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Non-technical abstract

Individual organisms on land and in the ocean sequester massive amounts of the carbon emitted
into the atmosphere by humans. Yet the role of ecosystems as a whole in modulating this
uptake of carbon is less clear. Here, we study several different mechanisms by which climate
change and ecosystems could interact. We show that climate change could cause changes in
ecosystems that reduce their capacity to take up carbon, further accelerating climate change.
More research on – and better governance of – interactions between climate change and
ecosystems is urgently required.

Technical abstract

Individual responses of terrestrial and marine species to future climate change will affect the
capacity of the land and ocean to store carbon. How system-level changes in the integrity of
the biosphere interact with climate change is more uncertain. Here, we explore the conse-
quences of different hypotheses on the interactions between the climate–carbon system and
the integrity of the terrestrial and marine biospheres. We investigate mechanisms including
impairment of terrestrial ecosystem functioning due to lagged ecosystem responses, perma-
frost thaw, terrestrial biodiversity loss and impacts of changes in marine biodiversity on the
marine biological pump. To investigate climate–biosphere interactions involving complex
concepts such as biosphere integrity, we designed and implemented conceptual representa-
tions of these climate–biosphere interactions in a stylized climate–carbon model. We find
that all four classes of interactions amplify climate change, potentially contributing up to
an additional 0.4°C warming across all representative concentration pathway scenarios by
the year 2100 and potentially turning the terrestrial biosphere into a net carbon source,
although uncertainties are large. The results of this preliminary quantitative study call for
more research on – and better integrated governance of – the interactions between climate
change and biosphere integrity, the two core ‘planetary boundaries’.

Social media summary

Healthy ecosystems are critical for combating climate change.

1. Introduction

The global environment that we experience today is a product of millions of years of
co-evolution of climate and the biosphere (Lenton et al., 2004). Concern over human perturba-
tions of the environment (such as water use, the introduction of novel substances into the envir-
onment, interference in biogeochemical cycles and land-use change) frequently stems from
concern about how these perturbations impact the ability of the climate or the biosphere to sup-
port humans. Although interactions between the biosphere and the physical climate system are
critical in determining the state of the Earth system, ecosystem-level feedbacks between the bio-
sphere and climate system are not routinely included in projections of or policy for climate
change. For example, biodiversity conservation is seen at best as a co-benefit of carbon seques-
tration measures, not as a strategy that could mitigate further climate change (Díaz et al., 2009);
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projections of greenhouse gas releases from degrading permafrost
soils, which comprise a loss of integrity of tundra biomes, are
based on simplified approaches (Koven et al., 2015) and not part
of Earth system models (Ciais et al., 2013); and responses of marine
ecosystems to acidification and temperature are considered import-
ant but rarely included in Earth system models (Ciais et al., 2013).

In the planetary boundary framework (Steffen et al., 2015),
which delimits the biophysical conditions needed to maintain
the Earth system in a ‘safe’ Holocene-like state, the two ‘core’
planetary boundaries of climate change and biosphere integrity
represent the geosphere and the biosphere of the Earth system
(Steffen et al., 2015). We use the terminology of ‘biosphere
integrity’, broadly defined as the long-term maintenance of key
structures and functions of the biosphere (Steffen et al., 2015),
as this emphasizes that aspects of the biosphere at multiple scales
beyond individual plant physiology, such as ecosystem function-
ing, are crucial for climate–biosphere interactions. Here, we are
specifically interested in ecosystem functions related to climate
and the carbon cycle such as the capacity to take up carbon
and the capacity to respond to climate change. Biosphere integrity
builds on earlier concepts such as biological integrity (Karr,
1990), ecological integrity (Mora, 2017; Parrish et al., 2003) and
ecosystem integrity (Dorren et al., 2004) by viewing this ‘integrity’
at the scale of the Earth system.

Here, we examine how loss of biosphere integrity could gener-
ate significant feedbacks to the climate system on policy-relevant
timescales of twenty-first-century climate change. This initial
study considers only climate–biosphere interactions involving
carbon storage, ignoring other biosphere feedbacks such as albedo
changes or changes to the hydrological cycle that could also
impact climate (Chapin et al., 2008). We focus on the effects of
four categories of biosphere integrity loss on carbon storage that
are not commonly included in comprehensive global models
(Figure 1): (1) Impairment of the capacity of terrestrial ecosystems
to store carbon due to lagged responses to climate change. Lagged

species responses are known to be an important feature of the ter-
restrial biosphere’s response to climate change (Loarie et al., 2009;
Wieczynski et al., 2019), although the magnitude of its effect on
the carbon cycle is uncertain. (2) Release of carbon from thawing
permafrost. The failure of tundra ecosystems to adapt to climate
change is expected to release large amounts of carbon
(Chadburn et al., 2017; Ciais et al., 2013; Koven et al., 2015;
MacDougall et al., 2015; Schaefer et al., 2014; Schneider von
Deimling et al., 2015; Schuur et al., 2015). Detailed land surface
models of permafrost have advanced understanding of potential
greenhouse gas releases (Burke et al., 2017; Ekici et al., 2014;
Guimberteau et al., 2018; Lawrence et al., 2015; Porada et al.,
2016), but these models are rarely incorporated into comprehen-
sive global models (Ciais et al., 2013; Hagemann et al., 2016). (3)
Effects of terrestrial biodiversity loss both directly on productivity
and indirectly via reduced resilience. Biodiversity loss is a major
global environmental problem (Cardinale et al., 2012; House
et al., 2005), which could have significant impacts on carbon stor-
age, though the degree to which biodiversity loss will impact the
global carbon cycle remains uncertain. Spatially explicit global
vegetation models such as LPJmL (Schaphoff et al., 2018) capture
major biogeophysical and biogeochemical controls on the
dynamic distributions of a few plant functional types, but they
include limited aspects of biodiversity (Prentice et al., 2007).
Local models such as forest succession models (Morin et al.,
2018) can display realistic biodiversity effects but would be
difficult to implement at the global scale. New kinds of global eco-
system models, such as the Madingley model (Purves et al., 2013),
focus on generic properties of dynamic ecosystems, but these
detailed models face computational and parameterization chal-
lenges in linking to global biogeophysical and biogeochemical
dynamics. (4) Changes in the marine biological pump due to
changes in marine biodiversity. The marine biological pump,
which transports carbon from the upper ocean to the deep
ocean, is an important part of the global carbon cycle. Changes

Fig. 1. Relationships between biosphere integrity mechanisms. The four items within the central box are the four types of biosphere integrity loss considered here.

In this model, these biosphere integrity mechanisms participate in a feedback with the global carbon cycle.
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to marine biodiversity caused by climate change may affect the
strength of this pump (Beaugrand et al., 2010; Riebesell et al.,
2017; Segschneider & Bendtsen, 2013), but the consequences of
changes in marine biodiversity are rarely included in comprehen-
sive global models (Ciais et al., 2013).

Since the biosphere integritymechanisms listed above are difficult
to implement in comprehensive global models, we here take an
approach at the opposite extreme of complexity.We extend a globally
aggregated climate–carbon cyclemodel (Lade et al., 2018) to estimate
the potential magnitudes of globally aggregated feedbacks between
biosphere integrity and climate change. We assess the strengths of
these mechanisms using metrics developed for climate–carbon
cycle feedbacks (Friedlingstein et al., 2001, 2006; Gregory et al.,
2009; Zickfeld et al., 2011). Our model and its results are not
intended to be definitive predictions, but rather to stimulate discus-
sion and research on the role of biosphere integrity in climate change.

2. Methods

To model interactions between biosphere integrity and climate,
we modified the climate–carbon cycle model of Lade et al.
(2018). This model studies the dynamics of globally aggregated
carbon stocks (in PgC) on land, ct, in the atmosphere, ca, and
in the ocean mixed layer, cm, as well as global mean surface tem-
perature relative to pre-industrial ΔT = T− T0 (in K). The model
represents exchanges of carbon between atmosphere and land via
net primary production, respiration and carbon emissions from
land-use change, and between atmosphere and the ocean mixed
layer via diffusion of carbon dioxide. Global mean surface tem-
perature responds in the model to changing atmospheric carbon
stocks with a specified climate sensitivity and with a time lag
due to ocean heat capacity. Carbon dioxide is released into the
atmosphere by fossil fuel combustion according to the representa-
tive concentration pathway (RCP) scenarios and is exported to the
deep ocean by the solubility pump. The model includes climate–
carbon and concentration–carbon feedbacks (Friedlingstein et al.,
2001) since the processes that exchange carbon between different
pools in the model depend on atmospheric carbon stocks (specif-
ically, net primary productivity and ocean–atmosphere diffusion)
and temperature (terrestrial respiration, the solubility pump and
the solubility of CO2 in the ocean).

There are many simple models that are used to gain a deeper
understanding of climate–carbon cycle feedbacks and that can
even emulate the outputs of comprehensive coupled atmosphere–
ocean and carbon cycle models (Anderies et al., 2013; Gasser et al.,
2017; Gregory et al., 2009; Joos et al., 1996; Meinshausen et al.,
2011a, 2011b; Raupach, 2013; Raupach et al., 2011). We specifically
used the model of Lade et al. (2018) as a starting point because:

• Its global aggregation of carbon stocks is of appropriate com-
plexity for the coarse-grained biosphere integrity mechanisms
we seek to include.

• It includes aggregated representations of key carbon cycle pro-
cesses. For example, Raupach’s Simple Carbon–Climate Model
(Raupach, 2013; Raupach et al., 2011) uses multiple greenhouse
gases, but does not include a mechanism-based description of
the marine component of the carbon cycle such as the solubility
and biological carbon pumps.

• It models processes relevant on our timescale of interest, a
policy-relevant timescale to 2100.

• It emulates the results of more complex models to within model
spread. Specifically, in Lade et al. (2018), the future carbon stocks

and temperatures generated by the model were tested against
historical changes and the future projections of comprehensive
climate–carbon models as reported by the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment Report
(AR5) (Ciais et al., 2013; Collins et al., 2013). The results of
the model were also tested against the various climate–carbon
cycle feedback metrics reported by Arora et al. (2013),
Friedlingstein et al. (2006) and Zickfeld et al. (2011).

In this section, we review Lade et al.’s model and describe our
modifications to account for the biosphere integrity mechanisms
in Table 1. These mechanisms in turn result in the new climate–
carbon cycle feedbacks shown in Figure 1. Loss of biosphere
integrity occurs when these mechanisms are activated: when
species responses lag behind climate change, leading to loss of
terrestrial carbon (a.i); when carbon is emitted from permafrost
(b.i); when loss of biodiversity occurs, leading in turn to loss of
capacity to take up carbon (c.i) or capacity to respond to climate
change (c.ii); or when temperature changes (d.i) or ocean
acidification (d.ii) cause changes in marine biodiversity that
weaken the marine biological pump. Undisturbed biosphere
integrity therefore corresponds to no lags in species responses,
no carbon emitted from permafrost, no loss of biodiversity
and no weakening of the biological pump due to changes in
marine biodiversity. We reiterate that some of these mechanisms
are highly controversial and their quantitative characteristics are
highly unconstrained.

A complete list of parameters is available in Table 2. Two new
parameters (KA, Qp) were sufficiently well constrained that we
could estimate plausible upper and lower bounds for those para-
meters. Those uncertainty estimates are described below. For all
other new parameters, we estimated their uncertainty using the
procedure described in Section 2.5.

2.1. Land

We added to the model of Lade et al. (2018) three factors affecting
terrestrial carbon storage: response lag, biodiversity loss and
permafrost thaw.

2.1.1. Response lag
Changes in plant photosynthesis and plant and soil respiration
rates due to climate change are commonly included in compre-
hensive Earth system models, although large uncertainties remain
about their responses to future climates (Ahlström et al., 2015;
Arora et al., 2013). Other processes may, however, limit the rate
at which species communities can respond in time (such as phen-
ology (Xia et al., 2015) and community trait responses (Norberg
et al., 2001)) and in space (such as range shifts (Davis & Shaw,
2001)) to climate change (Essl et al., 2015; Svenning & Sandel,
2013) (Table 1a.i), particularly to the present very rapid rate of cli-
matic change (Gaffney & Steffen, 2017). Slow or unsynchronized
changes in phenology could severely disrupt ecosystem function-
ing. For example, shifts in insect hatching dates or the timing of
vegetation development (Visser, 2008) can disrupt interactions
such as plant–pollinator relationships (Memmott et al., 2007),
in turn diminishing the ecosystem’s primary productivity (Xia
et al., 2015). Changes in the spatial distribution of climate
patterns will render some species communities unsuited to their
current location, which together with limited rates of migration
(Settele et al., 2015) may also significantly affect carbon storage
(Ahlström et al., 2015).
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The species trait modelling of Norberg (2004) introduces a
state variable z that represents the optimal temperature for the
growth rate of a species and may lag behind the current tempera-
ture T. By analogy, we introduce a state variable z that represents
the global mean surface temperature to which global distributions
of species are currently best adapted. The magnitude of the differ-
ence |Δz− ΔT| is then the response lag. Note that Δz = z – z0 is
different from the Δ defined in Enquist et al. (2015). We charac-
terize the change in z, Δz, in response to changes in temperature
ΔT with two parameters as follows: the response rate rg, where 1/rg
gives the response timescale in response to small temperature per-
turbations. Ecosystems likely also have a maximum rate of
response, which we parameterize with vmax. We therefore write:

dDz

dt
= vmaxH(DT,Dz) tanh

rg(DT − Dz)

vmax
. (1)

In the absence of any other more plausible functional form, we
chose the tanh function to ensure a linear response − rg(ΔT− Δz)
for small ΔT− Δz and a constant vmax for large ΔT− Δz. The
function H represents a biodiversity-dependent further slowing
of species responses, to be explained in further detail below. We
assume that failure to respond to climatic changes sufficiently
quickly – that is, a Δz <ΔT – leads to a temporary loss of aggre-
gated terrestrial carbon carrying capacity given by:

KA|DT − Dz|. (2)

This formulation assumes that if ecosystem response Δz can at
some point in the future ‘catch up’ to temperature changes ΔT,
then carbon storage will return to full capacity.

We calibrated rg = 0.025 yr−1 to match the observation that
species migration and community composition responses over

the second half of the twentieth century have been approximately
half the rate of climate change – that is, Δz/ΔT ≈ 0.5 (Ash et al.,
2016; Bertrand et al., 2011). For vmax, we note that the current vel-
ocity of climate change (Loarie et al., 2009) already exceeds most
historical migration speeds (Davis & Shaw, 2001). We assume that
ecosystems can adapt to at most vmax = 0.2°C/decade
(Schellnhuber, 2010).

We estimate the parameter KA, the sensitivity of carbon storage
to response lag, as follows: two specific parts of the world’s forests
that are predicted to lose significant amounts of carbon under
near-term climate change are the Amazon rainforest and boreal
forests. A recent review by Steffen et al. (2018) found a potential
loss of carbon due to Amazon and boreal dieback under 2°C
warming of 25 PgC (uncertainty range 15–55 PgC) and 30 PgC
(uncertainty range 10–40 PgC). These two carbon sources sum
to approximately 55 PgC (uncertainty range 25–95 PgC). Our
simulations indicate a lag of |Δz− ΔT|≈ 1°C after 2°C warming;
by Eq. (2) we therefore estimate KA≈ 55 PgC/K (uncertainty
range 25–95 PgC/K). This estimate is consistent with the older
result of Solomon and Kirilenko (1997), who investigated the
difference in carbon storage between the extreme scenarios of
no forest migration (Δz = 0, in our terminology) and instant
biome migration (Δz = ΔT). They found carbon loss (combined
soil and vegetation) under the no migration scenario compared
to the instant migration scenario of 50 PgC/K (100 PgC under
about 2°C temperature rise). A similar study by Van Minnen
et al. (2000) found a response of 190 PgC/K (500 PgC under
2.7°C temperature rise), which we discard as an outlier.

2.1.2. Biodiversity loss
Biodiversity in terrestrial ecosystems is a critical factor for their
primary productivity (Morin et al., 2018; Weisser et al., 2017)
and their capacity to sink and store carbon (Zhang et al., 2018).

Table 1. Relationships between climate change and the biosphere. This is a limited selection of the literature and is not intended to be exhaustive.

Effect of climate change on terrestrial or marine

carbon storage Evidence

(a) Response lag

i. Lagged species responses leads to lower short-term

carbon storage

Mechanisms such as slow or mismatched phenological changes (Visser, 2008) or limited migration

speeds (Loarie et al., 2009) with local empirical support but rarely modelled

(b) Permafrost thaw

i. Climate change will lead to carbon emissions from

permafrost

Widespread scientific agreement (Ciais et al., 2013), although the magnitude of emissions is

uncertain (Ciais et al., 2013; Koven et al., 2015; Schaefer et al., 2014; Schneider von Deimling et al.,
2015)

(c) Terrestrial biodiversity loss

i. Biodiversity loss directly reduces productivity and
therefore carbon storage capacity

Supported by some local studies (Cardinale et al., 2012; Castro-Izaguirre et al., 2016; Liang et al.,
2016; Poorter et al., 2015; Ricketts et al., 2016; Van de Perre et al., 2018), although some other

studies find no effect (Adair et al., 2018; Sullivan et al., 2017; van der Plas, 2019). Theoretical

arguments based on less biodiverse systems being less able to exploit niches (Liang et al., 2015) or

biodiversity loss selectively targeting tree species with high carbon capture capacity

ii. Biodiversity loss reduces the resilience of species

communities

Theoretical support (Folke et al., 2004; Isbell et al., 2015; Thompson et al., 2009) and some local

studies (Hautier et al., 2015; House et al., 2005), but limited empirical support for effect on carbon
cycle in forests (Miles et al., 2010)

(d) Changes in marine biodiversity affecting marine

biological pump

i. Temperature affects biological pump via marine

biodiversity

Temperature effects are likely though direction and magnitude are uncertain (Segschneider &

Bendtsen, 2013)

ii. Acidification affects biological pump via marine

biodiversity

Acidification effects are likely, although magnitude is uncertain (Riebesell et al., 2017)
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Empirical studies of diversity–functionality relationships have
mostly used species richness to measure diversity. To parameter-
ize relationships involving biodiversity, we therefore use species
richness, although theoretical arguments indicate measures that
account for the functional role of species may more accurately
predict ecosystem function (Dıaz & Cabido, 2001). Where avail-
able, we use the biodiversity intactness index as a measure of bio-
diversity, since this abundance-weighted measure may approach
the functional effect of species loss more closely than species rich-
ness (Mace et al., 2014; Scholes & Biggs, 2005; Steffen et al., 2015).

We modelled two classes of mechanisms that affect biodiver-
sity. First, human activities such as land-use change and land-
scape homogenization are directly affecting biodiversity (Pereira
et al., 2010; Pimm et al., 2014). Second, climate-mediated impacts,
such as climatic changes leading to species becoming maladapted
to their local climate, will also affect biodiversity (Bellard et al.,
2012). We coarsely represent the direct (e.g., land clearing) and

indirect (via climate change) effects on a globally aggregated
measure of biodiversity, I:

I(DT,Dz) = 1− ICC|DT − Dz| − Id(t), (3)

where Id(t) specifies direct human impacts on biodiversity and
ICC specifies the effect of climate change on biodiversity per eco-
system climate response lag |ΔT− Δz|. Since terrestrial carbon is
stored mostly in plants and soils, we envision the biodiversity
modelled here as primarily composed of plant biodiversity.
A globally aggregated measure may underestimate the effects of
local and functional extinctions, which are likely to be more
relevant for relationships between biodiversity and ecosystem
function (Hooper et al., 2012). On the other hand, introduced
species could mitigate the impact of global biodiversity loss by
locally increasing species diversity (Sax & Gaines, 2003).

Table 2. Model parameters and inputs. All parameters in (a) are from Lade et al. (2018); sources for (b) are described in the text. Uncertainties were only estimated

for the new parameters for this paper, (b).

Name Symbol Value (uncertainty)

(a) Carbon cycle parameters from Lade et al.

Pre-industrial carbon stocks ca0 589 PgC

ct0 1875 PgC

cm0 900 PgC

Transient climate sensitivity λ 1.8 K

Climate lag τ 4 years

Pre-industrial net primary productivity NPP0 55 PgC/year

Solubility pump rate w0 0.1 year−1

Weakening of overturning circulation with climate change wT 10%/K

Atmosphere–ocean CO2 diffusion D 1 year–1

Revelle (buffer) factor r 12.5

Reduction of solubility with temperature DT 4.23%/K

Pre-industrial biological pump B0 13 PgC/year

Temperature dependence of biological pump BT 3.2%/K

Terrestrial respiration temperature dependence QR 1.72

Fertilization effect KC 0.3

Fossil fuel emissions e(t) RCP scenarios

Land-use emissions LUC(T) RCP scenarios

(b) Parameters for biosphere–climate interactions new to this paper

Exponent in biodiversity–function relationship θ 0.26 (0–0.52)

Effect of climate change on biodiversity ICC 5 (0–10)%/K

Response relaxation rate rg 0.025 (0.0125–0.0500) year–1

Maximum response rate vmax 0.02 (0.01–0.04)°C/year

Terrestrial carbon storage loss due to response lag KA 55 (25–95) PgC/K

Permafrost thaw temperature response pT 22.5 (10–40) PgC/K

Biodiversity-mediated acidification effects on marine biological pump BA 0.019 (0–0.038)%/μatm

Biodiversity-mediated temperature effects on marine biological pump BTB 0.7 (0–1.4)%/K

Biodiversity loss from direct human impacts Id(t) 10% until 2000; then additional 10%, 12%, 14% and 18%

under RCP2.6, RCP4.5, RCP6 and RCP8.5, respectively,

until 2100
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For direct human impacts on biodiversity, Id(t), we assumed a
conservative scenario of 10% loss from pre-industrial conditions
until 2000, based on the 15% loss of biodiversity intactness
index recently estimated by Newbold et al. (2016) using 2015
data. Projections of future impacts vary widely; for example,
extinction rate estimates vary from 60% per century to a hundred-
fold smaller (Pereira et al., 2010; Pimm et al., 2014). Here, we
accommodate the differences in land-use change among the dif-
ferent RCP scenarios. We use predicted gross land-use transitions
as a proxy for direct human impacts on biodiversity since net
land-use transitions ignore phenomena that will impact biodiver-
sity such as shifting cultivation (Yue et al., 2018). We extend our
historical 10% cumulative biodiversity loss scaled by comparing
historical cumulative gross land-use transitions (2857 × 106 km2

over 1500–2000; Hurtt et al., 2011) with predicted twenty-first-
century gross land-use change transitions (2926, 3351, 4072 and
5041 × 106 km2 under RCP2.6, RCP4.5, RCP6 and RCP8.5,
respectively; Hurtt et al., 2011). This scaling yields projected
biodiversity losses in the twenty-first century (in addition to his-
torical losses) of 10%, 12%, 14% and 18% under RCP2.6, RCP4.5,
RCP6 and RCP8.5, respectively.

The impacts of climate change on biodiversity, ICC, are also
uncertain (Bellard et al., 2012). Under high-emissions scenarios,
climate-mediated loss of vascular plant biodiversity may reach
5% or more by 2100 (van Vuuren et al., 2006). Since our
model predicts T− z≈ 1 by 2100, we set ICC = 5%/K, so that
losses reach 5% by 2100. Under this parameterization, climate-
mediated effects on biodiversity are initially unlikely to exceed
direct human impacts, but may be comparable by 2100, matching
the predictions of van Vuuren et al. (2006).

We identified two classes of mechanisms for how biodiversity
loss may in turn affect carbon storage (Table 1c). First, while the
effect is still controversial, decreased biodiversity has been shown
to substantially affect the productivity of forest (Liang et al., 2016)
and herbaceous (Weisser et al., 2017) ecosystems. For example,
biodiversity loss can reduce the ability of an ecosystem to effi-
ciently exploit its niches through the complementarity effect
(Liang et al., 2015), although the long-term effect remains uncer-
tain (Cardinale et al., 2012). Even highly managed monocultures
may be less productive than natural ecosystems encompassing
many species (Weisser et al., 2017). Other results, however,
show no or weak relationships between biodiversity and carbon
storage (Adair et al., 2018; Sullivan et al., 2017). Second, biodiver-
sity loss may reduce the resilience of species communities to
climate change, in the sense that a reduced diversity of organisms
is available to exploit new climatic conditions in their current
location or to migrate to a new location (Miles et al., 2010).

For the relationship between biodiversity loss and productivity,
we use the relationship from Liang et al. (2016):

logH(DT,Dz) = u log I(DT,Dz), (4)

who found θ = 0.26 (Liang et al., 2016). This relationship is close
to the empirical results also found by Hooper et al. (2012) and
qualitatively similar to the classic relationship predicted by
Naeem (2002). The initial slope (∂H/∂I = θ = 0.26 at I = 1) is
also similar to the linear productivity–functioning fits recently
obtained by Morin et al. (2018), which are around a third of
initial productivity over the full range of biodiversity loss. For
the relationship between biodiversity loss and capacity to respond
to climate change, we use the same biodiversity–function relation-
ship H(ΔT, Δz) as given by Eq. (4) in the absence of useful

empirical relationships. We caution that the biodiversity–function
relationship will likely depend on both scale (Thompson et al.,
2018) and temperature (García et al., 2018), factors that we do
not include here due to a lack of data.

It remains to incorporate the effects of loss of ecosystem func-
tion into the carbon cycle model. In the model of Lade et al.
(2018), the dynamics of terrestrial carbon is:

dct

dt
=

NPP0

ct0
QDT/10

R [K(ca,DT,Dz)− ct]− LUC(t), (5)

where NPP0 is pre-industrial terrestrial net primary productivity,
QR specifies the temperature dependence of respiration from the
terrestrial carbon pool (not including permafrost) and LUC(t)
represents carbon emissions due to land-use change. We modify
Lade et al.’s expression for terrestrial carbon carrying capacity
K to include the effects of response lag and biodiversity loss
introduced in Eqs (1–4), giving:

K(ca,DT,Dz) = H(DT,Dz)
1+ KC log

ca

ca0

QDT/10
R

ct0

−KA|DT − Dz|,

From the original model, KC specifies the strength of the
response of NPP to CO2, known as the CO2 fertilization effect,
and ca0 is the pre-industrial atmospheric carbon stock. The new
factor H(ΔT, Δz) of the first term from Eq. (4) models the reduc-
tion of carbon storage capacity as a result of biodiversity loss,
while the new final term KA|ΔT− Δz| from Eq. (2) models loss
of carbon storage due to response lag.

2.1.3. Permafrost thaw
Using the observation that cumulative emissions from permafrost
at 2100 under the RCP scenarios (Schneider von Deimling et al.,
2015) are approximately proportional to increases in global mean
surface temperature by 2100 (Collins et al., 2013), we model
cumulative emission from permafrost with:

cp = pTD⌈T ⌉. (7)

On the timescales of our model, permafrost thaw is effectively
a one-way process: reduction of global mean temperature would
not lead to emitted permafrost carbon being reabsorbed. We
implement this ‘one-way valve’ through a temperature variable
D⌈T ⌉ that responds only to temperature increases:

d⌈T ⌉

dt
= max

dT

dt
, 0

( )

. (8)

The dynamics of temperature T in the model are defined in
Section 2.3. We set the initial value of D⌈T ⌉ to 0. We classify
permafrost thaw as a loss of biosphere integrity (Table 1b),
since permafrost thaw may be considered a failure of tundra eco-
systems to maintain their integrity in response to local climate
changes (Schmidt et al., 2011).

We estimated the value of pT as follows: the IPCC AR5 gave an
estimate of 50–250 PgC vulnerable to loss as both CO2 and CH4

by 2100 under the high-emissions RCP8.5 scenario (Ciais et al.,
2013), equivalent to 14–68 PgC/K. Since the publication of the
AR5, there have been several pertinent studies regarding perma-
frost thawing (Koven et al., 2015; Schaefer et al., 2014;
Schneider von Deimling et al., 2015). A recent review (Steffen
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et al., 2018) summarized this literature with a figure of 45 PgC
(uncertainty range 20–80 PgC) under 2°C warming; that is, a
response of pT = 22.5 PgC/K (uncertainty range 10–40 PgC/K).

We caution that this linear approach to emissions from perma-
frost may be inaccurate for timescales longer than those considered
in this study or for scenarios other than the RCP, since in our
model emissions from permafrost are not limited by available
permafrost carbon stocks. A more accurate and mechanistic treat-
ment would involve explicit modelling of permafrost carbon stocks
as well as rates of thawing and emission (Gasser et al., 2018).

2.2. Ocean

The marine biosphere is also closely interlinked with the global car-
bon cycle. The marine biological pump, alongside the solubility
pump, controls themarine carbon cycle. State-of-the-art globalmod-
els predict that the biological pump may weaken by around 12% by
2100 under anRCP8.5 scenario, duemostly to increased stratification
reducing nutrient delivery to the upper ocean and thereby decreasing
primary production, although this prediction is uncertain (Bopp
et al., 2013). Ocean warming and acidification may additionally
shift marine biodiversity towards smaller organisms that are less
likely to transport carbon into the deep ocean (Beaugrand et al.,
2010; Riebesell et al., 2017; Segschneider & Bendtsen, 2013). Here,
we investigated changes to marine biosphere integrity as represented
by biodiversity-mediated changes to the biological pump.

For marine carbon, the main change to the model of Lade
et al. (2018) is to modify the representation of the marine
biological pump (which includes the carbonate and soft-tissue
pumps). To represent the additional effects of temperature on
the biological pump via changes in marine biodiversity, we
include an extra temperature-dependent term, BTBΔT. For the
effects of acidification, we let BA be the effect of ocean acidifica-
tion on the strength of the biological pump in units of fractional
change relative to pre-industrial conditions per unit change in
partial pressure of CO2 in the upper ocean, p(cm, ΔT ). We then
obtain the final expression for the strength of the biological pump:

B(DT, p(cm,DT)) = B0(1− BTDT − BTBDT)

× (1− BA[ p(cm,DT)− ca0]). (9)

We set BA = 0.019%/μatm to match the experimental sedimen-
tation rate results of Riebesell et al. (2017). We calibrated
BTB = 0.7%/K to match predicted decreased atmosphere to
ocean flux of 0.2 PgC/year by 2100 under RCP8.5
(Segschneider & Bendtsen, 2013).

The form for B in Eq. (9) can then be used in the existing
equation of Lade et al. (2018) for the dissolved inorganic carbon
content of the ocean mixed layer, cm:

dcm

dt
=

Dcm0

rp(cm0, 0)
(ca − p(cm,DT))+ B(0, ca0)

− B(DT, p(cm,DT))

− w0(1− wTDT)(cm − cm(0)), (10)

in which the partial pressure of CO2 is given by:

p(cm,DT) = ca0
cm

cm0

( )r 1

1− DTDT
. (11)

Parameters carried over from Lade et al. (2018) are the rate at
which the ocean mixed layer is replaced by the solubility pump,

w0; the temperature sensitivity of the solubility pump, wT; the
rate of atmosphere–ocean CO2 diffusion, D; the Revelle (buffer)
factor for CO2, r; the temperature sensitivity of CO2 solubility,
DT; the strength of the pre-industrial biological pump, B0; the tem-
perature sensitivity of the biological pump, BT; and pre-industrial
ocean mixed-layer carbon stock, cm0. The parameter BT represents
non-biodiversity-related temperature effects on the biological
pump as represented in conventional global models. In Lade
et al. (2018), BTwas estimated frommodel results in which the bio-
logical pump weakens due to a decrease in primary production, in
turn due to strengthening thermal stratification of ocean waters
(Bopp et al., 2013). Although recent research suggests that depth
rather than strength of stratification may be more important for
marine productivity (Richardson & Bendtsen, 2019), we retain
the estimate of Lade et al. (2018) for consistency.

To calculate the total (surface plus deep) ocean carbon storage,
cm, any of several equivalent expressions can be used:

DcM = Dcm +

∫t

w0(1− wTDT)(cm − cm0)dt

+

∫t

(B(DT, p(cm,DT)))− B(0, ca0)dt

=

∫t

D(ca0 − p(cm,DT))dt

=

∫t

e(t)dt − ca − ct + ca0 + ct0,

where e(t) is the rate of fossil fuel emissions of CO2.

2.3. Atmosphere

We calculate the atmospheric carbon content, ca, by carbon con-
servation in our ‘system’ composed of carbon stocks in the ocean
mixed layer, atmosphere and terrestrial biosphere. Our model has
three processes that affect this ‘system carbon’: emissions of fossil
carbon into the atmosphere, e(t); export of carbon into the deep
ocean by the solubility and biological pumps; and emissions from
permafrost carbon. Equation (7) gives cumulative emissions from
permafrost, while the other two processes are parameterized in
terms of rates. We therefore write:

ca + ct + cm = ca0 + ct0 + cm0 + cs + cp, (12)

where cs is the change in ‘system carbon’ contributed by fossil fuel
emissions and the biological pump. To calculate cs, we solve:

dcs

dt
= e(t)− w0(1− wTDT)(cm − cm0)

− (B(DT, p(cm,DT))− B(0, ca0)),

with initial condition cs = 0.
To obtain the dynamics of atmosphere carbon stocks, we

therefore solve Eq. (13) and then use the carbon balance equation
Eq. (12) to find ca.

The expression for the response of global mean surface tem-
perature T to atmospheric carbon content ca is also unchanged:

dT

dt
=

1

t

l

log 2
log

ca

ca0

( )

− DT

( )

. (14)

Parameters carried over fromLade et al. are the climate sensitivity
(specifically, transient climate response), λ, and the climate lag, τ.
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2.4. Feedback analysis

For many of the biosphere integrity mechanisms introduced
above, it is controversial as to whether a mechanism that only
has theoretical motivation or only has been observed at small
scales actually has a significant impact on the global carbon
cycle. Parameterizations of these mechanisms are also often
highly unconstrained. We therefore test the potential impacts of
each mechanism in turn and one scenario of their potential com-
bined effect where all mechanisms are active.

For each mechanism, we perform one reference simulation
with the mechanism ‘switched off’ and then one simulation
with the mechanism ‘switched on’. These switches are achieved
by changing parameter values to activate and deactivate different
mechanisms as listed in Table 3. We include in our analysis the
conventional climate–carbon and concentration–carbon feed-
backs (Friedlingstein et al., 2001, 2006; Gregory et al., 2009;
Zickfeld et al., 2011) analysed by Lade et al. (2018), as well as
each biosphere integrity mechanism introduced in this paper
and one final feedback analysis where all biosphere integrity
mechanisms are switched on. To avoid as much as possible the
effects of interacting feedbacks, the reference (‘feedback off’)
simulations for the biosphere integrity mechanisms have the
ocean decoupled when studying land mechanisms and vice
versa. We introduce the following definitions for simulation
runs that are listed in Table 3:

• Land uncoupled: ct is held constant, which can be achieved by
setting KC, LUC(t) = 0 and QR = 1 in the Lade et al. model and
additionally ICC, Id = 0 and QP = 1 in the full model.

• Ocean CO2 uncoupled: changes in atmospheric carbon concen-
tration do not affect ocean carbon, which can be achieved by
replacing ca with ca0 in Eq. (10).

• Ocean uncoupled: cm is held constant, which can be achieved by
‘Ocean CO2 uncoupled’ above together withwT, DT, BT = 0 in
the Lade et al. model and additionallyBA, BTB = 0 in the full
model.

• Fully uncoupled: both ct and cm are held constant, which can be
achieved in the model by using parameters from both ‘Land
uncoupled’ and ‘Ocean uncoupled’.

As in Lade et al. (2018), changes in Δca and ΔT are estimated
over simulation runs from 1750 to 2100. The model is driven by:
historical records and future RCP scenarios (RCP2.6, 4.5, 6 and
8.5) for fossil fuel emissions e(t) and land-use change emissions
LUC(t) (Meinshausen et al., 2011a) taken from the RCP
Database (https://tntcat.iiasa.ac.at/RcpDb); and the scenarios for
direct human impacts on biodiversity Id(t) described above and
in Table 2. Parameters are as listed in Table 2 except when modi-
fied as per individual simulations as listed in Table 3. We note
that the model variants studied here are unlikely to match
observed historical carbon cycle dynamics as closely as the base
model from Lade et al. (2018). Recalibrating the model for each
run would, however, make assessing the additional warming con-
tributed by each new biosphere integrity mechanism more diffi-
cult. We therefore retain Lade et al.’s parameterization
throughout.

From the results of these simulations, we estimated three mea-
sures for the strength of the mechanisms: (1) the feedback factor

Table 3. Model simulations run for feedback analysis. The feedback ‘off’ model for c.ii is the feedback ‘on’ model for a.i since c.ii modifies the response lag

introduced in a.i.

Feedback Feedback ‘off’ model Feedback ‘on’ model

(a) Feedbacks from model of Lade et al.

(2018)

Land climate–carbon Fully uncoupled Lade et al. with ocean uncoupled and KC, LUC(t) = 0

Ocean climate–carbon Fully uncoupled Lade et al. with land uncoupled and ocean CO2 uncoupled

Land concentration–carbon Fully uncoupled Lade et al. with λ = 0 and ocean uncoupled

Ocean concentration–carbon Fully uncoupled Lade et al. with λ = 0 and land uncoupled

Total land Fully uncoupled Lade et al. with ocean uncoupled

Total ocean Fully uncoupled Lade et al. with land uncoupled

(b) New feedbacks in this model

Response lag (a.i) Lade et al. with ocean
decoupled

Full model with ocean uncoupled, QP = 1, and H = 1 in Eqs (1) and (6)

Permafrost thaw (b.i) Lade et al. with ocean
decoupled

Full model with ocean uncoupled, KA = 0, and H = 1 in Eqs (1) and (6)

Biodiversity–productivity effect (c.i) Lade et al. with ocean
uncoupled

Full model with ocean uncoupled, large values for rg and vmax, QP = 1, and
H = 1 in Eq. (1)

Biodiversity–resilience effect (c.ii) (a.i) feedback ‘on’ Full model with ocean uncoupled, QP = 1, and H = 1 in Eq. (6)

Marine biological pump temperature
effect (d.i)

Lade et al. with land
uncoupled

Full model with land uncoupled and BA = 0

Marine biological pump acidification
effect (d.ii)

Lade et al. with land
uncoupled

Full model with land uncoupled and BTB = 0

Total biosphere integrity feedbacks Lade et al. Full model
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(Zickfeld et al., 2011):

Dcona
Dcoffa

; (15)

(2) the additional atmospheric carbon contributed by the
mechanism:

Dcona − Dcoffa ; (16)

and (3) the additional warming contributed by the mechanism:

DTon − DToff , (17)

where the superscripts ‘on’ and ‘off’ denote changes with the
mechanism active compared to the reference run with the mech-
anism off. For the feedback factor calculations in Eq. (15), we add-
itionally set biodiversity loss from direct human action Id = 0 and
land-use change emissions LUC(t) = 0, since these represent
external drivers and not internal climate–carbon feedbacks trig-
gered by fossil fuel emissions.

2.5. Uncertainty analysis

Some parameters (KA, Qp) are sufficiently well constrained that we
could estimate plausible upper and lower bounds for those para-
meters. For other parameters (θ, ICC, BA, BTB), we assigned naïve
lower and upper bounds of zero and twice the central parameter
estimate, respectively. For multiplicative parameters where a value
of zero would have led to model output that did not change over
time (rg, vmax), we assigned lower and upper bounds of half and
twice the central parameter estimate, respectively. These lower
and upper bounds are shown in square brackets in Table 2. We
did not estimate uncertainty ranges for the parameters inherited
from the model of Lade et al. (2018) without biosphere integrity
mechanisms since (1) uncertainty ranges were not estimated in
that study and (2) the purpose of the present study is to estimate
the additional feedbacks and warming contributed by biosphere
integrity mechanisms, using Lade et al. as a baseline.

We assigned uniform probability distributions to these para-
meters with the central ‘best estimate’ as the median; that is:

P(x) =

0.5

c− l
, l , x , c

0.5

u− c
, c , x , u

0, otherwise

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

where l, c and u are the lower bound, central ‘best estimate’ and
upper bound of the parameter, respectively. For model runs study-
ing individual biosphere integrity mechanisms, this leads to
approximately uniform distributions of the output variable. We
therefore plot these results using a bar to indicate the uncertainty
range and a marker to indicate the output using the central ‘best
estimate’ parameter values. Model runs studying possible total
biosphere integrity effects produce a less trivial distribution of
the output variable, since this model convolves the uniform distri-
butions of multiple parameters. We present the distributions of the
output variables for these models using box-and-whisker plots.

We also performed a sensitivity analysis to test the dependence
of the model’s results on the parameters of the model. We chose

the total additional warming contributed by all biosphere integrity
mechanisms under RCP8.5 as a representative result on which to
test sensitivity.

3. Results

Using each of the three feedback metrics listed in Eqs (15), (16)
and (17), Figure 2 measures: the generic climate–carbon cycle
feedbacks analysed by Lade et al. (2018) in their baseline
model; each new biosphere integrity mechanism introduced in
this article; and the total effect of the new biosphere integrity
mechanisms. (We did not, however, measure the extra warming
contributed by the baseline climate–carbon feedbacks since meas-
uring some of these feedbacks involves disconnecting the climate
part of the model.)

We caution that the uncertainty ranges associated with the
biosphere integrity mechanisms, however, are very large.
Permafrost thaw was the only mechanism for which there was
empirical support for a non-zero effect. All other mechanisms
could have anywhere between zero effect to feedbacks that con-
tributed warming up to several tenths of a degree (Figure 2B).
The following results should therefore be treated as well-informed
speculation. Quantitative results listed in the text refer to the cen-
tral ‘best estimates’ produced by our model (see Section 2.5), but
for many mechanisms there is substantial uncertainty over
whether the mechanism operates at all, let alone its magnitude.

The feedbacks measured in the baseline model (top part of
Figure 2A) reproduce the results found in Lade et al. (2018).
Land and ocean climate–carbon feedbacks (where a change in cli-
mate causes a change in land or ocean carbon stocks, respectively,
which causes a change in atmospheric carbon and thereby cli-
mate) were both positive. In the model, these positive feedbacks
occur due to the dependence of terrestrial respiration rates, the
marine solubility pump, marine biological pump and ocean
CO2 solubility on temperature (Lade et al., 2018). Land and
ocean concentration–carbon feedbacks (where a change in atmos-
pheric carbon causes a change in land or ocean carbon stocks,
respectively, which causes a change in atmospheric carbon)
were both negative (Figure 2A). In the model, these negative feed-
backs occur due to the dependence of terrestrial productivity on
CO2 concentration and the diffusion of atmospheric CO2 into
the ocean (Lade et al., 2018). Both land and ocean climate–carbon
cycle feedbacks (combing both climate–carbon and concentra-
tion–carbon feedbacks) were negative overall, although they
were weakest for the extreme RCP8.5 scenario.

All feedback metrics are positive for the new biosphere integrity
mechanisms, as expected; that is, they all could contribute add-
itional climate–carbon cycle feedbacks that lead to additional
atmospheric carbon stocks and additional climate warming
(Figure 2). The biodiversity–productivity effect (c.i) – that is, bio-
diversity loss leading to reduced productivity and thereby reduced
carbon storage – was the strongest mechanism in the warming
(Figure 2B) and atmospheric carbon (Figure 2C) metrics according
to their central ‘best estimates’. When calculating the feedback
factor metric (Figure 2A), we switched off the direct human
impacts on biodiversity (Id(t)) since this impact constitutes a driver
and not a feedback within the model. This significantly reduced the
strength of the biodiversity–productivity effect, indicating that
direct human impacts dominate over climate-mediated impacts
in the model. The next three largest mechanisms, according to
their central estimates, were response lag (a.i), permafrost thaw
(b.i) and the marine biological pump acidification effect (d.ii).

Global Sustainability 9

https://doi.org/10.1017/sus.2019.18 Published online by Cambridge University Press

https://doi.org/10.1017/sus.2019.18


Fig. 2. Results of the climate–carbon cycle–biosphere integrity model. (A) Feedbacks reported by Lade et al. (2018) without biosphere integrity feedbacks (top);

biosphere integrity feedbacks new to this paper (middle); and total biosphere integrity feedbacks assuming all biosphere integrity mechanisms are active. We plot

the feedback factor minus one so that positive numbers correspond to positive (reinforcing) feedbacks and negative numbers correspond to negative (balancing)

feedbacks. In this plot, we also set direct biodiversity losses and land-use change emissions to zero (Id(t) = 0 and LUC(t) = 0) so that only endogenous carbon cycle

feedbacks to atmospheric carbon changes triggered by fossil fuel emissions are included. (B) Additional warming and (C) additional atmospheric carbon dioxide

contributed by losses of biosphere integrity. Labels for different biosphere integrity mechanisms (a.i, b.i, etc.) refer to the list in Table 1.
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The biodiversity–resilience effect (c.ii) was the weakest of the
biosphere integrity mechanisms considered here. We speculate
that the biodiversity–resilience effect is small because it is a
‘second-order mechanism’, in that it requires both a substantial
lag between climate and ecosystem response (ΔT− Δz) and a suf-
ficient biodiversity-mediated increase in response lag (H(ΔT, Δz))
to have developed (see Eq. 1). While a longer simulation may
allow these factors to develop, preliminary results indicate that
the effect remains small compared to other mechanisms, even
on longer timescales. We note, however, that our assumptions
for biodiversity loss are also relatively conservative, excluding
any explicit biodiversity tipping points or similar mechanisms.

Of the four categories of biosphere integrity mechanisms, the
marine effects (d.i and d.ii) were smallest. Their combined effects,
which reached central estimates of approximately 0.1°C under all
scenarios (Figure 2B), are significant compared to a 1.5°C global
goal, but less than from the biosphere integrity mechanisms in the
terrestrial biosphere. The 100-year timescale considered here,
however, is relatively short for ocean dynamics. On long time-
scales, the marine biosphere may be the critical factor constrain-
ing atmospheric carbon dioxide levels (Sigman & Boyle, 2000).

Mirroring the baseline model results, the feedback factors for
the biosphere integrity mechanisms were generally the same or
slightly smaller for the more extreme RCP scenarios. The extra
atmospheric carbon contributed by each mechanism was, how-
ever, generally larger for the more extreme RCP scenarios.
Feedback factors are the ratio between changes in atmospheric
carbon with the mechanism active and inactive. That the extra
atmospheric carbon contributed increased with the RCP scenario
indicates, therefore, that the reduction in amplification associated
with a reduced feedback factor did not outweigh the increase in
atmospheric carbon content associated with the greater fossil
fuel emissions of the more extreme RCP scenarios. Remarkably,
the maximum additional warming (Figure 2B) is roughly the
same across the four RCP emissions scenarios. Feedbacks in high-
emissions scenarios release more carbon into the atmosphere than
in low-emissions scenarios (Figure 2C), but this is balanced by the
lower marginal sensitivity of temperature to atmospheric carbon
at high atmospheric carbon levels (Myhre et al., 1998). That
temperature is less sensitive to atmospheric carbon under large
carbon emissions, however, does not make mitigating climate
change easier; in fact, at high atmospheric carbon levels, greater
reductions of carbon emissions will be required to mitigate the
same magnitude of warming.

None of the individual biosphere integrity mechanisms are
likely to outweigh existing climate–carbon cycle feedbacks and
turn the land or ocean into net carbon sources. However, lags
in ecosystem response and permafrost thaw could together
halve the total land carbon feedback, according to their central
estimates (Figure 2A). The combined effects of these feedbacks
could generate a positive carbon-cycle feedback, leading to up
to an additional 0.1°C or more of warming (Figure 2B), according
to their central estimates under all RCP scenarios. About half of
this additional warming was due to carbon releases from warming
and thawing permafrost soils and half was due to range shifts. The
direct impact of biodiversity loss on terrestrial primary produc-
tion (Table 1c.i) could contribute a warming exceeding 0.2°C
(Figure 2B), according to its central estimate under all RCP scen-
arios, and also contribute an additional positive feedback that, if
all terrestrial biosphere integrity mechanisms considered here
are active, could exceed the baseline terrestrial carbon sink
under all emissions scenarios (compare ‘Total land’ above the

line with all terrestrial biodiversity integrity mechanisms in
Figure 2C).

The net additional warming of all biosphere integrity mechan-
isms considered here could exceed 0.4°C (Figure 2B, bottom line),
according to their central estimates under all RCP scenarios. This
may seem to be a relatively small amount, but it is substantial
compared to a 1.5 or 2.0°C target. For example, given a median
transient climate response to cumulative emissions of 1.29°C
per 1000 GtC (Millar et al., 2017), 0.4°C corresponds to a substan-
tial reduction in allowable cumulative emissions of around
310 GtC independently of the temperature target itself.

The sensitivity analysis (Figure 3) shows that the total add-
itional warming is most sensitive to λ, which is not surprising,
as λ controls the sensitivity of temperature change to atmospheric
carbon dioxide levels. Of the other parameters, none stands out as
exceptionally significant. Of the parameters related to the bio-
sphere integrity mechanisms, total additional warming is most
sensitive to θ, which controls the shape of the biodiversity–
function relationship.

4. Discussion

We used a stylized global carbon cycle model to study four classes
of interactions between biosphere integrity and climate: response
lags, permafrost thaw, terrestrial biodiversity loss and changes
in marine biodiversity that affect the marine biological pump
(Table 1). We found that response lags, permafrost thaw and ter-
restrial vegetation biodiversity loss could significantly undermine
mitigation efforts to reduce fossil fuels emissions. If all of these
mechanisms are active, they could lead to land becoming a net
carbon source by 2100, according to their central estimates.

Fig. 3. Sensitivity analysis. Sensitivity of the central estimate of the total additional

warming contributed by all biosphere integrity mechanisms under RCP8.5 (Figure 2B,

bottom line) to all model parameters. Sensitivity was computed by increasing and

decreasing each parameter in turn by 10% above and below its nominal value.

Fractional sensitivity is reported; that is, a value of x indicates that a change in the

parameter of y% will cause a change in the total warming by xy% (in the local linear

approximation). Parameters above the line indicate those inherited from the baseline

model of Lade et al. (2018); parameters below the line indicate new parameters.
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Marine biosphere integrity mechanisms were the weakest of the
four classes of interactions considered here, although this result
may be due to the short timescales considered here, as the marine
biosphere may be the critical factor constraining atmospheric car-
bon dioxide levels in the long term (Sigman & Boyle, 2000). Many
of the biosphere integrity mechanisms studied here are, however,
highly unconstrained, and the results should be treated as highly
speculative.

Our work points to several arenas of research and policy that
could support better understanding and policy-making regarding
the interplay between biosphere integrity and climate change. In
global modelling, our results suggest that a deeper integration of
sophisticated models of the biosphere, incorporating biodiversity,
permafrost dynamics and complex ecosystem structure, may be
essential for meaningful future assessments of anthropogenic cli-
mate change. Such next-generation global biosphere models are
becoming available (Purves et al., 2013), but they are not yet
coupled to other relevant parts of the Earth system. Our work
highlights the need for further research on biodiversity and eco-
system functioning, including how the interplay between range
shift speeds, local trait diversity and ecosystem functioning
(Isbell et al., 2017; Pecl et al., 2017; Wieczynski et al., 2019) can
lead to an integrated understanding of biosphere response cap-
acity in relation to climate change (Enquist et al., 2015). In the
ocean, while it is traditionally assumed that heavily ballasted
phytoplankton are responsible for the majority of carbon transfer
via the biological pump, future climate-mediated changes to mar-
ine biota may lead to other organisms dominating carbon transfer
(Segschneider & Bendtsen, 2013).

The interactions and feedbacks between biosphere integrity
and climate imply that current global governance of biodiversity
and climate change also needs to interact in new ways. The
world’s societies have acknowledged the importance of the
climate and biosphere individually through the United Nations
Framework Convention on Climate Change and the Convention
of Biological Diversity. To inform these policy processes, scientific
advisory bodies have been established: the IPCC and the
Intergovernmental Platform on Biodiversity and Ecosystem
Services (IPBES). The IPCC’s projections of impacts of human
activities on climate are based on coupled ocean–atmosphere
models of carbon and energy flows that take limited account of
the role of biological diversity. IPBES, on the other hand, is cur-
rently focused on species, their distributions and their direct ben-
efits to societies; attention to ecosystem functioning and Earth
system dynamics is less prominent. The divergent policy priorities
of IPCC and IPBES and the use of such disparate currencies as
CO2-equivalents and species in their respective science communi-
ties and modelling tools preclude the serious exploration of the
potential interactions of climate change with the biologically
controlled stocks and flows in the global carbon cycle. We call
for the work of bodies such as the IPCC and IPBES to be better
integrated.

Here, we have undertaken one of the first studies of planetary
boundary interactions. The planetary boundary framework has
been popular in some sectors of government and business, but
the boundaries are conventionally presented as not interacting.
We extended a previous stylized carbon cycle model to study
the potential feedbacks between the climate change and biosphere
integrity planetary boundaries. In addition to climate change
causing loss of biosphere integrity, we analysed several mechan-
isms by which loss of biosphere integrity could accelerate climate
change and lead to a significant feedback between climate change

and loss of biosphere integrity. Analysing and synthesizing
interactions between the planetary boundaries may assist policy-
makers in recognizing the importance of interactions between
climate change, biosphere integrity and other environmental
policy challenges.
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