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Abstract With structure databases expanding at a rapid

rate, the task at hand is to provide reliable clues to their

molecular function and to be able to do so on a large scale.

This, however, requires suitable encodings of the molecular

structure which are amenable to fast screening. To this end,

moment-based representations provide a compact and non-

redundant description of molecular shape and other associ-

ated properties. In this article, we present an overview of

some commonly used representations with specific focus on

two schemes namely spherical harmonics and their exten-

sion, the 3D Zernike descriptors. Key features and differ-

ences of the two are reviewed and selected applications are

highlighted. We further discuss recent advances covering

aspects of shape and property-based comparison at both

global and local levels and demonstrate their applicability

through some of our studies.
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Introduction

Understanding protein structure and its relation to the

various biological functions that it carries out has been a

primary goal in structural biology. Based on the premise

that, structurally similar proteins have similar function in

many cases [1–3], various structure comparison approaches

using different representations of proteins have been

employed [4]. Commonly used definitions include those

based on the backbone Ca positions [5, 6], the distance

map [7], secondary structure elements [8], backbone tor-

sion angles [9], and molecular surfaces [10]. The algo-

rithms and theory used in such computational methods are

tightly intertwined with the protein representations. For

example, dynamic programming (DP) is a commonly used

algorithm for comparing protein structures using the

backbone representation [5, 11]. In other approaches,

schemes based on the Monte Carlo algorithm [7], graph

theory and clustering [12], and knot theory [13] have been

applied. Since different representations capture different

aspects of protein structures, they do not necessarily agree

in the degree of structural similarity they identify. There-

fore, naturally, suitable applications for each method may

differ. For example, it is more appropriate to use DP-based

methods that consider similarity in the protein backbone

orientation [6] to compare evolutionarily closely related

proteins. However, such methods will miss circularly per-

mutated structures that are evolutionarily related [14], as

they are compared sequentially from the N- to C-terminus.

Methods that consider the spatial arrangement of secondary

structure elements [8] have therefore been developed for

dealing with these cases. Distance map-based methods [7]

would be more suitable for comparing closely related

structures, where their main differences may be limited to

side-chain contacts. For further discussions, please refer to
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some recent reviews on structure comparison methods

[4, 15].

Structure databases are growing at a rapid pace, and

have benefited from structural genomics projects [16–19],

which have been accumulating an increasing amount of

protein structures whose function has remained unknown.

Searching these vast resources requires suitable encodings

of the protein structure that are amenable to fast compar-

isons. In addition, protein structures with unknown func-

tion pose a challenging task for structure-based function

prediction approaches [20–22]. In recent years, a few

studies have employed surface shape for comparison [10,

23–25] to address these two issues [23]. An advantage of

protein surface shape comparison is that the structural

similarity can be captured across evolutionarily distant

proteins [26]. This is useful for function prediction because

geometrical and physicochemical properties of functional

sites can be directly compared. For example, the eF-site

database represents the protein as a triangulated surface

mesh and employs graph matching techniques to identify

common local regions between two proteins [10]. More

recently, alpha shapes (a generalization of the convex hull)

have been used to characterize the molecular surface as a

set of contiguous patches and applied to the analysis of

binding sites in proteins [27].

As speed is of importance, several shape recognition

techniques make use of descriptors that capture the spatial

profile of the protein as a multidimensional feature vector.

Spin images [28], for example, provide a local two-

dimensional description of the surface based on a reference

frame defined by the associated surface points. In an

another approach [29], global geometric properties of the

protein are captured in the form of a probability distribu-

tion, i.e., a shape histogram, sampled from a shape function

(e.g. angles, distances, areas, and volumes). As shape

matching is reduced to a comparison of the histograms, it

obviates the need for any feature correspondence or pre-

alignment (independent of orientation).

Moment-based representations form another class of

descriptors that have been used widely for pattern recog-

nition [30]. These representations provide a compact

numerical expression of the spatial features that enables

rapid comparisons. Moments based on the theory of

orthogonal polynomials [31], such as 2D/3D Zernike

moments and Legendre moments, allow descriptors to be

constructed to an arbitrary order with little or no redun-

dancy. This feature also allows the object to be recon-

structed from its moments with quality determined by the

number of terms used [32].

In this review, we focus on the applications of spherical

harmonics and the more recent 3D Zernike descriptors

(3DZD) in biomolecular sciences. While the applications

for the former have been widespread, the latter is a

relatively new entrant in this field. We begin by introduc-

ing the properties of spherical harmonics and the 3DZD,

while highlighting some differences and advantages in

terms of their mathematical treatment. Applications for the

two schemes are discussed, which range from global/local

protein surface comparison to protein docking prediction.

Mathematical Foundation of Spherical Harmonics

and 3DZD

Spherical Harmonic Representations in Protein

Structure Analysis

Spherical harmonics [33] and their variants have gained

much interest with applications in real-time rendering [34],

visualization of molecular surfaces [35], electron micros-

copy [36], and 3D shape retrieval [37]. Mathematical

properties such as orthonormality and completeness make

them a suitable choice for surface modeling. The properties

are, however, only valid on a unit ball and since a one-to-

one mapping onto the sphere is required, it can only rep-

resent star-shaped or single-valued surfaces.

A single-valued three-dimensional (3D) surface can be

parameterized in terms of spherical coordinates (h, /) as

x~ðh;/Þ ¼ rðh;/Þ ðsin h cos / � i~þ sin h sin / � j~þ cos h � k~Þ
h i

ð1Þ

where x~ is the set of surface (Cartesian coordinates) points,

r(h, /) is the distance of surface points from a chosen

origin, and i~; j~; k~ are the unit vectors of the three

perpendicular coordinate axes. This parameterization

yields a bijective mapping between each surface vertex x~

and a pair of spherical coordinates (h, /). The surface can

also be expressed as a unique linear combination of

spherical harmonics basis functions, Ym
l ðh;/Þ, which for

degree l order m are given by

rðh;/Þ ¼
X1
l¼0

Xl

m¼�l

cl;mYm
l ðh;/Þ ð2Þ

The coefficients cl,m are uniquely determined by

cl;m ¼
Z2p

0

Zp

0

f ðh;/ÞYm
l ðh;/Þ

�
sin hdhd/ ð3Þ

where * indicates complex conjugation. The basis function

is defined as follows

Ym
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl� mÞ!

4pðlþ mÞ!

s
Pm

l ðcos hÞeim/ ð4Þ

Here Pm
l ðcos hÞ are the associated Legendre polynomials

(with argument cos h) and h, / are the spherical
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coordinates. The surface is typically approximated by

truncating the series of spherical harmonics coefficients to

a finite number of terms. Thus, a limit L is chosen to obtain

a desired level of resolution which yields (L ? 1)2 terms.

rðh;/Þ ¼
XL

l¼0

Xl

m¼�l

cl;mYm
l ðh;/Þ ð5Þ

However, any rotation of r(h, /) with respect to the

coordinate system change the magnitude and/or phase of

the component cl,m, i.e., spherical harmonics are not rota-

tionally invariant. Thus, a prealignment, which requires

objects to be placed in a standard frame of reference [38],

is necessary, before the objects can be compared. Trans-

lation invariance is achieved by moving the center of

geometry of the object to the origin of the coordinate

system. This is typically followed by a principle compo-

nent analysis (PCA) step to obtain rotational invariance,

but may not always yield robust normalizations and can

affect descriptor performance [39]. However, the use of

Wigner matrices [40] allows for a distance preserving

transformation (rotation of a spherical function does not

change its Euclidean norm), thus defining rotationally

invariant regions [41].

Another alternative to calculating rotation invariant

descriptors is to decompose the spherical function

flðh;/Þ ¼
Pl

m¼�l almYm
l ðh;/Þ as a sum of its L2 norms of

harmonics [30]. The norms of the frequency component are

invariant to rotation (property of the spherical harmonics)

and therefore an orientation independent descriptor F can

be constructed where each component is the L2-norm of the

spherical function restricted to some frequency l:

F ¼ f0ðh;/Þk k; f1ðh;/Þk k; f2ðh;/Þk k; ; ; ;ð Þ ð6Þ

Using this scheme, Funkhouser et al. decomposed an object

into a set of concentric spheres and then combined the

rotation invariant descriptor F computed for each sphere

[39]. Although this strategy can handle nonstar-like shapes,

it also looses information as the representation is invariant

to independent rotations of the different spherical functions

representing each component. As a result, the original shape

cannot be reconstructed from the calculated descriptors.

3D Zernike Descriptors

2D Zernike moments have been used in a wide range of

applications in image analysis [32, 42] owing to their

advantageous properties of rotation invariance, robustness

to noise and small information redundancy (orthogonality

of the basis functions). The extension of the 2D Zernike to

its 3D counterpart was initially formulated by Canterakis

[43] and later applied to shape retrieval by Novotni and

Klein [44]. Their introduction into bioinformatics has,

however, been quite recent with applications in protein

shape comparison [26, 45] and docking [46]. A difference

of the 3DZD from the spherical harmonics is the addition

of a radial term, which enables 3D shapes to be modeled

more precisely than spherical harmonics. The incorporation

of the radial polynomial removes the star-shape require-

ment that affects the spherical harmonic representation.

The 3D Zernike moments are derived from a set of 3D

polynomials which for a 3D object (shape function) is

given by

Zm
nlðr; h;/Þ ¼ RnlðrÞYm

l ðh;/Þ ð7Þ

Here Yl
m are complex valued spherical harmonics that are

orthonormal on the surface of the unit sphere and l, m, and n

are integers representing the degree, order, and repetition.

The radial function Rnl(r) defined by Canterakis [43],

directly incorporates radius information into the basis

function and is constructed so that Zm
nlðr; h;/Þ are

polynomials, when written in terms of Cartesian

coordinates. The 3D Zernike moments of an object

modeled by the function f(x) are defined as the coefficients

of the expansion in this orthonormal basis

Xm
nl ¼

3

4p

Z

xj j � 1

f ðxÞZm
nlðxÞdx ð8Þ

As a first step, the center of gravity of the object is com-

puted and then transformed to the origin. As these moments

are not invariant under rotation, to obtain transformation

invariant descriptors, i.e., the 3DZD, the norms of vectors

Xm
nl

�� �� are computed.

Figure 1 shows the computation process for the 3DZD.

The procedure starts with the discretization of the protein

molecular surface (the Connolly surface definition [47] is

used) where each voxel (a cubic grid cell) records a scalar

value (1 for surface and 0 otherwise). Properties other than

shape such as electrostatics or hydrophobicity can also be

captured by the voxelization in a similar way by assigning

the values to the voxels (instead of 1 as in the surface

shape). For a given order n (typically set to 10 for ligands

and 20 for proteins), the 3DZD are then extracted from this

voxelized structure, so that the molecule is represented by a

numeric vector of length n
2
þ 1

� �2
when n is even and

ðnþ1Þðnþ3Þ
4

for odd values. Thus, the 3DZD yield a more

compact representation, as for the same order of expansion,

ðnþ 1Þ2 spherical harmonic coefficients are produced.

Comparison of protein structures is therefore reduced to

evaluating a suitable distance measure (the Euclidean dis-

tance or the correlation coefficient) between the vectors.

Figure 2 shows two proteins that have dissimilar shapes

which are also reflected by the difference in magnitudes of

the 3DZD.
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Difference Between Spherical Harmonics and 3DZD

Spherical harmonics and 3DZD primarily differ in terms of

the mathematical framework, with the latter having more

desirable features that enhance its application to shape

comparison. Firstly, by incorporating a radial function,

Rnl(r) (Eq. 7), the 3DZD can describe nonstar-like shapes

(i.e., shapes which have multiple values at different dis-

tances r from the center for a given (h, /)). Spherical

harmonics are restricted to star-like shapes or single-val-

ued surfaces. Secondly, the 3DZD are rotation and

translation invariant, and hence, in principle, the orienta-

tion of a structure does not affect the coefficients of the

expansion. This feature is very convenient for constructing

and searching a structure database as the 3DZD for the

entries in the database can be precomputed. In contrast,

the spherical harmonics for a given structure is dependent

on its orientation. As a result, pose normalization of

structures using PCA, etc., is required prior to computing

the spherical harmonics for the two structures to be

compared. This, however, can be problematic especially

when comparing proteins as most are globular in shape,

and for which the principle axes are not robustly deter-

mined. Thirdly, the 3DZD yield a more compact repre-

sentation as compared to spherical harmonics, requiring

fewer numbers for the same order of expansion. The

rotation invariant (concentric shell scheme) harmonics

named the spherical harmonics descriptors (SHD) [39]

have addressed the first two issues to a certain extent.

However, the size (the number of values) of the SHD is

further increased as spherical harmonics is computed for

each concentric sphere. Also, the harmonics of adjacent

concentric cells are highly correlated. Concretely, 121

scalar values is used in the 3DZD with the order up to 20,

while the SHD used 32 concentric spheres, each of which

is described by 16 harmonics descriptors, resulting in 512

scalar values. Nevertheless, the 3DZD showed better

shape retrieval results as tested on the Princeton Shape

Benchmark, which is a database of general 3D objects,

such as airplanes and chairs [44].

In summary, the 3DZD are built on the spherical har-

monics and have more favorable characteristics for

applications in biomolecular structure analyses. The

advantages of the 3DZD over spherical harmonics have

been illustrated in benchmark studies involving database

searches of general 3D objects [44] and protein global

structures [26].

Applications

Below, we describe applications of spherical harmonics

and the 3DZD to protein and ligand molecule structure

analyses. Spherical harmonics have been in use for quite

some time in both bioinformatics and chemoinformatics

with several works reported in literature. On the other

hand, the 3DZD have been introduced to this field very

recently, and their applications to several problems are still

ongoing. In what follows, we first review recent research

based on spherical harmonics before moving onto highlight

applications of the 3DZD in protein global and local sur-

face shape comparison and docking, most of which are

done in our group.

Fig. 1 Flowchart of 3DZD computation process

Fig. 2 Examples of the 3D Zernike descriptors for two proteins with

dissimilar surface shape
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Applications of Spherical Harmonics

Protein Structure Comparison

Gramada and Bourne [48] model protein shape quantita-

tively as multipolar expansion (written as a sum of

spherical harmonics) terms associated with the residue

C-a coordinates. Their method has the advantage of being

easily extended to other residue-based properties while

incorporating various levels of detail. The approach was

tested on a set of kinase-like superfamily of proteins. In

comparing the results with those obtained from the

conventional alignment based approach, the spherical

harmonic approach was found to provide a better dis-

crimination of the families (tyrosine protein kinases,

cyclin dependent kinases, etc.) within the dataset. Zhang

et al. [49], on the other hand, used a voxelized repre-

sentation of the protein which was normalized into a

canonical coordinate system. A set of spherical harmonic

coefficients was then extracted from a series of uniformly

spaced concentric shells (concentric decomposition)

around the center of mass of the protein. The approach

was tested on a set of 37 randomly selected proteins from

the PDB and pairwise comparisons using the Euclidean

distance were able to retrieve structures that had signifi-

cant sequence similarity with the query.

Ligand Binding Site Similarity

Molecular recognition is a key component of protein–

ligand interactions and constitutes major function of pro-

teins. The ligand recognition procedure is guided by the

complementarity of physico-chemical properties of the

ligand and the binding site residues of the target protein.

This forms the basis for several function prediction

approaches that work on the assumption that proteins with

similar function may also have similar binding sites

[50–56]. Kahraman et al. [57] used spherical harmonic

representations to compare the shapes of the ligand and the

binding pockets. The analysis was also extended to other

properties such as hydrophobicity and electrostatic poten-

tials. Based on the coefficient distances, shapes of pockets

binding the same ligand were found to be more variable in

comparison to the conformational variability exhibited by

the ligand. In a parallel study by Morris et al. [38], the

binding pockets of 40 proteins that bound four different

ligand groups (adenosine triphosphate (ATP), adenosine

diphosphate (ADP), heme, and steroids) were compared.

While the binding pockets for steroids were found to be

sufficiently similar. However, pockets of the other ligands

showed significant variations in shape and therefore did not

cluster together.

Protein–Protein Docking

Docking attempts to find the structure of the complex

formed by two or more interacting proteins through com-

putational means. A major challenge is to explore the six-

dimensional (three translational and three rotational) space

as efficiently as possible and produce orientations that are

likely to mirror the native structure. Here, too, shape plays

a crucial role in defining the complementarity although

other factors such as hydrophobicity and electrostatics are

also considered to be significant. Since flexibility adds to

the complexity of the task, most approaches rely on shape

to produce an initial list of candidate orientations after

which further refinement is carried out [58].

Conventional approaches have typically used Fast Fou-

rier transform (FFT) [59] that reduces the computational

time of a translational search. However, there are two

issues that add to the computational complexity: (1) Large

grids may be required in many cases that add a significant

memory overhead; (2) the FFTs have to be reevaluated for

every rotational increment. The docking program HEX

[60] instead uses spherical polar Fourier basis functions to

represent the molecular shape and electrostatic potential of

the protein. The docking search only involves rotation and

translation of the initial expansion coefficients (spherical

harmonic functions transform among themselves under

rotation) which allows a large number of trial orientations

to be tested without the use of the more expensive grids. In

the blind CAPRI docking experiment [61], HEX was able

to achieve a good solution (termed a hit) within the top 20

predictions in 4 out of the 7 cases [62].

Virtual Screening of Drug Molecules

A preliminary step in drug design is the identification of

promising drug leads which requires large chemical dat-

abases to be searched. During the screening process,

methods are typically required to exploit either shape and/

or chemical property information. In addition to looking for

similar molecules with similar properties, the technique

should also be able to provide a suitable structural super-

position. Spherical polar Fourier representations can

effectively capture both steric and electrostatic properties

and owing to their special rotational properties enable rapid

overlap calculations [63, 64]. The approach [63, 64] was

demonstrated using a small dataset of 73 common pre-

scription drugs that were classified into 22 different cate-

gories (antibiotics, anticonvulsants, etc.). Retrieval speeds

and accuracy were found to be much higher than other

shape-based approaches such as the Gaussian shape over-

lay [65]. In addition, the clustering based on the spherical

harmonic shapes was able to identify chemically mean-

ingful groupings. Applications of these descriptors have
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also been extended to virtual high-throughput screening

(VHTS) [66]. A set of 1000 randomly selected drug-like

decoys was used for testing and the objective was to

retrieve known active ligands (vitamin D and HIV-1 pro-

tease) that were part of this database. In terms of the

enrichment efficiency, the performance of the spherical

harmonics approach (48%) was found to be significantly

better than that of the ligand docking algorithm FRED

(12%) [67].

Applications of 3DZD

Global Protein Shape Comparison

For a dataset of 2631 proteins classified into 27 classes

[68], Mak et al. [41] used 3DZD to assess their perfor-

mance for protein structure retrieval. The study found that

the global shape comparison performed quite well (area

under the ROC curve value of 0.94) although proteins with

similar shapes did not tally with the evolutionary based

classification.

In another study by Sael et al. [26], shape similarity was

evaluated for a set of 2432 proteins (classified into 185-fold

groups) culled from the CE database [6]. Here, the 3DZD-

based comparison achieved around 90% agreement in

retrieving proteins of the same conformation defined by

CE. It was shown that this retrieval agreement with a

conventional main-chain based structure comparison (i.e.,

CE) was significantly higher than DALI, a popular protein

structure comparison method [7], and some of the other

surface shape-based structure comparison approaches,

including the spherical harmonics, the solid angle histo-

gram, and the shape distribution methods. A significant

advantage in using these invariants is that they are ame-

nable to fast comparisons (searching the CE dataset with

2432 proteins took only 0.46 s). This speed is sufficiently

fast for searching the whole Protein Data Bank (PDB)

database with over 54,000 structures within seconds. In

contrast, a pairwise structure comparison by CE typically

takes a few seconds. Thus, a search against PDB by CE

would take more than a day or two [26]. Several interesting

examples such as DNA topoisomerase of E. coli and

human and pairs of transporters were found that exemplify

the case where surface shape similarity reflects the bio-

logical function of the proteins. Although, these proteins do

not share significant sequence or main-chain structural

identity and their similarity is only found by the surface

comparison using the 3DZD.

As mentioned above, in principle, the 3DZD can be

computed to represent and physicochemical properties

mapped on protein surface. Sael et al. showed that surface

electrostatics of proteins can be meaningfully compared by

combining 3DZD computed for regions with positive and

negative electrostatic potential values [45]. Figure 3 shows

that thermophilic and mesophilic proteins can be distin-

guished by similarity of the electrostatic potential on their

global surface. Examples of two families are shown: glu-

tamate dehydrogenase and the TATA box binding protein.

While both sequence and main-chain structure are unable

to differentiate their thermophilic and mesophilic homo-

logs, the 3DZD-based comparison of their electrostatic

potentials provides a clear distinction with the two groups

clustered at the opposite ends of the tree. For comparison,

trees generated based on the sequence similarity are also

shown in Fig. 3a and b. The results indicate that 3DZD are

able to distinguish both the magnitude and the pattern of

physicochemical properties defined on the protein surface.

Fig. 3 Comparison of the electrostatic potentials of TATA-box

binding protein (TBP) and Glutamate dehydrogenase (GDH) protein.

in Trees (a) and (b) are generated using the CC distances of 3DZD

(numbers on branches shown in red) of the electrostatic potential for

the TBP and GDH proteins, respectively. Proteins of the TBP family

include two thermophilic systems, 1mp9A (Sulfolobus acidocaldari-
us) and 1pczA (Pyrococcus woesei) and three mesophilic cases,

1ytbA (Saccharomyces cerevisiae), 1cdwA (human), and 1vokA

(Arabidopsis thaliana). The GDH family includes 1hrdA, a meso-

philic protein from Clostridium symbiosum, and the rest are

thermophilic proteins: 1b26A (Thermotoga maritima), 1v9lA (Pyro-
baculum islandicum), 1bvuA (Thermococcus litoralis), 1euzA (Ther-
mococcus profundus), and 1gtmA (Pyrococcus furiosus). Trees

representing sequence similarity are also shown

28 Cell Biochem Biophys (2009) 54:23–32



Taken together, they demonstrate the high-throughput

screening ability of the descriptors as applied to global

shape and physicochemical property comparison. The next

section discusses their applicability to comparing local

regions of proteins.

Ligand Binding Site Comparison

The 3DZD can also be used to compare local regions. The

underlying idea is to segment the surface and generate

3DZD for the individual patches. For example, a molecular

surface can be represented as a set of spherical patches that

are centered on points of interest. Each patch captures the

local shape in terms of the surface points that are contained

in the sphere of arbitrary radius (say 6 Å). The number of

such patches is greatly influenced by the size and shape of

the protein and the number of interest points selected.

This local region-based description has been applied to

the problem of identifying ligand binding interface in

proteins [69]. The study is based on a subset of data that

was earlier analyzed by Kahraman et al. [57]. This dataset

consists of 14 proteins that bind ATP, 10 that bind flavin

adenine dinuleotide (FAD), and 15 that bind nicotinamide

adenine dinucleotide (NAD). For the identification of the

binding sites, the following strategy is adopted:

(1) Proteins 1a0i, 1dnlA, 1e2jA that bind ATP, FMN, and

NAD, respectively, were chosen as queries against the

set of proteins that bind the same substrate. For

example, local regions of protein 1aoi are compared

with the local regions of the other ATP binding

proteins. The interface regions of these proteins were

therefore segmented by a sphere of a radius of 6 Å

with each local segment described by corresponding

3DZD (the order of 10 was used). Typically, a protein

surface is segmented into 200–1000 local regions.

(2) Local patches A and B on two proteins represented by

their corresponding 3DZD (ZA and ZB) were then

compared using the correlation (r) distance

CC ¼ 1� rðZA; ZBÞ; where ð�1� r� 1Þ ð9Þ

(3) For each local region on the substrate binding site of

the query protein, the best matching sixty local

patches from other proteins are selected based on the

correlation distance (CC).

(4) The chosen patches are then clustered (by the

complete linkage clustering) using a distance cutoff

of 6 Å.

(5) Within the top three clusters, three regions with the

largest surface area are then chosen as the predicted

binding sites.

(6) For each prediction, a measure of accuracy is

computed. If T and P indicate the true and predicted

binding sites that are composed of NT and NP voxels,

respectively, then the accuracy can be calculated as

RATIO ¼ 2ðNT \ NPÞ
NT þ NP

ð10Þ

Figure 4 shows the predictions for the three cases listed

above. As can be seen, this simple shape-only descriptor is

able to capture the binding site region with the overlap

ratio of 0.42 or above.

Local Shape Complementarity and Docking

Geometric complementarity between protein molecular

surfaces (interfacial contact regions) is a widely used

scheme for filtering docking conformations. Several strat-

egies based on normals [70], grids [59], and atomic den-

sities [71] have attempted to quantify this interaction with

varying results. We have recently implemented a geometric

hashing [72] based docking approach, named VDOCK, that

compares local regions defined around a set of equally

distributed points on the molecular surface. The shape of

each such region (bounded by a 6 Å sphere centered at the

point) is captured as a set of 36 3DZD numbers obtained

from an order 10 expansion. Note here that in this appli-

cation for protein docking prediction, we use 3DZD for

capturing protein (local) surface shape complementarity

rather than shape similarity. Although it may seem shape

Fig. 4 Examples of local protein surface shape retrieval. The top row

shows the substrate binding regions of three proteins 1a0i (ATP

binding), 1dnlA (FMN), and 1e2jA (NAD) that are used as the query.

The second row shows three other proteins whose interfaces are to be

searched. Surface patches of 1dy3A, 1f5vA, and 1og3A are searched

by patches of substrate binding regions of 1a0i, 1dnlA, and 1e2jA,

respectively. The last row shows predicted binding regions of 1dy3A,

1f5vA, and 1og3A. The ratio shows the overlap between the actual

and predicted binding regions
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similarity and complementarity are different, interestingly,

3DZD can also capture shape complementarity because

they essentially describe contrast of distribution of values

in space.

The docking method, VDOCK, looks for point corre-

spondences that have complementary local shapes descri-

bed by the correlation between their 3DZD and the

orientation of the normals associated with the points. In the

scoring, the amount of buried surface area and a penalty

term that accounts for the undesirable clashes are also

considered. The docking study was performed on 84 com-

plexes from the ZDOCK benchmark 2.0 dataset [73]. Per-

formance of the algorithm VDOCK is compared with the

spherical harmonics-based HEX [60] and the FFT-based

ZDOCK [74]. Evaluation criteria are based on the mean of

the logarithm of the first ranked hit (defined as predictions

whose ligand RMSD, i.e., RMSD of the backbone atoms of

the unbound and bound ligand is\10 Å) and is calculated

as follows:

MLR ¼ exp
1

N

XN

i¼1

ln minðRi; 1000Þð Þ
 !

ð11Þ

In Eq. 11, N is the number of complexes and Ri is the rank

of the first hit. The mean rank MLR has a minimum value

of 1 (all rank 1 hits) and a maximum value of 1000 when

all ranked hits (if any) exceed the threshold value 1000.

Out of the 59 cases where either program achieved at least

one hit, VDOCK has a better ranked hit in 22 of the cases

(see Table 1 and Fig. 5) and on the whole attains a lower

mean rank and ligand RMSD.

Available Software

As far as we know, available software that uses spherical

harmonics or the 3DZD for biomolecular structure analyses

is very limited. The spherical harmonics-based docking and

molecular superposition program HEX [60] are available as

ready-to-use package (http://www.loria.fr/*ritchied/hex).

For shape-based virtual screening, commercially available

software PARAFIT (http://www.ceposinsilico.de) has been

developed. Alternatively, one may use libraries such as

SpharmonicKit (http://www.cs.dartmouth.edu/*geelong/

sphere) which provide a number of algorithms (written in

C) for spherical harmonic transforms. For the 3DZD, we

have developed a web server, 3D-Surfer (http://dragon.bio.

purdue.edu/3d-surfer/), which allows real-time structure

searches of the entire PDB database [26]. Users can obtain a

list of proteins in the PDB that share global surface simi-

larity to a query protein, either specified by its PDB code or

uploaded separately.

Conclusion

The surface of a molecule (protein/ligand) provides vital

clues about their function. Attempts have therefore been

made to condense this information into a form that is

amenable to searching large structural libraries. Spherical

harmonics and its extension, the 3D Zernike moments, are

two such representations that characterize the shape as a

unique, nonredundant set of numbers. The 3DZD score

over the former in terms of rotational invariance (no prior

structure alignment is needed) and compactness, thus

Table 1 Comparison statistics for HEX (spherical harmonics),

VDOCK (Zernike), and ZDOCK (FFT)

HEX VDOCK ZDOCK

Mean rank 206 164 173

Mean ligand RMSD 7.39 7.37 7.55

# Cases with a better ranked hit 18 22 19

# HITS in top 2000 8 18 37

Numbers shown in bold indicate the docking program achieves a

better performance for the statistics being compared

Fig. 5 Graph shows the

comparison of the mean rank of

the first correct hit (hit with a

ligand RSMD \10Å) (Mean),

mean ligand RMSD of the first

correct hit (LRMS), and the

number of benchmark test cases

for which the program obtained

a correct hit at a better rank than

the other programs (CASES),

and the number of cases where a

correct hit is obtained within top

2000 (HITS_2K)
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requiring fewer numbers to represent surface shape as

compared with the spherical harmonics.

Given the succinct nature of 3DZD and the ease of

comparison they offer, direct applications include similar-

ity searching of proteins or ligands, based on shape or other

criteria. Examples to this effect have already demonstrated

qualities such as the speed of retrieval and their impact on

cases where sequence alone has had little to offer. We have

also shown the applicability of the 3D Zernike descriptors

to local region matching with respect to the analysis of the

binding interfaces of proteins and as measures of comple-

mentarity in protein–protein docking. In both cases, results

have been quite encouraging with more applications to

follow in the future.
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