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Evidence supports an association between maternal exposure to air pollution during pregnancy and children’s
health outcomes. Recent interest has focused on identifying critical windows of vulnerability. An analysis based on a
distributed lag model (DLM) can yield estimates of a critical window that are different from those from an analysis that
regresses the outcome on each of the 3 trimester-average exposures (TAEs). Using a simulation study, we assessed
bias in estimates of critical windows obtained using 3 regression approaches: 1) 3 separate models to estimate the
association with each of the 3 TAEs; 2) a single model to jointly estimate the association between the outcome and all
3 TAEs; and 3) a DLM. We used weekly fine-particulate-matter exposure data for 238 births in a birth cohort in and
around Boston, Massachusetts, and a simulated outcome and time-varying exposure effect. Estimates using separate
models for each TAEwere biased and identified incorrect windows. This bias arose from seasonal trends in particulate
matter that induced correlation between TAEs. Including all TAEs in a singlemodel reduced bias. DLM produced unbi-
ased estimates and added flexibility to identify windows. Analysis of body mass index z score and fat mass in the
same cohort highlighted inconsistent estimates from the 3 methods.

air pollution; children’s health; confounding bias; critical windows; distributed lag models; seasonality

Abbreviations: ACCESS, Asthma Coalition on Community, Environment, and Social Stress; BMIz, body mass index z score; DLM,
distributed lagmodel; PM2.5, particulate matter having an aerodynamic diameter of ≤2.5 μm; TAE, trimester average exposure.

There is a growing body of epidemiologic and experimental
evidence that supports an association between maternal expo-
sures to air pollution and both birth and children’s health out-
comes, including decreased birth weight and increased risk of
preterm birth and childhood wheeze (1–8). Because prenatal
development occurs through a multiple-event process starting
in early gestation (9), it is hypothesized that the association
between maternal exposure to air pollution and children’s
health outcomes may vary throughout pregnancy. In particu-
lar, there may be critical windows during which there is an
increased association between prenatal exposure and a future
health outcome (10–12). However, different statistical approaches
to estimate the association between exposure over the course of
pregnancy and future health outcomes can result in substantially
different estimates of the exposure effect and can identify differ-
ent critical windows.

With regards to air pollution and child health, the most com-
monly used approach to estimate the association betweenmater-
nal exposures during pregnancy and a future health outcome
is to regress the outcome on each trimester average exposure
(TAE) separately in 3 regression models. Several recent papers
reviewed numerous studies that have taken this approach to esti-
mate the association betweenmaternal exposures to fine particu-
late matter (having an aerodynamic diameter of ≤2.5 μm
(PM2.5)) and children’s health outcomes (3, 13, 14). The use of
TAEs is particularly appealing because it is easy to implement
and interpret. Further, it is convenient given that pregnancy is
typically 9months long and easily broken down into intervals of
3 months. However, biological changes do not cleanly follow 3-
month intervals, and the potential for windows to span multiple
trimesters or to exist in periods shorter or longer than 3 months
must be considered.
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Several recent studies have proposed data-driven methods,
such as distributed lag models (DLMs), to estimate the associa-
tion between maternal exposure to PM2.5 and children’s health
outcomes (15–19). The DLM framework was originally devel-
oped for time-series analysis where an outcome observed on a
given day is regressed on exposures over a previous time period
to estimate how the effect of exposure on 1 day is distributed
over the subsequent time period (20, 21). When applied to
maternal exposure during pregnancy, the DLM regresses a
child’s health outcome on exposure measured at regular inter-
vals, such as daily or weekly, throughout the pregnancy. In
this setting, the DLM estimates the time-varying association
between a time-varying exposure and an outcome observed at
a single time. DLMs are often constrained so that the exposure
effect varies smoothly over time using a parametric model
(such as a quadratic function of time), splines, Bayesian priors,
or other penalization approach (21, 22), but they are not con-
strained to correspond with clinically defined trimesters. Hence
the class of DLMs is a data-driven approach to identifying
critical windows and is likely to identify critical windows that
would be missed by traditional regression approaches.

This work was motivated by analyses of data from a Boston-
area prebirth cohort designed to identify critical windows of air
pollution exposures on multiple children’s health outcomes.
Preliminary analyses of the relationship between weekly PM2.5

exposure and several children’s health outcomes showed that
the results were sensitive to the analysis method used and differ-
ent conclusions would be reached with different methods.
In the present work, we compared statistical approaches to esti-
mating the association between maternal exposure to air pollu-
tion during pregnancy and children’s health outcomes in both a
simulation study and data analysis. The approaches are: 1) a
model with a single TAE without controlling for exposures
in the other 2 trimesters; 2) amodel containing all TAEs in a sin-
gle regression model; and 3) a DLM. The simulation study
is designed to illustrate and quantify the bias in the estimated
time-varying exposure effects using these methods under 6
realistic scenarios.We then illustrated the sensitivity of estimates
obtained from the methods by estimating the relationship
between PM2.5 and each of body mass index z score (BMIz)
and fat mass in the same cohort as a case study.

METHODS

Data

We used data from the Asthma Coalition on Community,
Environment, andSocial Stress (ACCESS) project (23).ACCESS
is a prospective, longitudinal study originally funded to recruit
n = 500 mother-child pairs between August 2002 and January
2007. The women were at least 18 years of age, spoke English
or Spanish, and received prenatal care at one of 2 hospitals in
the Boston,Massachusetts, area or at affiliated community health
centers.

Between 3 and 6 (mean = 3.95; standard deviation, 0.67)
years of age, child weight and height were measured using a
calibrated scale. BMIz was derived based on 2000 Centers for
Disease Control and Prevention reference data (24), based on
the sex of the child and age at measurement. Fat mass was
determined based on bipolar bioelectrical impedance assessed

using the BIM4 bioimpedance analyzer (Impedimed, Queens-
land, Australia) (25).

Maternal exposures to PM2.5 were estimated based on resi-
dential address using a hybrid land-use regression model that
incorporated satellite-derived aerosol optical depth measures
(26). Each mother was assigned an average PM2.5 exposure
value for each week of pregnancy based on the predicted values
at her address of residence. We limited our analysis to full-term
births (at least 37 weeks’ gestation) and to exposures during the
first 37 weeks of pregnancy, for which we had complete expo-
sure data for all full-term births.

Statistical methods

We estimated the association between weekly PM2.5 expo-
sure over the first 37 weeks of pregnancy and 2 outcomes, BMIz
and fat mass, using linear regression. To compare the estimates
under different modeling assumptions, we employed different
regression approaches.

Separate TAE. The “separate TAE” approach uses separate
regression models to estimate the association between each of
the TAEs and the outcome. The model to estimate the associa-
tion between the jth TAE (TAEj for j = 1,2,3) and the outcome
(Y) for individual = …i n1, , is

ϵ= β + α + γ + ( )Y zTAE , 1i j
S

j
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where zi is a vector of baseline covariates, β j
S, α j

S, and γ j
S are

unknown regression coefficients, and ϵij
S are independent and

identically distributed mean zero residuals. We fitted this model
separately for each TAE, j = 1,2,3. Each model estimates the
association between 1 TAE and the outcome without control-
ling for the other 2 TAEs. The regression coefficient α j

S repre-
sents the cumulative effect over trimester j.

Joint TAE. The “joint TAE” approach estimates the associ-
ation between all TAEs and the outcome in a single regression
model. The joint TAEmodel is
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Using this approach, α j
J represents the cumulative effect

over trimester j adjusted for the other 2 TAEs.
Distributed lag model. The DLM assumes that the associ-

ation between exposure and outcome varies smoothly over time.
TheDLM takes the form
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where αt
D is the regression coefficient for week t. While any

of several models for the functional form of αt
D as a function

of t can be employed (17–19, 27), we modeled α = α( )tt
D as

a natural cubic spline. The model controls for the exposure in
every other week but makes the assumption that the associa-
tion between exposure and outcome varies smoothly across
weeks. Fitting this model requires the specification of the de-
grees of freedom of the natural splines. We selected degrees
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of freedom by letting it range from 3 to 20 and selecting the
best-fitting model using generalized cross-validation (28).

The DLM estimates the weekly association between expo-
sure and outcome. The 2 TAE-based models estimate the cumu-
lative exposure effect over each trimester. To make the models
comparable, we divided the estimated regression coefficient from
the joint and separate TAE approaches by the number of weeks
in a given trimester. This results in an estimate of the weekly
association between exposure and outcome.

Simulation study

We compared the methods in a simulation study designed to
evaluate the bias in each method under 6 plausible patterns for
the time-varying exposure effect. This included an exposure
effect in 1 trimester only, exposure effect in multiple trimesters,
constant exposure effect over the whole pregnancy, and no ex-
posure effect.

For the simulation study we used the observed PM2.5 expo-
sures from the 238 births in the ACCESS data for which there
were complete exposure data (up to 37 weeks). Using the real
exposure from the ACCESS data ensured realistic seasonal
trends and autocorrelation among the weekly exposures.

We simulated the outcomes from a DLM following equa-
tion 3. The week-specific exposure effects were constructed to
vary smoothly over time using B-splines, and the outcome is
Gaussian with variance 100. This gave an average signal-to-
noise ratio of about 1:5 across the 6 scenarios. The simulation
assumed that no other covariates affect the outcome. In order to
isolate the impact of the choice of model, and not any additional
residual confounding, there were no seasonal trends in the sim-
ulation other than those that can be fully explained by the
observed PM2.5 exposures. Additional details on the simulation
are provided in Web Appendix 1 (available at https://academic.
oup.com/aje).

We compared the performance of the regression approaches
in 6 simulated scenarios. These scenarios are specified to have:
exposure effect in a critical window that aligns with clinically
defined trimesters (scenarios 1 and 2); exposure effect in a criti-
cal window that does not align with clinically defined trimes-
ters (scenarios 3 and 4); a constant exposure effect across all
37 weeks (scenario 5); and no exposure effect (scenario 6). For
each scenario, we simulated 1,000 data sets and analyzed each
data set with all of the regression approaches.

Analysis of the association between PM2.5 and BMIz and
fat mass

Weapplied the approaches to estimate the association between
maternal exposure to PM2.5 during pregnancy and child BMIz
and fat mass in the ACCESS cohort, both overall and stratified
by sex.

We controlled for potential confounding variables: maternal
age at enrollment, maternal prepregnancy body mass index,
child age at measurement of BMIz and fat mass, an indicator
for mother self-reported race (African-American, Hispanic,
non-Hispanic White), and an indicator for mother’s highest
level of education less than a high school diploma. In addition,
we included indicators for missing race, educational level,
maternal body mass index, season of birth, and child’s sex.

RESULTS

Correlation in the TAEs

There were 238 mother-child pairs for which there were
complete data on exposure through 37 weeks’ gestation and
BMIz. Complete information including fat mass was available
for 224 of those children. Table 1 shows the average and stan-
dard deviation of the TAEs as well as the correlation between
the TAEs for PM2.5 among the 238 births. The mean exposure
was fairly constant across trimesters, ranging from 10.65 μg/m3

to 10.81 μg/m3. The standard deviations range from 1.52 to
1.87. The TAEs are correlated. TAE1 and TAE3 are positively
correlated with each other (Pearson correlation, 0.67). On the
other hand, TAE2 is negatively correlated with both TAE1 and
TAE3 (correlations of−0.34 and−0.39, respectively).

Figure 1 illustrates that this correlation structure arises from
seasonal trends in PM2.5. The figure shows PM2.5 levels in Suf-
folk County, Massachusetts, in 2007 and 2008, as an example,
with a smoothed trend line. The horizontal lines span the first,
second, and third trimesters for hypothetical births. The height
of the lines shows levels of the TAEs for each hypothetical
birth. For each of the hypothetical births, the TAEs show an
oscillating up-down-up or down-up-down pattern. This pattern
results in the positive correlation between TAE1 and TAE3 and
negative correlation between TAE2 and the other 2 TAEs.

Simulation study

Figure 2 shows results from the simulation study. In scenar-
ios 1 and 2, we simulated situations where there was an expo-
sure effect in 1 trimester only (in trimester 3 for scenario 1 and
in trimester 2 for scenario 2). For the trimester where there was
a true exposure effect, all methods yield an unbiased effect esti-
mate. Additionally, joint TAE and DLM both resulted in unbi-
ased estimates in the trimesters where there was no exposure
effect. However, estimates from the separate TAE approach
were biased in the trimesters where there was no true exposure
effect. Specifically, estimates in scenario 1 from the sepa-
rate TAE approach were positively biased in TAE1 and neg-
atively biased in TAE2. In scenario 2, the estimates using
the separate TAE approach were negatively biased for both
TAE1 and TAE3. Hence, when there was a true exposure effect

Table 1. Summary of Trimester Average Exposures for 238Mother-
Child Pairs Using Data From the AsthmaCoalition on Community,
Environment, and Social Stress in Boston, Massachusetts,
2002–2009a

PM2.5 in μg/m3,
Mean (SD)

CorrelationWith

TAE1 TAE2 TAE3

TAE1 10.81 (1.87) 1.00 −0.34 0.67

TAE2 10.69 (1.52) −0.34 1.00 −0.39

TAE3 10.65 (1.83) 0.67 −0.39 1.00

Abbreviations: PM2.5, particulatematter having an aerodynamic diame-
ter of≤2.5 μm;SD, standard deviation; TAE, trimester average exposure.

a The table shows the mean values and standard deviations of the
TAE for each trimester and the Pearson correlation between TAEs.
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in only 1 trimester, both joint TAEmodel and DLMwere unbi-
ased, but the separate TAE approach was biased.

In scenarios 3 and 4, the critical windows did not align with
clinically defined trimesters. For scenario 3, the window spanned
parts of the second and third trimester while for scenario 4 the
window was the entire second half of pregnancy. In both scenar-
ios 3 and 4, the separate TAE approach was biased. The esti-
mated exposure effect in the first trimester was larger than
the exposure effect in the second trimester, despite a true expo-
sure effect in the second trimester but no true exposure effect in
the first trimester.

For both scenarios 3 and 4, the DLMmodel resulted in unbi-
ased estimates. The joint TAE model correctly identified that
the largest exposure effect was in the third trimester and the
smallest was in the first trimester, but the estimates were slightly
biased for each trimester.

In scenario 5, there was a constant exposure effect over the
entire 37 weeks of gestation. Both the DLM and the joint TAE
model were unbiased. The separate TAE model was again
biased, showing positively biased estimates in the first and
third trimester and a negative bias in the second trimester.

Finally, in scenario 6, there was no exposure effect. All meth-
ods were unbiased. This is the only scenario for which the sep-
arate TAE model was unbiased. Additional results for the
cumulative effect are shown in Web Table 1.

Analysis of the association between PM2.5 and BMIz

Figure 3 shows the estimated association between maternal
PM2.5 exposure and BMIz, both overall and stratified by sex.
The analysis includes 238 births (108 girls and 130 boys). All
regression models in the data analysis adjusted for the potential
confounders previously described.

In the overall analysis, the methods all estimated only a
small association between time-varying exposure and out-
come. None of the methods identified a critical window.

For the boy-specific analysis, the joint TAE and DLM ap-
proaches intensified the largest association between expo-
sure and outcome during the second trimester. However, the
separate TAE model estimated the smallest association during
the second trimester. Hence, while the joint TAE andDLM sug-
gested that there may be a critical window around the second tri-
mester, the separate TAE provided the contradictory result that
there was a decreased association between exposure and out-
come during that same period.

For the girl-specific analysis, the methods all identified a
negative association between exposure in the second and third
trimesters and the outcome. The separate TAEmodel estimated
a smaller association than the other 2 methods, but the general
pattern was consistent across all methods.

Analysis of the association between PM2.5 and fat mass

Figure 4 shows the overall and sex-specific estimates of the
association between maternal PM2.5 exposure and fat mass
as well as 95% pointwise confidence bands. The analysis
included 224 births (94 girls and 130 boys). All estimates were
adjusted for the potential confounders previously described.

The methods estimated similar overall trends. For both the
overall analysis and the boy-specific analysis, the methods all
estimated the that largest association was in the second trimes-
ter. For the girl-specific analysis, the methods all estimated a
decreasing trend with the largest association in the first trimes-
ter and a negative association in the third trimester. However,
the methods differed in terms of magnitude and significance.
Only the joint TAE and the DLM approaches found a significant
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Figure 1. Illustration of how seasonal patterns in particulate matter having an aerodynamic diameter of ≤2.5 μm (PM2.5) result in the correlation
between trimester average exposures (TAEs) in Suffolk County, Massachusetts, 2007 and 2009. The gray dots are PM2.5 values, and the gray line
is the smoothed trend. The horizontal line segments illustrate the TAEs for hypothetical births (each line type—solid, long dash, and short dash—is
a different birth). The horizontal line segments are vertically aligned to the TAE and each span 1 trimester.
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Figure 2. Results from the simulation study comparing the joint trimester average exposure (TAE), separate TAE, and distributed lag model
(DLM) approaches. A) Joint TAE and scenario 1; B) separate TAE and scenario 1; C) DLM and scenario 1; D) joint TAE and scenario 2; E) separate
TAE and scenario 2; F) DLM and scenario 2; G) joint TAE and scenario 3; H) separate TAE and scenario 3; I) DLM and scenario 3; J) joint TAE and
scenario 4; K) separate TAE and scenario 4; L) DLM and scenario 4; M) joint TAE and scenario 5; N) separate TAE and scenario 5; O) DLM and
scenario 5; P) joint TAE and scenario 6; Q) separate TAE and scenario 6; and R) DLM and scenario 6. The estimated DLM functions were con-
structed with natural splines with the degrees of freedom selected with generalized cross-validation. The gray lines show the simulated true expo-
sure effects for each week. The black lines are themean estimated weekly exposure effects over 1,000 simulated data sets.
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association for boys in the second trimester. In large part, the
lack of significance in the separate TAE model was due to a
smaller point estimate. Web Table 2 shows the cumulative
and trimester-specific estimates using each method.

DISCUSSION

Many studies have estimated the association between mater-
nal exposure to PM2.5 during pregnancy and outcomes at birth
or in children’s health. Ambient air pollution exposure data
can be observed daily. The potential to leverage the high tem-
poral resolution of exposure data to define biologically relevant
critical windows is only beginning to be appreciated. Use of
TAEs to estimate the exposure effect, with or without control-
ling for exposure in other trimesters, is a popular method of
choice (3, 13, 14). Several other recent studies have estimated
the association using DLMs (15–19, 29). We have shown
through a simulation study and in a real-data analysis that these
approaches can result in substantially different estimates of the
association between exposure and outcome, particularly with
respect to the ranking of the trimester-specific effect sizes.

The results of the simulation study highlighted that estimat-
ing the effect of an exposure during a given window without
controlling for exposures in other time windows (the separate
TAE approach) can result in biased estimates. Adjusting for
exposure during other time periods (joint TAE or DLM) reduced
this bias. In several cases (simulation scenarios 3 and 4), the esti-
mates with the separate TAE approach failed to rank the trimes-
ters correctly by the strength of their association with the
outcome (Figure 2H and 2K). We demonstrated that this bias
could be eliminated when employing a DLM.

Bias in the trimester-specific effect estimates arose due to
seasonal trends in air pollution exposures that result in correla-
tion between TAEs (Table 1 and Figure 1).When one estimates
the association between the TAEs and the outcome without
controlling for other TAEs, the other TAEs act as unmeasured
confounders if they are also associated with the outcome. For
example, in simulation scenario 1, TAE3 was positively associ-
atedwith both the outcome andTAE1.When estimating the asso-
ciation between TAE1 and the outcome without controlling for
TAE3, the estimated exposure effect of TAE1 was positively
biased. In reality, season and other factors that are predictive
of seasonal trends in air pollution are the confounding factors.
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Figure 3. Results from the analysis of the association between particulate matter having an aerodynamic diameter of ≤2.5 μm (PM2.5) and body
mass index z score (BMIz) in data from the AsthmaCoalition on Community, Environment, and Social Stress in the area of Boston, Massachusetts,
2002–2009. The estimates are for all children (n = 238), boys only (n = 130), and girls only (n = 108), each using methods from among joint trimes-
ter average exposure (TAE), separate TAE, and distributed lagmodel (DLM). A) Joint TAE; B) separate TAE; C) DLM; D) joint TAE for boys; E) sep-
arate TAE for boys; F) DLM for boys; G) joint TAE for girls; H) separate TAE for girls; I) DLM for girls. For each estimate using DLM, there were 3
degrees of freedom. All estimates were adjusted for maternal race, maternal age, maternal prepregnancy body mass index, maternal educational
level, and age of the child when BMIz was measured. The overall estimate was adjusted for child sex. The thick lines show the estimated values,
and the gray ribbons show the 95% pointwise confidence intervals.
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When the true critical window is 1 or more trimesters (simu-
lation scenarios 1 and 2), the joint TAE and DLM approaches
were unbiased. Hence, controlling for exposure during the other
trimesters eliminates this bias. However, when the critical win-
dow did not align with the trimester boundaries (simulation sce-
narios 3 and 4), both the joint TAEmodel and the separate TAE
model were misspecified. In this situation, the DLM was the
only unbiased approach tested here.

The analysis of the ACCESS cohort further highlights the
sensitivity of results to the method of analysis. For the analysis
of BMIz, the joint TAE and DLM analysis found the greatest
association between PM2.5 and BMIz in the second trimester
for boys. However, the separate TAE approach found the weak-
est association during that same time period (Figure 3E). For fat
mass, the joint TAE and DLM found a statistically significant
window for boys during the second trimester. However, the
separate TAE approach found a weaker association during that
period and no statistical significance (Figure 4E). In both analy-
ses, correlation between TAEs resulted in estimates from the
separate TAE approach that were compressed toward the null

relative to the estimates obtained with the other methods. Sex
differences may result for a number of reasons. The prenatal
developmental process is not homogeneous across sexes,
and sensitive stages of development during which the neo-
nate is vulnerable may occur during different time periods
for boys and girls. This may result in a different pattern and
strength of association between exposure and outcome between
the sexes.

In light of these results, we recommend using the DLM
approach when the air pollution exposures are measured at a
sufficiently fine temporal resolution to apply the method (e.g.,
daily or weekly). Both the joint TAE and DLM approaches
adjust for exposure during different periods of gestation and
reduce the bias incurred by the separate TAE approach. The
joint TAEmodel was unbiased when the exposure was associ-
ated with the outcome only in critical windows that align with
clinically defined trimesters or is constant. When the critical
window did not align with trimesters, the joint TAE estimates
were slightly biased but showed a pattern generally consistent
with the true exposure effect.

−0.6

−0.3

0.0

0.3

0.6

0 10 20 30

Week

0 10 20 30

Week

0 10 20 30

Week

0 10 20 30

Week

0 10 20 30

Week

0 10 20 30

Week

0 10 20 30

Week

0 10 20 30

Week

0 10 20 30

Week

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

A) B) C)

−0.6

−0.3

0.0

0.3

0.6

D) E) F)

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

C
ha

ng
e 

in
 F

at
 M

as
s,

 k
g

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

G) H) I)

Figure 4. Results from the analysis of the association between fine particulate matter (PM2.5) and fat mass (kg) in data from the Asthma Coalition
on Community, Environment, and Social Stress in the area of Boston, Massachusetts, 2002–2009. The estimates are for all children (n = 224),
boys only (n = 130), and girls only (n = 94), each usingmethods from among joint trimester average exposure (TAE), separate TAE, and distributed
lag model (DLM). A) Joint TAE; B) separate TAE; C) DLM; D) joint TAE for boys; E) separate TAE for boys; F) DLM for boys; G) joint TAE for girls;
H) separate TAE for girls; I) DLM for girls. For each estimate using DLM, there were 3 degrees of freedom. All estimates were adjusted for maternal
race, maternal age, maternal prepregnancy body mass index, maternal educational level, and age of the child when fat mass was measured. The
overall estimate was adjusted for child sex. The thick lines show the estimated values, and the gray ribbons show the 95% pointwise confidence
intervals.
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The DLM model is the most flexible model tested here. In
all simulation scenarios, the DLM model performed well.
DLM has the added advantage of not prespecifying a critical
window, which itself can introduce bias. The flexibility of the
DLM is better able to capture peaks in the time-varying expo-
sure effect and can evaluate the effect of acute changes in expo-
sure that would be muted by averaging over a 3-month window.
Furthermore, the DLM was the only method with unbiased
estimates of the cumulative effect (Web Table 1). The results
also showed that none of the methods will identify an associ-
ation when there is not a true association at any time during
pregnancy.

The simulated data contained no residual seasonal effects
that were not explained by the exposure. Hence, further adjust-
ing for seasonality will not sufficiently control for confounding
in the separate TAEmodel. However, it is important to note that
in real-data analyses, seasonal trends may confound the ex-
posure effect through other pathways. It is therefore important
to adjust for seasonal trends in practice even when controlling
for exposures over other time periods.

We are not the first to note that correlation between TAEs
can bias trimester-specific effect estimates.Motivated by corre-
lation between TAEs, Slama et al. (30) presented results for
both the separate TAE and joint TAE models to estimate the
effect of PM2.5 and nitrogen dioxide (NO2) on birth weight.
Several results were statistically significant with the separate
TAE model but not with the joint TAE model. Bell et al. (31)
also addressed this issue by removing the correlation between
TAEs via regression (32–33). This approach uses exposure
variables: 1) TAE1; 2) residuals from regressing TAE2 on
TAE1; and 3) residuals from regressing TAE3 on TAE1 and
TAE2 (which is then repeated after permuting the order of the
TAEs). The effect of the first method is the same as the TAE1
effect estimated with the separate TAE approach. The estimate
of third method is the same as the estimated TAE3 effect in the
joint TAE approach. Hence, this can be viewed as an alterna-
tive version of the separate TAE and joint TAE approaches.
Another approach suggested within a causal inference frame-
work is to use an imperfect negative control such postbirth
exposure (34).

A notable limitation of this work is that we investigated the
correlation structure among trimester-specific exposures to
PM2.5 in the Boston area of Massachusetts. Seasonal patterns
and the resulting correlation between TAEs may be different
for different air pollutants and weather exposures or for other
locations. Another limitation is that the DLM model requires
selection of a tuning parameter. Here, we used generalized
cross-validation, which can result in oversmoothed DLMs
when the signal-to-noise ratio is small (see simulation scenario 2).
However, the correct windowwas still identified.When there
is more data or a larger signal-to-noise ratio, the tuning is more
accurate. The natural spline basis used to constrain the DLM
in this work is one of several formulations of the DLM. Other
approaches include parametric models, Bayesian priors, other
penalization approaches, or a cross-basis for nonlinear effects
(35–37). Although they are not explored in this paper, it is im-
portant to note that these other formulations also properly
adjust for exposure throughout pregnancy and can be expected
to eliminate the bias observed with TAE models in this paper.
Finally, the simulation study presented here focused solely on

bias due to seasonal trends in exposure and isolated this from
other potential sources of bias, such as from additional resid-
ual confounding. We did not investigate whether any of the
methods are more or less prone to confounding by other factors.
That issue deserves separate investigation.

When interest focuses on the association between maternal
exposure to air pollution during pregnancy and birth or chil-
dren’s health outcomes, the separate TAE model, arguably the
most commonly used approach, can result in biased estimates
of the exposure effect. The DLM yields unbiased estimates and
adds flexibility to identify windows that do not correspond to a
clinically defined trimester. When one uses TAEs, the joint
TAE model should be used. DLM is preferred to using TAEs
when possible.

ACKNOWLEDGMENTS

Author affiliations: Department of Statistics, Colorado State
University, Fort Collins, Colorado (AnderWilson);
Department of EnvironmentalMedicine and Public Health,
Icahn School ofMedicine atMount Sinai, NewYork,
NewYork (Yueh-HsiuMathilda Chiu, Hsiao-Hsien Leon
Hsu, Robert O.Wright, Rosalind J.Wright); Kravis Children’s
Hospital, Department of Pediatrics, Icahn School ofMedicine
atMount Sinai, NewYork, NewYork (Yueh-HsiuMathilda
Chiu, Rosalind J.Wright); Institute for Exposomic Research,
Icahn School ofMedicine atMount Sinai, NewYork,
NewYork (Robert O.Wright, Rosalind J.Wright); and
Department of Biostatistics, Harvard T.H. Chan School of
Public Health, Boston, Massachusetts (Brent A. Coull).

This workwas supported by the US Environmental
Protection Agency (grant 834798) and National Institutes of
Health (grants ES020871, ES007142, CA134294, ES000002,
ES023515, ES013744, OD023337, OD023286, and UG3
OD023337). The Asthma Coalition on Community,
Environment, and Social Stress study has been supported by
the National Institutes of Health (grants R01 ES010932, U01
HL072494, and R01 HL080674).

This publication’s contents are solely the responsibility of
the grantee and do not necessarily represent the official views
of the US Environmental Protection Agency.

Conflict of interest: none declared.

REFERENCES

1. Edwards S, Maxson P, Sandberg N, et al. Air pollution and
pregnancy outcomes. In: Nadadur SS, Hollingsworth JW, eds.
Air Pollution and Health Effects. London, United Kingdom:
Springer-Verlag; 2015:51–91.

2. Stieb DM, Chen L, Eshoul M, et al. Ambient air pollution, birth
weight and preterm birth: a systematic review and meta-
analysis. Environ Res. 2012;117:100–111.

3. Shah PS, Balkhair T. Air pollution and birth outcomes: a
systematic review. Environ Int. 2011;37(2):498–516.

4. Srám RJ, Binková B, Dejmek J, et al. Ambient air pollution
and pregnancy outcomes: a review of the literature. Environ
Health Perspect. 2005;113(4):375–382.

Am J Epidemiol. 2017;186(11):1281–1289

1288 Wilson et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/186/11/1281/3860092 by guest on 21 August 2022



5. Allen JL, Oberdorster G, Morris-Schaffer K, et al.
Developmental neurotoxicity of inhaled ambient ultrafine
particle air pollution: parallels with neuropathological and
behavioral features of autism and other neurodevelopmental
disorders.Neurotoxicology. 2017;59:140–154.

6. Giovanoli S, Engler H, Engler A, et al. Stress in puberty unmasks
latent neuropathological consequences of prenatal immune
activation in mice. Science. 2013;339(6123):1095–1099.

7. Cowell WJ, Bellinger DC, Coull BA, et al. Associations
between prenatal exposure to black carbon and memory
domains in urban children: modification by sex and prenatal
stress. PLoS One. 2015;10(11):e0142492.

8. Chiu YH, Coull BA, Sternthal MJ, et al. Effects of prenatal
community violence and ambient air pollution on childhood
wheeze in an urban population. J Allergy Clin Immunol. 2014;
133(3):713.e4–722.e4.

9. Kajekar R. Environmental factors and developmental
outcomes in the lung. Pharmacol Ther. 2007;114(2):129–145.

10. Barr M Jr, DeSesso JM, Lau CS, et al. Workshop to identify
critical windows of exposure for children’s health:
cardiovascular and endocrine work group summary. Environ
Health Perspect. 2000;108(suppl 3):569–571.

11. West LJ. Defining critical windows in the development of the
human immune system.HumExp Toxicol. 2002;21(9):499–505.

12. Sánchez BN, Hu H, Litman HJ, et al. Statistical methods to
study timing of vulnerability with sparsely sampled data on
environmental toxicants. Environ Health Perspect. 2011;
119(3):409–415.

13. USEnvironmental ProtectionAgency. Integrated Science
Assessment for ParticulateMatter (Final Report, December 2009).
Washington, DC:USEnvironmental ProtectionAgency; 2009.

14. Dadvand P, Parker J, Bell ML, et al. Maternal exposure to
particulate air pollution and term birth weight: a multi-country
evaluation of effect and heterogeneity. Environ Health
Perspect. 2013;121(3):367–373.

15. Chang HH,Warren JL, Darrow LA, et al. Assessment of
critical exposure and outcome windows in time-to-event
analysis with application to air pollution and preterm birth
study. Biostatistics. 2015;16(3):509–521.

16. Hsu HH, Chiu YH, Coull BA, et al. Prenatal particulate air
pollution and asthma onset in urban children. Identifying
sensitive windows and sex differences. Am J Respir Crit Care
Med. 2015;192(9):1052–1059.

17. Chiu YH, Hsu HH, Coull BA, et al. Prenatal particulate air
pollution and neurodevelopment in urban children: examining
sensitive windows and sex-specific associations. Environ Int.
2016;87:56–65.

18. Warren J, Fuentes M, Herring AH, et al. Spatial-temporal
modeling of the association between air pollution exposure and
preterm birth: identifying critical windows of exposure.
Biometrics. 2012;68(4):1157–1167.

19. Darrow LA, Klein M, StricklandMJ, et al. Ambient air
pollution and birth weight in full-term infants in Atlanta,
1994–2004. Environ Health Perspect. 2010;119(5):731–737.

20. Schwartz J. The distributed lag between air pollution and daily
deaths. Epidemiology. 2000;11(3):320–326.

21. Zanobetti A, WandMP, Schwartz J, et al. Generalized additive
distributed lag models: quantifying mortality displacement.
Biostatistics. 2000;1(3):279–292.

22. Peng RD, Dominici F, Welty LJ. A Bayesian hierarchical
distributed lag model for estimating the time course of risk of
hospitalization associated with particulate matter air pollution.
J R Stat Soc Ser C. 2009;58(1):3–24.

23. Wright RJ, Suglia SF, Levy J, et al. Transdisciplinary research
strategies for understanding socially patterned disease: the
Asthma Coalition on Community, Environment, and Social
Stress (ACCESS) project as a case study. Cien Saude Colet.
2008;13(6):1729–1742.

24. National Center for Health Statistics. CDCGrowth Charts:
United States. US Department of Health and Human Services,
Centers for Disease Control and Prevention, National Center
for Health Statistics; 2000.

25. Rush EC, Bristow S, Plank LD, et al. Bioimpedance prediction
of fat-free mass from dual-energy X-ray absorptiometry in a
multi-ethnic group of 2-year-old children. Eur J Clin Nutr.
2013;67(2):214–217.

26. Kloog I, Koutrakis P, Coull BA, et al. Assessing temporally
and spatially resolved PM2.5 exposures for epidemiological
studies using satellite aerosol optical depth measurements.
Atmos Environ. 2011;45(35):6267–6275.

27. Warren JL, Stingone JA, Herring AH, et al. Bayesian
multinomial probit modeling of daily windows of
susceptibility for maternal PM2.5 exposure and congenital heart
defects. Stat Med. 2016; 35(16): 2786–2801.

28. Golub GH, Heath M,Wahba G. Generalized cross-validation
as a method for choosing a good ridge parameter.
Technometrics. 1979;21(2):215–223.

29. Warren J, Fuentes M, Herring A, et al. Bayesian spatial-
temporal model for cardiac congenital anomalies and ambient
air pollution risk assessment. Environmetrics. 2012;23(8):
673–684.

30. Slama R, Morgenstern V, Cyrys J, et al. Traffic-related
atmospheric pollutants levels during pregnancy and offspring’s
term birth weight a study relying on a land-use regression
exposure model. Environ Health Perspect. 2007;115(9):
1283–1292.

31. Bell ML, Ebisu K, Belanger K. Ambient air pollution and low
birth weight in Connecticut andMassachusetts. Environ Health
Perspect. 2007;115(7):1118–1125.

32. Ebisu K, Belanger K, Bell ML. The Association between
airborne PM2.5 chemical constituents and birth weight-
implication of buffer exposure assignment. Environ Res Lett.
2014;9(8):084007.

33. Hyder A, Lee HJ, Ebisu K, et al. PM2.5 exposure and birth
outcomes: use of satellite- and monitor-based data.
Epidemiology. 2014;25(1):58–67.

34. Weisskopf MG, Tchetgen Tchetgen EJ, Raz R.
Commentary: on the use of imperfect negative control
exposures in epidemiologic studies. Epidemiology. 2016;
27(3):365–367.

35. Gasparrini A, Armstrong B, KenwardMG. Distributed lag
non-linear models. Stat Med. 2010;29(21):2224–2234.

36. Gasparrini A. Modeling exposure-lag-response associations
with distributed lag non-linear models. Stat Med. 2014;33(5):
881–899.

37. Welty LJ, Peng RD, Zeger SL, et al. Bayesian distributed lag
models: estimating effects of particulate matter air pollution on
daily mortality. Biometrics. 2009;65(1):282–291.

Am J Epidemiol. 2017;186(11):1281–1289

Potential BiasWhen Estimating Critical Windows 1289

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/186/11/1281/3860092 by guest on 21 August 2022


	Potential for Bias When Estimating Critical Windows for Air Pollution in Children’s Health
	METHODS
	Data
	Statistical methods
	Separate TAE
	Joint TAE
	Distributed lag model

	Simulation study
	Analysis of the association between PM2.5 and BMIz and fat mass

	RESULTS
	Correlation in the TAEs
	Simulation study
	Analysis of the association between PM2.5 and BMIz
	Analysis of the association between PM2.5 and fat mass

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


