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ABSTRACT

In this paper we propose a unified framework, based on the emergent
potential games to deal with a variety of network resource allocation
problems. We generalize the existing results on potential games to
the cases where there exists coupling among the (possibly vector)
strategies of all players. We derive sufficient conditions for the ex-
istence and uniqueness of the Nash Equilibrium, and provide differ-
ent distributed algorithms along their convergence properties. Using
this new framework, we then show that many power control prob-
lems (standard and non-standard) with coupled constraints among
the users, can be naturally formulated as potential games and, hence,
efficiently solved. Finally, we point out an interesting interplay ex-
isting between potential games, classical optimization theory, and
Lyapunov stability theory.

1. INTRODUCTION

Power control in flat-fading CDMA (or TDMA/FDMA) systems (cel-
lular or ad-hoc), where each user has only one variable (degree of
freedom) to optimize (i.e. the transmit power), is by now well un-
derstood. In fact, it can be either elegantly recast in the framework
of the so called “standard” problems (in the sense defined in [1]) or
equivalently interpreted as a strategic non cooperative game [2, 3, 4].
In both cases, sufficient conditions for the existence and uniqueness
of an equilibrium (Nash equilibrium) are well known, and alter-
native distributed algorithms, either synchronous or asynchronous,
converging to the equilibrium (provided that it is unique) are avail-
able [1, 5].

The situation is more complicated for problems that are not stan-
dard, as the so called vector problems, where each user has a set of
coefficients (degrees of freedom) to optimize. This happens for ex-
ample, when each user is allowed to design its own linear precoder
or to derive the optimal power allocation across a set of parallel sub-
channels. In this case, a unified framework is still missing.

Recently, Monderer and Shapley proposed in their seminal paper
[6] a new class of games, called potential games, that was shown to
be an interesting tool for studying non-standard problems. In [7] and
[8], potential games were successfully applied to some scalar power
control and interference avoidance problems in CDMA networks,
respectively. In the game structure introduced in [6] and used in [7,
8], there is no coupling in the feasible strategies of the players, i.e.,
the set of the admissible players’ strategies is given by the Cartesian
product of the strategies’ set of each player. Moreover, the results in
[7] (and most of [6]) are valid only for scalar players’ strategies.

However, in practice, many applications require a vector to op-
timize and impose a coupling among the feasible strategies of the

players. For example, in the (scalar/vector) power control problems,
the Quality of Service (QoS) requirements are, in general, formu-
lated as constraints on the signal-to-interference plus noise ratio of
each user [1, 3, 4]. Hence, the set of feasible strategies of each user
depends on power allocations used by the others. In all these cases,
the results of [7, 8, 6] cannot be used any more.

The scope of this paper is to overcome this issue, by generaliz-
ing the game structure of [6]. Our original contributions with respect
to [7, 8, 6] are the following: 1) We introduce and fully character-
ize, in terms of existence and uniqueness of Nash Equilibrium (NE),
different classes of strategic noncooperative potential games, where
each player’s strategy is a vector and the strategy set is coupled; 2)
We provide alternative distributed algorithms based either on Gauss-
Seidel or Jacobi scheme [5], along with their convergence to a NE of
the game. After introducing this new framework, we show, by some
examples, that a wide class of power control problems (standard
and non-standard) with coupled constraints on the set of admissible
users’ powers can be efficiently solved using potential games. One
of the proposed examples is also instrumental to point out an inter-
esting and general relationship existing between the NEs of potential
games and the equilibria of proper autonomous dynamic systems: A
potential game can always be interpreted as an autonomous gradient
dynamic system, whose Lyapunov function [9] is just the potential
of the game. Such a dynamic system evolves toward an equilibrium
point that represents one of the NEs of the potential game [10].

2. POTENTIAL GAMES

Consider a strategic non-cooperative game G = {Ω,X , {Φq}q∈Ω},
where Ω is the set of the Q players; X ⊆ R

mQ is the set of pure
strategies x � [xT

1 , . . . ,xT
Q]T ∈ X , with the m-length vector xq

representing the strategy of the q-th player; the function Φq : X �→
R is the payoff of the q-th player, which depends on the strate-
gies x of all players. In the case of no coupling among players’
strategies, the set X can be written as the Cartesian product of the
strategy sets Xq of each player, i.e. X = X 1 × · · · × XQ. In the
more general case of coupled constraints, each player q aims to
restrict its strategy xq to a subset of Xq , denoted by Xq(x−q) �

{xq ∈ Xq | (xq,x−q) ∈ X}, that depends also on the strategies x−q

chosen by the other players.
We provide now the basic definitions and the main results of

potential games, in the case of coupled strategy set. For the lack of
space, in this paper we focus only on exact, and ordinal potential
games. More general results are given in [10].

Definition 1 A strategic game G = {Ω,X , {Φq}q∈Ω} is called
i) an exact potential game if there exists a function P : X �→ R
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such that for all q ∈ Ω and (xq,x−q), (yq,x−q) ∈ X :

Φq(xq,x−q) − Φq(yq,x−q) = P (xq,x−q) − P (yq,x−q); (1)

ii) an ordinal potential game if there exists a function P : X �→ R

such that for all q ∈ Ω and (xq,x−q), (yq,x−q) ∈ X :

Φq(xq,x−q) − Φq(yq,x−q) > 0 ⇔ P (xq,x−q) − P (yq,x−q) > 0.

(2)
Such a function P is called (exact, ordinal) potential of the game.

Through the whole paper, a game will be called potential if it has
a potential function, according to either (1) or (2). In words, a
strategic game is a potential game if there is a function that quan-
tifies the difference in the payoff due to unilaterally deviating each
player either exactly (exact potential game) or in sign (ordinal po-
tential game). Note that the existence of a potential in a game does
not directly guarantee the Pareto optimality of the NE. For example,
some Cournot oligopolies are potential games with inefficient equi-
libria [6]. Rather than a warranty of Pareto efficiency, the potential
function can be interpreted as a measure of the disagreement among
the players, or, equivalently, of the drift toward the NE. In the jar-
gon of dynamic system theory, the potential represents a Lyapunov
function of the game, modelled as a dynamic system [10].

Potential functions are very useful tools for analyzing potential
games, thanks to the following

Proposition 1 Let G = {Ω,X , {Φq}q∈Ω} be a potential game,
with potential function P, and let G̃ := {Ω,X , {P}} be the so-called
coordination game, i.e. the game with the same structure of G but
with all payoff functions replaced by P. Then, the set of NEs of G

coincides with the set of NEs of G̃ .

Proof. The proof follows directly from definitions (1) and (2).
Proposition 1 shows the importance for a game to have a poten-

tial function: we can study the properties of NEs and, more impor-
tant, to find some equilibria, using a single function that does not
depend on the particular player.

After recasting the study of properties of G into those of the
corresponding coordination game G̃ , a natural question arises: What
relationship does exist among the NEs of G̃ and the maxima of the
potential function P on X ? The answer is given by the following

Theorem 2 ([10]) Let G = {Ω,X , {Φq}q∈Ω} be a potential game,
with potential function P , and let Pmax denote the set of maxima of
P on X (assumed non-empty). The following statements hold true:
1) If x ∈ Pmax, then x is a NE of G . The converse, in general, is not
true. But, if, in addition, X is a convex set with X = X 1× . . .×XQ

and P is a continuously differentiable function on the interior of X ,
then: 2) If x is a NE of G , then x is a stationary point of P ; 3)
Assume that P is concave on X . If x is a NE of G , then x ∈ Pmax.
If P is strictly concave, such a NE must be unique.

Thus, in the general case of a coupled strategy set, any maxi-
mum of P on X is a NE of the potential game (Theorem 2). More-
over, the set of NEs of the coordination game coincides with that of
the potential game.1 Therefore, the study of potential games can be
carried out using two different approaches: 1) The classical frame-
work of game theory (e.g., [11]) directly applied to the coordination
game (Proposition 1); and 2) the framework of standard optimiza-
tion theory applied to the potential function (Theorem 2). Both of
these approaches make the analysis of potential games rather sim-
ple. For example, the existence of a NE for G comes directly from

1Note that there exist other classes of potential games for which this cor-
respondence does not holds true, as shown in [10].

the existence of a maximum for the function P on the set X . More-
over, most distributed algorithms coming from the optimization of
scalar functions [5] can be applied, with some weak refinement, to
the design of distributed algorithms converging to some NE of the
potential game. Building on 1) and 2), we provide sufficient condi-
tions for existence and uniqueness of the NE of a potential game and
propose two different classes of iterative distributed algorithms that
converge to a NE.

2.1. Existence and Uniqueness of Nash Equilibrium

A fundamental issue in strategic (infinite) noncooperative games is
the study of the existence and uniqueness of pure strategy NE. In
fact, not every strategic game admits a NE in pure strategy, and un-
fortunately only sufficient conditions for the existence are available.
The study of the uniqueness is even worse, and, by now, only partial
results are known [11]. For the special case of potential games, con-
ditions for existence and uniqueness of NE can be obtained simply,
as shown in the following.

Theorem 3 ([10]) Let G = {Ω,X , {Φq}q∈Ω} be a potential game,
with a potential function P , and Pmax denoting the set of maxima of
P (assumed non-empty). Then, G admits at least one NE.

If, in addition, X is a compact, convex set, and P is a continu-
ously differentiable function on the interior ofX and strictly concave
on X , then the NE of G is unique.

Corollary 4 Every finite potential game admits at least one NE [6].

Corollary 5 For infinite potential games, sufficient conditions for
the existence of NE (non-emptyness of Pmax) are that i) X is a com-
pact set; and ii) P is upper semicontinuous on X .

It is interesting to observe that conditions for the uniqueness of NE
obtained for uncoupled strategy set (Theorem 2) are valid also in the
more general case of coupled strategies (Theorem 3).

2.2. Distributed Algorithms for Nash Equilibria

After deriving conditions for a potential game to have at least one
NE, we need to design the rules that each player must follow to
reach an equilibrium. To this end we assume that the same game
could be myopically played repeatedly: in each round, every player
has neither memory of past game-rounds nor speculation of future
events, but it chooses its own strategy according to some decision
rules that depend on the current state of the game. A new round of
the same game is then played, until a NE of the game is reached.
The main goal in the design of the algorithm is thus the choice of
proper players’ decision rules that guarantee the asymptotically sta-
bility of (at least some) NE of the game. We call these rules as stable
decision rules and denote the set of stable rules for the q-th player
by Dq (xq,x−q) , where we have explicitly shown the dependence
of Dq on the players’ strategies. We prove in [10] that, for example,
the following decision rules are stable:
1) Best response:

Dq (x−q) =

�
x

�
q ∈ Xq(x−q) : x�

q = arg max
xq

Φq(xq,x−q)

�
;

(3)
2) Better response:
Dq (x) =

�
x

�
q ∈ Xq(x−q) : Φq(x

�
q ,x−q) > Φq(xq,x−q)

�
; (4)

3) Gradient projection response2:

Dq (x) = [xq + αq �q Φq(xq,x−q)]Xq(x
−q) , (5)

2To use this rule the strategy set X must be compact and convex. Note
that alternative gradient projections can be considered, as, e.g., that of [11].
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where [xq]Xq(x
−q) denotes the Euclidean projection of xq on the set

Xq(x−q) and αq is a sufficiently small positive number.
Given the stable decision rules, two different approaches can be

followed in the choice of the iterative algorithms to be performed by
the players, namely Gauss-Seidel and Jacobi based schemes.

In the Gauss-Seidel algorithm, the players update their strategy
sequentially:

x
t+1
q = Dq

�
x

t+1
1 , . . . ,xt+1

q−1,x
t
q,x

t
q+1, . . . ,x

t
Q

�
, (6)

where Dq (xq,x−q) can be chosen among (3), (4), and (5).
In the Jacobi algorithm, all the players optimize their own strate-

gies in a parallel fashion:

x
t+1
q = Dq

�
x

t
1, . . . ,x

t
q−1,x

t
q,x

t
q+1, . . . ,x

t
Q

�
, (7)

with Dq (xq,x−q) given by (5). In [10] we provide sufficient con-
ditions for the convergence of the Gauss-Seidel update (6) with the
decision rules (3)-(5) and of the Jacobi update (7) with the decision
rule (5).

It is interesting to observe that, under proper assumptions on the
potential function and the strategy set, the distributed optimization
algorithms studied in [5] come out as a particular case of (6) and (7).
For example, if the potential function P is continuous differentiable
and strictly concave on X , and X = X 1 × · · · × XQ, with each Xq

closed and convex, algorithm (6) with Dq (x) given by (3) coincides
with the classical nonlinear Gauss-Seidel algorithm [5, Sec. 3.3.5],
which is then guaranteed to converge to the maximum of P [5, Prop.
3.9], and thus to the unique NE of the game (Theorem 2).

3. TWO RELEVANT EXAMPLES

Many power control problems both in cellular and ad-hoc networks
can be formulated as potential games and thus efficiently solved us-
ing the framework proposed in Section 2. Due to space limitation, in
this paper we provide only two applications. A first example deals
with standard power control problems in CDMA networks with cou-
pled constraints. However, potential games also provide a useful
tool to study non-standard problems, for which a unified framework
is still missing, as shown in the second example. Such an example
is also instrumental to understand the general relationship existing
between the NEs of a potential game and the equilibrium points of a
proper gradient dynamic system, having as a Lyapunov function the
potential of the game [10].

3.1. Standard problems with coupled constraints

Consider a single-cell3 CDMA system with total bandwidth W Hz
and unspread bandwidth B Hz, supporting Q users. The signal-to-
interference plus noise ratio (SINR) of the q-th user at the receiver is
given by [1]

SIRq(p) =
W

B

|hq|
2pq

1 +
�

j �=q
|hj |2pj

, (8)

where p = [p1, . . . , pQ]T , pq is the transmit power of the q-th user,
{hq}q

is the set of channels from the users to to Base Station (BS),
and the thermal noise power is normalized to one.

A general formulation for standard power control problems is

minimize pq

subject to fiq (SIRq(p)) ≥ γiq, i = 1, . . . , nq,
pq ∈ [0, Pq] , q ∈ Ω,

(9)

3The multi-cell case can be studied using the same approach [1].

where Pq is the total power budget of each transmitter, and fiq(·) is
a continuous function on R+. Observe that depending on the choice
of fiq(·)’s, different types of QoS constraints from individual users,
either in fixed/slow-fading or fast-fading Rayleigh channels, can be
taken into account. For example, in the case of fixed or slow-fading
Rayleigh channels, constraints on data rate, error probability, delay
and outage probability of each user can be expressed as in (9), with
a convex and compact feasible set [12]. In the case of fast-fading
ergodic Rayleigh channels, constraints, e.g., on the maximum tol-
erable average BER, or minimum average throughput can be equiv-
alently rewritten as a constraint on the lower bound of the average
SINR of each user [13], with the same form as (9), still with a convex
and compact feasible set.

However, QoS constraints give rise to a coupling among the indi-
vidual powers, which makes problem (9) in general harder to study.
Nevertheless, (9) can be equivalently formulated as the following
strategic noncooperative game

G = {Ω,X , {log (pq)}q∈Ω} , (10)

with

X =
�
p ∈ R

Q
+ : fiq (SIRq(p)) ≥ γiq, pq ≤ Pq, ∀i, ∀q ∈ Ω

�
.

It is not difficult to verify that the game G as defined in (10) is
an exact potential game with potential function4

P (p) =
�
q∈Ω

log (pq) . (11)

Observe that, if the original problem (9) is feasible, then the set
X defined in (10) is compact. Moreover, multiple equilibria may
exist. If, in addition, the set is also convex, then the NE of the game
(and thus the solution of (9)) is unique (Theorem 3) and it can be
reached using the algorithms given in the Section 2.2.

3.2. Non-standard problem

Consider again system model (8), and now the strategic noncooper-
ative game

G = {Ω, {Xq}q∈Ω, {Φq}q∈Ω} , (12)

with Xq = R+, and Φq(p) = log (1 + SIRq(p)) − cq(pq), where
SIRq(p) is defined in (8), and cq(pq) denotes a pricing function (as-
sumed to be twice continuously differentiable, nondecreasing, and
strictly convex in pq). The pricing function may serve different
purposes such as a control employed by the BS to limit the trans-
mit power of each user and thus the interference generated, or as a
penalty in terms of battery usage. Note that cq(pq) contains, as a
particular case, the linear function largely used as pricing in the lit-
erature (see, e.g. [14]). Observe that, because of the pricing factor,
at NE some user may not transmit at all [14]. This solution occurs if
the price factor is set too high, so that some user prefers to not trans-
mit, depending on its channel gain and interference. In order to avoid
this possibility, a constraint on the lower bound of each SIRq(p) in
(8) can be introduced. In this case, the admissible set of the game
becomes coupled. As a similar problem has already considered in
(9), we assume in the following a feasible set Xq as defined in (12).

The game G in (12) does not fall within the class of standard
problems of [1], because the best response strategy of each player
does not verify the monotonicity property, required for a function to

4The choice of the log function in (11) is only instrumental to have a
strictly concave potential, so that Theorem 3 can be applied.
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be standard. Nevertheless, the full characterization of the game can
still be obtained, using the framework of potential games. In fact,
it is straightforward to see that G is an exact potential game, with
potential function

P (p) = log

�
1 +

�
q∈Ω

|hq|
2pq

�
−
�
q∈Ω

cq(pq). (13)

Moreover, since the function P (p) in (13) is strictly concave in p

and the strategy set X = X1 × . . . × XQ is compact5 and convex,
the game admits a unique NE (Theorem 3). Note that this result gen-
eralizes [14], where the uniqueness of NE is proved only for linear
pricing and under a constraint on the maximum number of users.

Alternative distributed algorithms can be used to reach the equi-
librium. The Gauss-Seidel algorithm, with, e.g., best response as in
(3) is

pi+1
q = arg max

pq≥0
P
�
pi+1
1 , . . . , pi+1

q−1, pq, p
i
q+1, . . . , p

i
Q

�
. (14)

The Jacobi iterative algorithm is instead given by

pi+1
q = pi

q + α

�
|hq|

2

1 +
�

j∈Ω |hj |2pi
j

−
d

dpq

cq(pq)|pq=pi
q

�+

,

(15)
where [x]+ =max(0, x). The convergence of Gauss-Seidel algo-
rithm and Jacobi algorithm (with a proper choice of α) can be proved
using the framework of potential games [10], or, for this particular
case using directly [5, Prop. 3.9] and [11, The. 9], respectively.

To compare the performance of the two algorithms, we plot in
Figure 3.2, as an example, the evolution of the powers with the itera-
tions using (14) and (15), with pricing function cq(pq) = γ|hq|

2(pq)
2.

For the sake of comparison, we also report the globally optimal
power allocation, obtained using a centralized optimization. Ob-
serve that a Guss-Seidel algorithm is faster that Jacobi algorithm.
However, thanks to the strict concavity of (13), both algorithms con-
vergence to the globally optimal solution (Theorem 2).

The game G introduced in (12) is also instrumental to show the
interplay existing between potential games and dynamic systems,
as we argue next. Consider the following autonomous gradient dy-
namic system

d

dt
pq(t) = α

�
∂

∂pq

P (p(t))

	+

, q ∈ Ω, t ≥ 0, (16)

with pq(0) ≥ 0 and P (p) given by (13). Observe that the Ja-
cobi algorithm in (15) is just the discrete-time approximation of the
differential equation (16), for a sufficiently small α. Furthermore,
the equilibrium of the dynamic system (16), (i.e. the point where
dpq(t)/dt = 0 for all q), corresponds to the (unique) NE of the
game defined in (12) (Theorem 2). More interesting, the dynamic
system converge to this equilibrium, from any initial condition, and
a Lyapunov function for this system [9] is just the (scaled version
of) potential function P given in (13). In fact, consider the follow-
ing candidate Lyapunov function

V (p) = Pmax − P (p), (17)

where Pmax � P (p�) denotes the (unique) maximum of P over X
defined in (12). It is straightforward to see that V (p) ≥ 0 ∀p ∈ X

5Note that, since at the NE the set of optimal powers p�
1, . . . ,p�

Q is finite,
we can always replace in the game G defined in (12) the original set Xq =
R+ with the closed and bounded set Xq = [0, P ], where P is chosen so that
p�

q < P, ∀q ∈ Ω.

and V (p) = 0 if and only if (iff) p = p
�. Furthermore, V (p) is

nondecreasing along the trajectories of the system (16), since

d

dt
V (p(t)) = −∇T

pP (p)



d

dt
p(t)

�
=

= −α
��[∇pP (p)]+

��2
≤ 0,

with d
dt

V (p(t)) = 0 iff


∇T

pP (p)
�+

= 0, i.e. iff p = p
�. It fol-

lows that (17) is a valid Lyapunov function for the dynamic system
(16). Lasalle’s invariance principle [9] asserts that if there exists
a Lyapunov function that is negative semidefinite[9] along the tra-
jectories of the dynamic system, then solutions, originating in the
compact set X = [0, P ]Q converge to the largest invariant set[9] in

D =

�
p ∈ X :

d

dt
V (p(t)) = 0

�
(18)

As D in (18) contains only the unique NE of the game G in (12),
dynamic system (16) converges to such an equilibrium. This proves
also the convergence of the Jacobi algorithm (15) to the equilibrium
(for a sufficiently small α).
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Fig. 1. Powers of three users vs. iterations. Dashed, solid and dotted line curves refer
on Gauss-Seidel algorithm in (14), Jacobi algorithm in (15) and the globally optimal
centralized solution, respectively; α = 0.1, γ = 0.5.
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