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Potential for re-emergence of wheat stem rust in
the United Kingdom
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Wheat stem rust, a devastating disease of wheat and barley caused by the fungal pathogen

Puccinia graminis f. sp. tritici, was largely eradicated in Western Europe during the mid-to-late

twentieth century. However, isolated outbreaks have occurred in recent years. Here we

investigate whether a lack of resistance in modern European varieties, increased presence of its

alternate host barberry and changes in climatic conditions could be facilitating its resurgence.

We report the first wheat stem rust occurrence in the United Kingdom in nearly 60 years,

with only 20% of UK wheat varieties resistant to this strain. Climate changes over the past 25

years also suggest increasingly conducive conditions for infection. Furthermore, we document

the first occurrence in decades of P. graminis on barberry in the UK . Our data illustrate that

wheat stem rust does occur in the UK and, when climatic conditions are conducive, could

severely harm wheat and barley production.
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W
heat stem rust, caused by the fungal pathogen Puccinia
graminis f. sp. tritici, has recently re-emerged in
Europe. In 2013, Germany experienced its first major

outbreak in decades after an unusually cold spring was followed
by high early summer temperatures1. In addition, both bread and
durum wheat were ravaged by stem rust in Sicily in 2016,
marking the largest European outbreak for many years2. Stem
rust is a long-standing threat to wheat and barley production. A
cornerstone of the Green Revolution in the mid-to-late twentieth
century was breeding for resistance against stem rust3. However,
new supervirulent wheat stem rust isolates such as the notorious
Ug99 race group have emerged in Africa and their impending
spread poses a significant threat to global food security4. In
addition, as climate conditions shift, the earlier-maturing wheat
varieties that were once bred to avoid inoculum build-up5 could
be at risk, as evidenced by recent reports of stem rust outbreaks in
Europe.

Beyond breeding for resistance, large-scale removal of the
alternate host barberry (Berberis spp.)6 reduced the potential for
enhancing the pathogen’s genetic diversity and the spawning of
new races, e.g., radically reducing the number of P. graminis f. sp.
tritici races in the United States from 17 to 8 per year after
eradication3. Over the past decade, however, barberry planting
has been reinitiated and is increasing rapidly in many major
wheat-growing regions3. The presence of common barberry has
the potential not only to enhance the pathogen’s genetic diversity
but also to provide a seasonal bridge for stem rust in temperate
zones7. Dormant stem rust spores may overwinter and germinate
in the spring to infect the alternate host barberry, providing
inoculum to re-infect primary grass and cereal hosts. Barberry
eradication in the United Kingdom during the late nineteenth
and early twentieth century was a massive success, breaking the
disease cycle and driving wheat stem rust to almost complete
extinction8, with the last recorded epidemic in the United
Kingdom in 19559. Accordingly, overwintering has been per-
ceived as unlikely in Europe for decades due to the absence of
both P. graminis f. sp. tritici and the alternate host in most areas.
However, in 2017 Sweden reported the first occurrence of a sexual
population of wheat stem rust that was derived from barberry
signifying a worrying turn for wheat stem rust in Europe10.

Here we report the first record of wheat stem rust in the United
Kingdom in nearly 60 years, and that only 20% of UK wheat
varieties are resistant to this strain. We also identified for the first
time in many decades a stem rust fungus on its alternate host
common barberry in the United Kingdom, where it was identified
within meters of a barley field. Our results indicate that, with
alterations in climatic conditions over the past 25 years,
suggesting increasingly conducive conditions for fungal pathogen
growth and infection, wheat stem rust is becoming an increasing
threat to European wheat and barley production.

Results
UK-01 belongs to the epidemic race ‘Digalu’. In 2013, we found
a single wheat plant in southern England infected with stem rust.
This UK isolate, which we named UK-01, induced characteristic
P. graminis f. sp. tritici uredinia on wheat, which were erumpent,
diamond-shaped, and full of spiny oval urediniospores on the
stem and leaves (Fig. 1a–e). To compare UK-01 with global stem
rust populations, we carried out comparative population genetic
analysis using 42 P. graminis f. sp. tritici isolates from fourteen
countries and two P. graminis f. sp. avenae isolates as outliers
(Supplementary Table 1). First, we undertook either full-genome
or transcriptome sequencing on all isolates, including UK-01.
High-quality reads were aligned to the P. graminis f. sp. tritici
reference genome11 and phylogenetic analysis undertaken using

7,348,046 sites and a maximum-likelihood approach (Fig. 1f and
Supplementary Data 1). To evaluate genetic subdivisions within
this population, we used 306,960 synonymous single-nucleotide
polymorphism (SNP) sites and discriminant analysis of principal
components to define genetic groups (Supplementary Fig. 1),
which assigned the isolates to 10 groups of homogeneous indi-
viduals (Fig. 1f and Supplementary Fig. 2).

Notably, UK-01 was most closely related to P. graminis f. sp.
tritici isolates from Ethiopia collected in 2014 and 2015, and
Danish and Swedish isolates detected in single locations in 2013
and 2014, respectively, with all aforementioned isolates clustering
in a single genetic group with little diversity (Fig. 1f and Fig. 2;
median nucleotide diversity 1.46 × 103). The collection of the
Ethiopian isolates in 2014–15 succeeded a severe stem rust
epidemic facilitated by the widespread planting of a single bread
wheat variety. ‘Digalu’ was planted on ~ 30% of the wheat acreage
and then succumbed to stem rust infection in late 2013, leading to
rapid, wide-scale production losses12. Originally detected in
Turkey, the ‘Digalu’-infecting race, TKTTF, has spread across the
Middle East12 and recently into Europe, where it was the
dominant race in the 2013 German outbreak1. The close genetic
proximity between the UK isolate and the Ethiopian, Danish, and
Swedish TKTTF-like variants13 suggests that UK-01 belongs to
the TKTTF (or a closely related) race. This relationship was
further supported through virulence profiling, where UK-01 was
inoculated onto a series of differential wheat varieties known as
the North American Wheat Stem Rust Differential set and disease
severity recorded in seedling tests 14–16 days post inoculation.
This analysis showed that UK-01 behaved identically to the
TKTTF race (Table 1). We speculate that the TKTTF race likely
spread across Europe from south to north via wind-borne
urediniospore dispersal along the west European track14 from a
common source in 2013.

UK-01 may infect over 80% of current UK wheat varieties. To
explore the potential threat stem rust poses to UK wheat pro-
duction, we assessed the susceptibility of current UK wheat
varieties to UK-01. We inoculated UK-01 onto seedlings of 43
wheat varieties from the UK Recommended List15 and 14 older
varieties that are still grown on a small scale. Of these 57 varieties,
37 showed a high degree of susceptibility in seedling tests, 9
displayed an intermediate reaction, and 11 were resistant to some
degree to infection (Fig. 1g and Supplementary Table 2). Thus,
only 20% of wheat varieties currently grown in the United
Kingdom are estimated to be resistant to the stem rust isolate
UK-01.

Identification of P. graminis inoculum on barberry. In the
United Kingdom, replanting of the alternate host of stem rust,
common barberry (Berberis vulgaris), is keenly advancing,
particularly due to a habitat conservation programme for the
endangered barberry carpet moth Pareulype berberata16

(Supplementary Fig. 3). To examine the potential hazard repre-
sented by barberry as a source of inoculum, we examined bushes
in three locations in the east of England in June 2017. At one
location, we identified a hedgerow that was intermixed with B.
vulgaris within a meter of a barley field (Supplementary Fig. 4).
We found numerous yellow, tube-like aecial structures on the
abaxial side of leaves (Fig. 3a–d), which are typical of cluster cup
rust of barberry caused by P. graminis17. Genotypic character-
ization of the internal transcribed spacer (ITS) region from four
aecia confirmed the identification of P. graminis (Genbank
MF684370-3). Subsequent phylogenetic analysis grouped two
aecial sequences in a clade with P. graminis f. sp. tritici from
wheat, P. graminis f. sp. secalis from wild rye (Secale strictum
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subsp. africanum), and P. graminis from couch grass (Elymus
spp.), which are too similar to distinguish using classical gene
sequence analysis18, but are all capable of infecting barley and, to
differing degrees, wheat19,20. The other two sequences were more
closely related to P. graminis from wild grasses (Fig. 3e).

To evaluate the ability of selected aecia to cause disease on
wheat and barley, we carried out controlled infection assays with
the resulting aeciospores on one barley and two wheat varieties.
None of the selected aecia induced symptoms on the two selected
wheat varieties. However, spores from 5 of 9 aecia tested were
able to infect the selected barley variety (Supplementary Fig. 4c),
thereby suggesting a potential threat to the adjacent barley crop.
If confirmed as P. graminis f. sp. tritici, this would be of particular
concern as large-scale screening of barley germplasm over the
years has only identified seven resistance loci21, most of which
have been overcome22. Further evidence is needed to establish the
risk to barley of any UK-derived stem rust isolates. However, this
does constitute the first evidence for many decades that the stem
rust fungus is overwintering in the UK and able to infect its
alternate host common barberry in the spring.

The planting of thousands of common barberry plants across
the United Kingdom continues to accelerate (Supplementary
Fig. 3) and each medium-sized barberry bush is capable of
producing over 20,000 seeds that can remain dormant for up to
10 years3,23. Thus, the bushes will be increasingly available to
harbor rust pathogens that utilize barberry as a sexual host.

Indeed, following the repeal of the barberry exclusion law in
Sweden, the oat stem rust fungus for which common barberry is
an alternate host has substantially increased in genetic diversity24.
Furthermore, Sweden recently reported the first occurrence of a
sexual population of wheat stem rust derived from barberry for
the first time in decades10. In the United Kingdom, the gravest
concern regards the well-established wheat yellow rust pathogen,
Puccinia striiformis f. sp. tritici, which is closely related to
P. graminis f. sp. tritici. Although not currently known to undergo
sexual reproduction in Europe, the unusually high quantities of
teliospores produced by recent emergent P. striiformis races25

could potentially expedite infection as common barberry becomes
increasingly prevalent.

Increasing climatic risk of stem rust re-emergence in the
United Kingdom. To determine whether alterations in climatic
conditions could further enhance the risk of wheat stem rust in
the United Kingdom, we developed a probabilistic model for
spore germination rates, appressorium formation and penetration
rates over the past quarter century, and drove the model using
microclimate estimates from the JRA-55 climate re-analysis26

(Supplementary Fig. 5). These growth stages of the fungus require
liquid moisture on the leaf surface. The warm temperatures and
high light levels required for stem rust penetration27 suggest that
the disease is most likely to occur in the summer; therefore, we
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focused on weather data for June–August from 1990 to 2016. The
estimated canopy liquid surface water was above zero 30–40% of
the time during the summer months, a value that was slightly
greater in the far south and northwest of the wheat-growing
region (Fig. 4a). The warmest temperatures during the wet per-
iods were found in the central parts of the wheat growing region
(Fig. 4b). The fraction of time the canopy was wet increased
significantly from 1990 to 2016, suggesting increasingly con-
ducive conditions for fungal pathogen growth and infection
(Fig. 4c). The modelled spore germination and appressorium
formation rates were strongly determined by leaf wetness, as the
optimal temperature range for these processes is wide (see
Methods). The predicted rates of penetration, which is dependent
on higher temperatures and light levels, as well as on leaf
moisture, were an order of magnitude lower than predicted
appressorium formation rates (Fig. 4d)27. Overall, the model for
germination and appressorium formation during wet periods
from 1990 to 2016 indicated a trend of increasing risk to 2006,
levelling off in the past few years with the exception of the very
wet year in 2012 (Fig. 4d).

Next, we considered climate change projections for 2050 that
predict very slight drying (Fig. 4e) and slight warming (Fig. 4f) of
the central part of the wheat-growing area in the United
Kingdom28. This analysis suggested that although the risk of
spore germination and appressorium formation may increase, the
wet conditions required for leaf penetration are unlikely to
become more common in the mid-term. However, the high levels
of sexual recombination possible via barberry infection could

enhance the likelihood of emergence of P. graminis f. sp. tritici
variants that are adapted to prevailing conditions. Worryingly,
the Ug99 race has already been reported in preliminary analysis
to have a higher level of aggressiveness at cooler temperatures
compared to other wheat stem rust races29. This ability to adapt
could facilitate proliferation into new geographic regions in a
similar manner to the high temperature-tolerant races of
P. striiformis f. sp. tritici30.

Conclusions
The Nobel laureate Norman Borlaug foresaw that “the greatest
ally of the pathogen is our short memory”3. We recommend the
re-initiation of resistance breeding and a review of the mass
plantation of common barberry to preclude re-planting near
arable land and thereby limit the ability of the pathogen to rapidly
overcome any introduced resistance and/or climatic constraints
to safeguard European cereals from a large-scale re-emergence of
wheat stem rust.

Methods
RNA-seq of P. graminis-infected leaf samples. A total of 12 P. graminis-infected
wheat leaf samples were collected and stored to maintain nucleic acid integrity in
RNAlater solution (Thermo Fisher Scientific, Paisley, UK; Supplementary Table 1).
Samples were subsequently subjected to RNA extraction using a Qiagen RNeasy
Mini Kit (Qiagen, UK) and the quality and quantity of extracted RNA assessed
using an Agilent 2100 Bioanalyzer (Agilent Technologies, UK). Complementary
DNA libraries were prepared using the Illumina TruSeq RNA Sample Preparation
Kit (Illumina, USA) and sequenced on the Illumina HiSeq 2500 machine at the
Earlham Institute, UK. Adapter and barcode trimming and quality filtering were
performed on the 97–101 bp paired-end reads using the FASTX-Toolkit (version
0.0.13.2). Reads were then aligned to the P. graminis assembly11 and SNP calling
undertaken using SAMtools (version 0.1.19)31, considering only sites with a
minimum depth of coverage of 20 ×. Allelic frequencies were determined for each
SNP site and those ranging from 0.2 to 0.8 were classified as heterokaryotic sites
and those with other frequencies classified as homokaryotic sites. SNP sites that
induced synonymous and non-synonymous substitutions were identified using
SnpEff, version 3.632.

Genome sequencing of P. graminis isolates. Genomic DNA was extracted from
dried urediniospores of 31 P. graminis isolates (Supplementary Table 1) using the
cetyl trimethyl ammonium bromide (CTAB) method33. The gDNA libraries were
prepared using the Illumina TruSeq DNA Sample preparation Kit (Illumina) and
library quality confirmed before sequencing using the Agilent 2100 Bioanalyzer
(Agilent Technologies). Libraries were sequenced on the Illumina HiSeq 2500
machine at the Earlham Institute or Novogene, China. We also included in our
analysis publicly available genome sequence data from two P. graminis isolates
collected in Australia34. Following data filtering, the 76–150 bp pair-end reads for
each sample were independently aligned to the P. graminis assembly11 and SNP
calling performed as described above but with a minimum threshold of 10 × depth
of coverage.

Phylogenetic analysis of P. graminis isolates. Phylogenetic analyses of
P. graminis isolates were performed using gene sequences to avoid over-
representation of isolates subjected to full genome sequencing (compared with those
used for transcriptome sequencing) and a maximum likelihood approach. First,
nucleotide sites that differed from the reference genome were identified and
recorded if they had a minimum of 10 × depth of coverage for gDNA samples and
20 × depth of coverage for RNA-seq samples. Next, sites that were identical to the
reference were recorded if they satisfied a minimum of 2 × coverage. Using these
data, synthetic gene sets were generated that incorporated these sites for each isolate
using the method described previously35. The third codon position of 16,482 genes
was used to generate maximum likelihood trees using RaxML 8.0.20 with 100
replicates using the rapid bootstrap algorithm36. Phylogenetic trees were visualized
in MEGA 7.037.

Population genetic analysis. The existence of population subdivisions was
investigated using nonparametric multivariate clustering. This method allows the
clustering of isolates without a priori knowledge (e.g., geographical locations or
date of collection) that prevents different genetic lineages being grouped together
when identified in the same region and thereby interfering with the detection of
admixture events38. To reduce any potential bias of selection, only sites that
introduced a synonymous change in at least one isolate were listed and the
nucleotide at this position extracted for all isolates. Multivariate analyses were
performed using discriminant analyses of principal components (DAPCs) imple-
mented in the Adegenet package in the R environment39, which is a non-
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parametric approach used without any predetermined genetic model. The number
of population clusters (Kmax) were identified using the Bayesian information
criterion (BIC), as suggested39.

Next, the synthetic gene sets per isolate that were generated for the phylogenetic
analysis were combined in one file for all isolates within a genetic group following

the grouping identified using DAPC. Nucleotide diversity was then determined
using these gene sequences and DnaSP, version 5.10.140 for each genetic group.
The diversity within each genetic group was calculated using the statistic Pi divided
by the number of analysed sites (only sites with < 5% of missing data were
included: max_missing_freq = 0.05). To determine the proportion of total genetic

Table 1 Virulence profiling of P. graminis f. sp. tritici isolate UK-01 on the international differential set of wheat varieties

P. graminis isolate UK-01 was screened for its virulence phenotype across the North American Wheat Stem Rust Differential set. Five plants for each of the 20 lines were tested, with two independent

biological replicates. Disease severity was assessed on the first seedling leaf using the United States Department of Agriculture scoring system41, where 0, ;, ;1, 1, and 2– were considered as representing

an incompatible interaction, 2 and 2+ were considered intermediate, and 3+ and 4 represented a compatible interaction between the host genotype and pathogen

Lewis et al. report the first identification in nearly 60 years of a cultivated wheat plant infected with the fungal pathogen P. graminis f.sp. tritici (wheat stem rust) in the United Kingdom. They find that only

20% of UK wheat varieties are resistant to this strain and urge growers to resume resistance breeding programs
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variance attributable to inter-population polymorphisms, the synthetic gene sets of
all isolates were combined in one file and the Weir and Cockeram FST (egglib
statistics: WCst) calculated pairwise for all population pairs with
max_missing_freq = 0.05. For both calculations, the number of analyzed sites and
mutations was determined using the Egglib statistics lseff and S, respectively.

Virulence profiling of P. graminis isolates. First, P. graminis isolate UK-01 was
screened for its virulence phenotype across the North American Wheat Stem Rust
Differential set, which includes the host resistance genes Sr5, Sr21, Sr9e, Sr7b (set
1), Sr11, Sr6, Sr8a, Sr9g (set 2), Sr36, Sr9b, Sr30, Sr17 (set 3), Sr9a, Sr9d, Sr10,
SrTmp (set 4), and Sr24, Sr31, Sr38, and SrMcN (set 5). Five plants for each of the
20 lines were tested under controlled environmental conditions, with two inde-
pendent biological replicates. Spores were distributed onto test plants in a mixture
with talcum powder and plants were incubated for 48 h in polythene bags con-
taining a small amount of water at 18 °C (8 h night) and 24 °C (16 h day), before
being removed and grown for a further 14 days. Infection types were assessed on
the first seedling leaf using the United States Department of Agriculture scoring
system41, where 0, ;, ;1, 1, and 2– were considered as representing an incompatible
interaction, 2 and 2+ were considered intermediate and 3+ and 4 represented a
compatible interaction between the host genotype and pathogen. For the purpose
of detailed virulence phenotyping, intermediate reactions were considered as
intermediate incompatible. Next, P. graminis isolate UK-01 was screened for its
virulence phenotype across wheat cultivars from the UK AHDB Recommended
List15 and other wheat varieties that have historically been widely grown across the
UK. Infection assays and scoring were performed as described above.

P. graminis aeciospore infection assays. A total of 35 aecia were collected from
B. vulgaris at a single location in Brandon, UK. Nine aecia were selected for
infection assays and stored in damp conditions to induce release of aeciospores for
up to 3 h before being applied with gentle rubbing to the leaves of the wheat
varieties Vuka and Solstice and the barley variety Cassata at the seedling stage.
After infection, seedlings were kept in the dark at 10 °C and high relative humidity
for 24 h. Plants were then moved to a controlled environment room under long-
day conditions (16 h light/8 h dark) and 19/14 °C cycle. Symptoms were recorded
14 d post infection.

P. graminis ITS sequence analysis. DNA was extracted from four aecia collected
on B. vulgaris using the CTAB method33 and the ITS region amplified using the
primers 5ITS-SR: (5′-ATTAAAAGAATTAGAGTGCACTTT-3′) and 3ITS-SR (5′-
AGATGGCAAGTGTTTTACTACT-3′). PCR products were cloned into the
pGEMT-Easy vector system (Promega, USA) according to the manufacturer’s
instructions. Inserts of six recombinant plasmids per amplicon were bi-
directionally sequenced (GATC, Germany) and a sequence alignment of the ITS
region from these aecia and 27 ITS sequences from P. graminis f. sp.20,42 was
generated using MUSCLE43. Phylogenetic analysis was performed in MEGA 7.037

using a neighbor-joining approach with bootstrap values determined from 1,000
replicates.

Scanning electron microscopy. Samples were mounted on aluminium stubs using
Tissue TekR (BDH Laboratory Supplies, Poole, England). The stubs were then
immediately plunged into liquid nitrogen slush at approximately − 210 °C to
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cryopreserved the material. The samples were transferred onto the cryostage of an
ALTO 2500 cryotransfer system (Gatan, Oxford, England) attached to a Zeiss
Supra 55 VP FEG scanning electron microscope (Zeiss SMT, Germany) or the
same type of cryo-system on an FEI Nova NanoSEM 450 (FEI, Eindhoven, The
Netherlands). Sublimation of surface frost was performed at − 95 °C for ~ 3 min
before the samples were sputter coated with platinum for 2 min at 10 mA, at colder
than − 110 °C. After sputter-coating, the samples were moved onto the cryo-stage
in the main chamber of the microscope, held at − 125 °C. The samples were imaged
at 3 kV and digital TIFF files were stored.

Probabilistic model of infection risk. We modelled leaf infection risk in response
to microclimate using a probabilistic model44 parameterized for stem rust19. We
modelled specifically germination of urediniospores on the wheat surface and
subsequent penetration through stomata, as these stages are strongly constrained
by free water availability14,19,27, in common with other rust fungi. Therefore,
results provide estimates only of infection risk, not of full development of potential
epidemics. The reported cardinal temperatures for spore germination, germling

growth and appressorium formation are Tmin = 2 °C, Topt = 15–24 °C, and Tmax = 30
°C19. The reported cardinal temperatures for penetration are Tmin =15 °C, Topt = 29
°C, and Tmax = 35 °C. Hence, the temperature range for penetration is considerably
higher than that for germination and appressorium formation. In addition, high
light availability is required for the penetration stage, reported as illumination of
>10,000 lux, or approximately that received in the shade under a clear sky at noon.
This reflects the pathogen likely germinating following dewfall overnight and then
infecting in the morning as temperatures rise, stomata open, and dew slowly
dries19.

A beta function was used to estimate relative rates of germination and
penetration based on cardinal temperatures44,45, modified for germination to
account for the wide optimal temperature range46. We modelled the transition of
spores to appressoria, and appressoria to penetrations, as survival processes
following a Weibull distribution44. In the absence of appropriate empirical data, we
estimated the Weibull parameters from qualitative descriptions of the time taken
for germination and penetration to occur19. At optimal temperatures, the Weibull
processes gave near-completion of appressorium formation after 8 h and
penetration in a further 3 h. The hazard functions were multiplied by the
temperature-dependent rates to reduce germination and penetration rates at sub-
optimal temperatures, with zero activity outside of the cardinal temperatures
(Supplementary Fig. 5). Both processes occur only when leaves are wet and
germinated spores die if leaves dry out.

In the UK, wheat is planted mainly in the east of England and winter wheat
accounts for nearly all the wheat grown. Winter wheat is planted between
September and November, tillering occurs over winter, stem elongation in spring,
flowering in June, grain filling in July, and collecting in August–September. The
warm temperatures required for penetration strongly suggest that the disease is
most likely to strike in the summer. We obtained historical weather estimates for
the summer months (June, July, and August) in the major wheat-growing regions
of the United Kingdom (a rectangular grid covering 1.97°W to 1.97°E, 50.0°N to
55.0°N) from the beginning of 1990 to the end of 2016, at 3 h intervals and 0.5625°
spatial resolution, from the Japanese 55-year Reanalysis (JRA55)26. Data were
downloaded from the Research Data Archive at the National Center for
Atmospheric Research, Computational and Information Systems Laboratory47.
Weather variables required for modelling were canopy temperature (oC), canopy
surface water content (kg m−2), solar irradiance (Wm−2) and cloud cover fraction.
The 3 h observations were linearly interpolated to give hourly estimates for
modeling.

We assumed a constant number of spores available for germination in each
hour and that germination and penetration could take place only if canopy surface
water content was greater than zero. The total relative number of appressoria
formed in an hour was the sum of appressoria formed by all germinating cohorts.
These appressoria were then able to penetrate if moisture and light conditions
allowed. JRA55 irradiance estimates were converted to estimates of illuminance
(lux) using a rule-of-thumb factor of 126.6, which suggested that sufficient sunlight
for penetration was available between the hours of 0800 and 2100 h. The relative
number of penetrations in an hour was the sum of all penetrating cohorts and was
taken as an indicator of relative infection risk.

Although 3 h projections are available for air temperature from the CMIP-5
(Coupled Model Intercomparison Project) family of Global Circulation
Models (GCM)48, other products such as relative humidity (which can be used as
an indicator of leaf wetness) are available only at coarser temporal resolutions from
current repositories. Therefore, driving our germination and infection model with
future projections was not possible without bespoke GCM runs. Instead, we
inspected random realizations of CMIP-5 projections at daily temporal resolution
provided by the Marksim weather generator49. We obtained 99 ensemble averages
for 17 CMIP-5 GCMs for the years 2020 and 2050 under the RCP4.5 representative
concentration pathway scenario for a point near Cambridge, UK, which lies near
the center of the wheat-growing region of the UK, and compared temperature and
precipitation estimates or the summer months for these time points.

Code availability. All custom computer code is available at https://github.com/
vbuens/Field_Pathogenomics.

Data availability. The raw sequence data and ITS sequence data that support the
findings of this study have been deposited in the European Nucleotide Archive
(ENA; PRJEB22223) and Genbank (MF684370-3), respectively.
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