
forming a hybrid PIMC simulation on 64 free rotors, assum-
ing that all the angular momentum states J could be
reached.77,78 The value of the Trotter index P was chosen at
each temperature T according to P=3600 K /T. The statisti-
cal uncertainty in the quantum value of B�T� has been evalu-
ated by performing a radial integration of the standard error
of the mean of the Boltzmann factor evaluated in Eq. �29�.

C. Other calculation methods

We have also computed the semiclassical approximation
to the second virial coefficient, adding to the classical B�T�
the leading quantum correction proportional to �2. We used
the expressions reported in Ref. 73 together with the cen-
trifugal term derived by Pack.79

In addition, in order to quantify the effect of anisotropy,
we performed fully quantum calculations of B�T� for the
isotropic potential derived in Sec. IV. We used the phase-
shift method described in Ref. 73; the details of the calcula-
tions are as described by Hurly and Mehl.10

D. Results

Table VI shows calculated values of B�T� at several tem-
peratures from the PIMC method. The listed uncertainties
represent the uncertainty in the convergence of the PIMC
calculations; possible systematic uncertainty due to errors in
the pair potential is not included. The table also shows re-
sults from a first-order semiclassical perturbation calculation
of quantum effects and from fully quantum calculations with
the isotropic potential.

From these calculations, we are in a position to address
the question that Harvey and Hodges25 were unable to an-
swer; namely, whether the disagreement with experiment of
their semiclassical calculation of B�T� from the DJ potential
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was due to deficiencies in the DJ potential, due to neglect of
higher-order quantum effects, or due to both.

Figure 12 is plotted analogously to Fig. 1 in the paper of
Harvey and Hodges.25 In particular, the zero line in Fig. 12
represents the semiclassical calculation with the DJ
potential.22 There are two main differences. The experimen-
tal data from Michels et al.72 are now shown with error bars
corresponding to a standard uncertainty with coverage factor
k=2 �95% confidence interval�, whereas Harvey and
Hodges25 used k=1. The second difference results from the
fact that the old figure used a fit to the potential of Diep and
Johnson22 prior to their Erratum; their corrected potential

does not disagree as badly with the data as their original one.
�We note in passing that the curves labeled “Semi-Classical”
in Diep and Johnson’s22 low-temperature figures �Fig. 9 in
their original paper and Fig. 2 in the Erratum� appear to be
incorrect—the values of the curves seem to correspond to
classical calculations.�

We have added to the figure the semiclassical calculation
with our new potential, the PIMC calculation with our po-
tential, and the fully quantum computation of B�T� for nor-
mal hydrogen from the isotropic approximation to our poten-
tial. We have also added points reported by Goodwin et al.70

for para-H2 �also shown with k=2 uncertainties� where these
data overlap with our calculations.

It can be seen that, when the quantum effects are fully
incorporated with the PIMC method, the agreement of B�T�
with experimental data is very good. The error observed by
Harvey and Hodges25 came from both of their hypothesized
sources. The solid line in Fig. 12 shows the difference be-
tween values of B�T� predicted by our potential and by the
�revised� DJ potential �both in the semiclassical calculation�,
and it accounts for most of the deviation in B�T� above about
200 K. However, at lower temperatures, it is clear that the
semiclassical calculation is not sufficiently accurate �in fact,
as can be seen in Table VI, it diverges unphysically at very
low temperatures� and the inclusion of higher-order quantum
effects with PIMC is needed to obtain agreement with
experiment.

We can also examine the effect of the anisotropy of the
potential on B�T�. This effect is simply the difference be-
tween our PIMC points �open circles in Fig. 12� and the fully
quantum calculations with the isotropic potential �dotted line
in Fig. 12�. It seems that the isotropic potential, when quan-

TABLE VI. Values of the second virial coefficient B�T� for H2 obtained with the PIMC method, with the
semiclassical approximation, and with a fully quantum calculation employing the isotropic approximation to the
potential.

Temperature
�K�

B�T� �PIMC�
�cm3 /mol�

B�T� �semiclassical�
�cm3 /mol�

B�T� �quantum, isotropic�
�cm3 /mol�

15 1235.4 −221.7
30 −16.42 −80.32
50 −33.43�0.13 −23.73 −33.20
75 −12.08�0.12 −9.61 −11.91

100 −2.15�0.07 −1.18 −2.02
125 3.47�0.06 3.92 3.56
150 6.98�0.05 7.24 7.07
175 9.34�0.04 9.52 9.44
200 11.02�0.04 11.15 11.12
225 12.26�0.04 12.35 12.34
250 13.20�0.03 13.25 13.27

273.16 13.85�0.03 13.90 13.92
300 14.45�0.03 14.49 14.52
350 15.21�0.03 15.25 15.28
400 15.70�0.02 15.72 15.77
450 16.00�0.02 16.03 16.07
500 16.19�0.02 16.21 16.25
550 16.29�0.02 16.31 16.35
600 16.34�0.02 16.36 16.40

FIG. 12. Comparison of experimental data for the second virial coefficient
B�T� with calculated values obtained in this work at various levels of ap-
proximation. The baseline for the graph is a semiclassical calculation using
the potential of Diep and Johnson �Ref. 22�.
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tum effects are fully accounted for, comes very close to cap-
turing the correct behavior of B�T�. Ignoring the anisotropy
introduces a small positive bias to B�T�.

The source of the small remaining differences with ex-
periment is not clear. At low temperatures, some error must
be introduced by our neglect of spin statistics in the PIMC
calculation. However, PIMC calculations for para-H2 at 75,
100, and 200 K produced negligible differences from our
calculations with no spin restriction. The fully quantum cal-
culations with the isotropic potential were performed for
both normal hydrogen and para-H2 for all temperatures, and
the differences between the two were similarly small. Even
at the lowest temperature of 15 K, the normal-para differ-
ence was only 0.5 cm3 /mol. At high temperatures, some er-
ror is introduced because our potential is for H2 in its ground
state. At higher temperatures, increasingly higher rotational
states will be occupied, causing centrifugal stretching. This
increase in size of the molecule will cause B�T� to be higher
than it would otherwise be, which is at least consistent with
the direction of the trend at the high-temperature end of
Fig. 12.

VI. CONCLUSIONS

A four-dimensional interaction potential was developed
for the H2–H2 dimer, as well as its one-dimensional version
obtained by averaging over the angles �such a version is
needed for quantum calculations of transport properties�.
This potential is about an order of magnitude more accurate
than previously available potentials for this system and is
near the limit of what can be achieved with current compu-
tational capabilities. A further increase in accuracy of the
potential would be costly. The orbital calculations can be
performed in basis sets with the cardinal number larger by
one, as we did for the test points, as long as sufficient sym-
metry is present. However, for the configurations with no
symmetry, such calculations would be extremely memory
and time consuming, especially at the FCI level. Another
option is to extend the ECG calculations, but this in turn
would require huge amounts of computer and human times
to optimize the wave functions. A more realistic possibility
for developing a more accurate potential would be to use
Gaussian-geminal CCSD and SAPT codes to completely
saturate the bulk of the interaction energy, as was done in
Refs. 3, 4, 7, 8, 11, and 12 for He2.

The H2–H2 potential was used in semiclassical and
PIMC calculations of the second virial coefficient. In con-
trast to earlier results of Diep and Johnson22 �obtained with
an isotropic version of their potential�, we found that the full
quantum approach becomes important, giving corrections
comparable to experimental uncertainties already for tem-
peratures close to 200 K. Our PIMC results agree with ex-
periment to within the joint uncertainties �at 95% confidence
level� for most points in the range 50–600 K. For a couple of
points where this is not the case, the computed values almost
touch the experimental error bars.

Calculations of transport properties could further vali-
date the potential. Very recently, Mehl80 performed a fully
quantum calculation of the low-density limit of the viscosity

from the isotropic form of our potential using the methodol-
ogy described by Hurly and Mehl.10 The calculated viscosi-
ties are in excellent agreement with the recent precise mea-
surements of May et al.81 which extend from 213 to 394 K.
The measured viscosities all fall in the range between 0.01%
and 0.06% below the computed values. Viscosities calculated
from the isotropic form of the DJ potential deviate from the
data by about 0.6% over the same range.

When this work was nearly completed, a paper by
Hinde21 was published presenting a six-dimensional potential
energy surface for H2–H2. The surface was fitted to ab initio
CCSD�T� interaction energies computed in the
aug-cc-pVQZ+ �332� basis, i.e., a basis set one cardinal num-
ber smaller than used by us and also with a smaller set of
bond functions. No extrapolations were applied in Ref. 21.
As Table I shows, the aug-cc-pVQZ+ �332� basis set has an
uncertainty of 0.39 K at the minimum compared to the
CCSD�T� energy used in our fit. Hinde21 also calculated
CCSDT �the coupled-cluster method with the complete ac-
count of single, double, and triple excitations� interaction
energies on a subset of points using the aug-cc-pVTZ basis
and no extrapolations. The CCSDT method gives results
close to FCI for H2–H2: we have checked that for the mini-
mum, CCSDT recovers about 90% of the contribution be-
yond CCSD�T�. Thus, the use of CCSDT instead of FCI
introduces an uncertainty of about 0.2 K in the minimum
region. An additional uncertainty at the post-CCSD�T� level
arises from the fact that the basis set used by Hinde21 at this
level is smaller than the basis used by us. Although the sur-
face of Hinde21 is less accurate than that developed by us, it
has the important advantage of being six-dimensional. Thus,
the two surfaces complement each other very well.
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