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Alu elements comprise >10% of the human genome. We have used a computational biology approach to
analyze the human genomic DNA sequence databases to determine the impact of gene conversion on the
sequence diversity of recently integrated Alu elements and to identify Alu elements that were potentially
retroposition competent. We analyzed 269 Alu Ya5 elements and identified 23 members of a new Alu subfamily
termed Ya5a2 with an estimated copy number of 35 members, including the de novo Alu insertion in the NF1
gene. Our analysis of Alu elements containing one to four (Ya1–Ya4) of the Ya5 subfamily-specific mutations
suggests that gene conversion contributed as much as 10%–20% of the variation between recently integrated
Alu elements. In addition, analysis of the middle A-rich region of the different Alu Ya5 members indicates a
tendency toward expansion of this region and subsequent generation of simple sequence repeats. Mining the
databases for putative retroposition-competent elements that share 100% nucleotide identity to the previously
reported de novo Alu insertions linked to human diseases resulted in the retrieval of 13 exact matches to the NF1
Alu repeat, three to the Alu element in BRCA2, and one to the Alu element in FGFR2 (Apert syndrome).
Transient transfections of the potential source gene for the Apert’s Alu with its endogenous flanking genomic
sequences demonstrated the transcriptional and presumptive transpositional competency of the element.

Alu elements belong to a class of retroposons termed
SINEs. SINEs are Short INterspersed Elements usually
∼100–300 bp in length commonly found in introns, 3�

untranslated regions of genes, and intergenic genomic
regions (Deininger and Batzer 1993). Alu is the most
abundant class of SINEs in primate genomes, reaching
a copy number in excess of one million/haploid ge-
nome (Jelinek and Schmid 1982; Jurka et al. 1993, Smit
1999). Alu elements increase their genomic copy num-
ber by an amplification process termed retroposition
(Rogers and Willison 1983; Weiner et al. 1986).

Alu elements appear to have arisen in the last 65
million years (Deininger and Daniels 1986). The hu-
man Alu family of repeats is composed of a small num-
ber of distinct subfamilies characterized by subfamily-
specific diagnostic mutations (Slagel et al. 1987;
Willard et al. 1987; Shen et al. 1991; Batzer et al.
1996b). The source Alu gene(s) for each of the subfami-

lies has been retropositionally active during different
periods of primate evolution. The rate of Alu amplifi-
cation (mostly Sx subfamily) appears to have reached
its peak between 60 and 35 million years, and subse-
quently decreased several orders of magnitude to the
present amplification rate (Shen et al. 1991). Only a
limited number of SINEs, termed master or source
genes, appear to be capable of retroposition (Deininger
and Daniels 1986; Batzer et al. 1990; Deininger et al.
1992), although the critical factor(s) defining func-
tional source genes are not understood. A variety of
factors influence the retroposition process (Schmid
and Maraia 1992). All of the recently integrated young
Alu subfamilies appear to be retropositionally active.
Almost all of the recently integrated Alu elements
within the human genome belong to one of four
closely related subfamilies (Y, Ya5, Ya8, and Yb8), with
the majority being Ya5 and Yb8 subfamily members
(Batzer et al. 1990, 1995; Deininger and Batzer, 1999).

Previously, analysis of individual Alu elements
from the different subfamilies involved laborious pro-
cedures, such as cloning, library screening, and subse-
quent sequencing (Batzer et al. 1990, 1995; Arcot et al.
1995a). However, the availability of large-scale human
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genomic DNA sequences as a result of the Human Ge-
nome Project facilitates genomic database mining for
Alu elements (Roy et al. 1999). We have taken advan-
tage of these databases and have analyzed a significant
portion of the Alu Ya5 subfamily, as well as interme-
diates between the Ya5 subfamily and the ancestral Alu
Y subfamily. In addition, we searched the databases for
putative retroposition-competent source Alu genes
that generated the de novo Alu inserts associated with
a number of human diseases (Deininger and Batzer
1999).

RESULTS

Computational Analyses
To search for subfamilies unidentified previously
within the Ya5 Alu subfamily, we selected all of the Alu
family members that matched our Ya5 consensus
query sequence from the human genome non-
redundant (nr) database. Only Ya5 elements found
randomly within other sequences were included in our
analysis, thereby eliminating Alu elements that had
been identified previously in directed Alu-specific
projects. In addition, truncated Alu elements were

eliminated from the analysis. Ya4 elements that did
not contain the first Ya5-specific diagnostic mutation
#11 (Fig. 1) (Shen et al. 1991), which is a CpG dinucleo-
tide in the Ya5 subfamily, were considered as Ya5 Alu
family members. We obtained a total of 269 matches to
the Ya5 query sequence that met our criteria. Of these,
47 shared 100% nucleotide identity with the subfamily
consensus sequence and 83 were near perfect matches
(aside from a few CpG mutations).

Analysis of the 269 Ya5 Alu elements resulted in
the initial identification of two subsets of potential
subfamilies containing two diagnostic mutations each,
one with six members and the other with four. These
subfamiles will be referred to as Ya5a2 and Ya5b2, re-
spectively, in compliance with the standard Alu sub-
family nomenclature (Batzer et al. 1996a). Each con-
sensus sequence with the two diagnostic mutations
specific to each new Alu subfamily is shown in Figure
1. Interestingly, the de novo Alu Ya5 insert present
within an intron of the NF1 gene (Wallace et al. 1991)
is an exact match to the Ya5a2 consensus. The nr da-
tabase contained 16.0% of human DNA sequences for
a total of 515,596,000 bases on the date of the search.
The estimated size of the Ya5a2 subfamily is (3 � 109

bp/515,596,000 bp) � 6 unique Ya5a2
matches = 35 subfamily members. In com-
parison, the estimated size of the Ya5b2
subfamily is (3 � 109 bp/515,596,000 bp)
� 4 unique Ya5b2 matches = 22 subfamily
members. We utilized only the randomly
found Ya5a2 elements for the calcula-
tions to avoid overestimating the size of
the subfamilies. However, these numbers
may be underestimations, because some
specific polymorphic elements of these
subfamilies may not be represented in the
database.

To derive a second estimate of the copy
numbers of the Ya5a2 and Ya5b2 Alu sub-
families, we used their consensus se-
quences as queries for the high throughput
genome sequence (htgs) and genomic sur-
vey sequence (gss) databases. Seventeen ad-
ditional Alu Ya5a2 elements were found in
these searches. Of the 23 total Ya5a2 ele-
ments, 13 shared 100% nucleotide identity
with the subfamily consensus sequence. No
additional Ya5b2 elements were found in
the other databases, therefore the Ya5b2
subfamily was not subjected to further
analysis. Three additional potential sub-
families, Ya5a1 (five members), Ya5b1 (four
members), and Ya5c1 (four members) with
only one specific diagnostic mutation were
identified (Fig. 1). Because of the small
copy number, and the possibility that some

Figure 1 Consensus sequence alignment of Ya5, and the potential new subfam-
ily members identified. Nucleotide substitutions at each position are indicated with
the appropriate nucleotide. Deletions are marked by dashes (-). The Ya5 diagnostic
nucleotides are indicated in bold with the corresponding diagnostic number above
as defined by Shen et al. (1991).
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of those represent parallel mutations rather than new
subfamilies, no further analyses were performed.

To determine the age of the Ya5a2 subfamily, we
divided the nucleotide substitutions within the ele-
ments into those that have occurred in CpG dinucleo-
tides and those that have occurred in non-CpG posi-
tions. The distinction between types of mutations is
made because the CpG dinucleotides mutate at a rate
that is ∼10 times faster than non-CpG (Labuda and
Striker 1989; Batzer et al. 1990), as a result of the
deamination of 5-methylcytosine (Bird 1980). A total
of five non-CpG mutations and seven CpG mutations
occurred within the 23 Alu Ya5a2 subfamily members
identified. By use of a neutral rate of evolution for pri-
mate-intervening DNA sequences of 0.15%/one-
million years (Miyamoto et al. 1987) and the non-CpG
mutation rate of 0.092% (5/5382 bases using only non-
CpG bases) within the 23 Ya5a2 Alu elements, yields
an estimated average age of 0.62 million years for the
Ya5a2 subfamily members with a predicted 95% con-
fidence level in the range of 0.28–1.08 million years,
given that the mutations were random and fit a bino-
mial distribution. The Ya5a2 subfamily appears to be
much younger than Ya5, Ya8, or Yb8 Alu subfamilies
with estimated ages of 2.8 million years (Batzer et al.
1990), 2.75 million years (Roy et al. 1999), and 2.7
million years (Batzer et al. 1995), respectively (Fig. 2).

Determination of the number of elements that
perfectly match the subfamily consensus sequence can
also give an indirect estimate of Alu subfamily age and
recent rate of mobilization. Recently transposed Alu

elements share higher levels of nucleotide identity
with their source copies because they have not resided
in the genome long enough to accumulate random
mutations. In contrast, older Alu elements that have
resided in the genome for longer periods of time tend
to have less nucleotide identity with their source genes
as a result of the accumulation of random mutations
subsequent to integration into the genome. We com-
pared our search results for the Ya5a2 subfamily with
parallel searches from the Ya8 and Ya5 Alu subfamilies.
Our BLAST searches from the nr database yielded one
perfect match of 12 elements for Ya8, 47 of 269 for Ya5,
and 3 of 6 for Ya5a2 (Fig. 2). Searching all three data-
bases (nr, gss, and htgs) yielded 5 perfect matches of 27
for Ya8 and 13 of 23 for Ya5a2. These results are in
good agreement with the previous estimates, indicat-
ing that Ya5a2 is the youngest Alu subfamily reported
to date, as it also has the highest proportion of ele-
ments that share 100% nucleotide identity with the
consensus sequence.

Stability of the Middle A-Rich Region in Alu Ya5
Members
The oligo-dA-rich tails and middle A-rich regions of
Alu elements have been shown previously to serve as
nuclei for the genesis of simple sequence repeats (Arcot
et al. 1995b). In the autosomal recessive neurodegen-
erative disease, Friedreich ataxia, the most common
mutation, is the hyperexpansion of a GAA within the
middle A-rich region of an Sx Alu element (Monter-
mini et al. 1997). Because these regions appear un-
stable, we analyzed the middle A-rich region of Alu
elements retrieved from the databases to detect expan-
sions/contractions of this sequence.

To evaluate potential expansions/contractions, we
performed a BLAST query of three databases (nr, htgs,
and gss) using the Alu Ya5 consensus sequence with
varying numbers of A nucleotides within the middle
A-rich region (TAnTACAnTT). Our results demonstrate
that the majority of the elements identified matched
the consensus sequence. However, there is a trend for
an A expansion at both positions (Table 1). In contrast,

Figure 2 Schematic for the evolution of recently integrated Alu
subfamilies. The origin of the Ya5a2 Alu subfamily is shown after
the divergence of Ya5 and Yb8 elements. The total number of
elements found in the nr-database (perfect matches in parenthe-
sis) are shown first separated by a slash from the total number of
elements found in all three databases (nr, gss, htgs). For the Ya5
elements only the nr-database results are shown.

Table 1. Alu Middle A-Rich Region

Ya5-middle A
rich region

An

4 5 6 7 8 9 10 11

T(An)TACA6TTa 0 269c 9 1 0 1 — —
TA5TAC(An)TTb 0 2 269c 37d 11 7 3 0

an = 5 in Ya5 consensus.
bn = 6 in Ya5 consensus.
cData from the non-redundant database only.
dAll 23 Ya5a2 members are included.

Mosaic Alu Sequences

Genome Research 1487
www.genome.org



very few sequence contractions were detected for any
of the positions.

Human Genomic Variation
To determine the human genomic variation associated
with the Ya5a2 Alu subfamily members, we selected
the 13 Ya5a2 elements identical to the subfamily con-
sensus sequence as well as 2 others and determined the
degree of fixation associated with the elements using
PCR-based assays of a panel of diverse human DNA
samples with the primers shown in Table 2. The panel
is composed of 20 individuals of European origin, Af-
rican-Americans, Greenland natives, and Egyptians
for a total of 80 individuals (160 chromosomes). The
Alu elements were classified as fixed absent, fixed
present, and high, intermediate, or low frequency
insertion polymorphisms (see Table 3 for definitions).
By use of this approach, 3 of the 14 elements tested
(Ya5NBC206, Ya5NBC207, and Ya5NBC235) were al-
ways present in the human genomes that were sur-
veyed, suggesting that these elements became fixed in
the genome prior to the radiation of modern humans
from Africa. Five of the elements (Ya5NBC208,
Ya5NBC240, Ya5NBC241, Ya5NBC242, and
Ya5NBC220) are intermediate frequency Alu insertion
polymorphisms. The remaining six elements are low-
frequency Alu insertion polymorphisms (Table 3). The
population-specific genotypes and levels of heterozy-
gosity for each element are shown in Table 4. The high
proportion of polymorphic elements is in good agree-
ment with our other observations, indicating that

the Ya5a2 subfamily is younger than any of the other
Alu subfamilies identified previously in the human ge-
nome.

Gene Conversion and Alu Sequence Diversity
In our query of the human genome (nr) database, 91 of
the Alu elements identified contain one to four of the
five Ya5 diagnostic nucleotides (Fig. 1). Of these 91
intermediate elements, 4 are Ya1, 1 Ya2, 7 Ya3, and 79
Ya4 Alu elements (Fig. 3). Surprisingly, not all of the
Alu elements with different numbers of subfamily mu-
tations had the same combination of mutations. To
facilitate identification of the individual elements with
different diagnostic mutation combinations, the diag-
nostic nucleotides were numbered consecutively in or-
der of abundance (Ya3.1, Ya3.2, etc., see Fig. 3). Seven-
teen Alu elements (Ya4.4) did not contain the first di-
agnostic mutation (#11), but were still classified as Ya5
for the analyses outlined above.

Previous evolutionary analyses of the Ya5 founder
element with different primate DNA samples demon-
strated the sequential accumulation of the Ya5 diag-
nostic mutations with diagnostic positions #13/#14
first, followed by #12/#16, and finally position #11
(Shaikh and Deininger 1996). Our data are not consis-
tent with a sequential order in the accumulation of the
diagnostic mutations. The elements classified as Ya1,
Ya2, Ya3.4, Ya3.5, and Ya4.4 (26 total) fit the proposed
order (Fig. 3). However, the remaining 65 elements rep-
resent almost every other permutated order. Several
mechanisms could explain the occurrence for mosaic

Table 2. Alu Ya5a2 PCR Primers, Chromosomal Locations, and PCR Product Sizes

Name 5� Primer sequence (5�–3�) 3� Primer sequence (5�A–3�) A.T.a
Chromo-

someb

Product sizec

filled empty

Ya5NBC206 TCCTTAGCTATCTCACAAGCTACAT ACACATTTCCTTCAAGAGGTCAAAG 60°C 4 734 424
Ya5NBC207 CAGTTTTATACACTGGCCTGTTTTC TTGTAGGAGAAAGAGGGGAAATACT 50°C 6 443 122
Ya5NBC208 AATACCTTGTACATCTTCACCCCTA TCTCTCTGCTGCACAGTTTGTT 50°C 14 441 115
Ya5NBC240 CAGGAGATAAATATGTTCGGAGAGT TAACTGGGACAGTGAGTTTTACCTG 55°C 9 505 202
Ya5NBC241 GGTTCCAATAGAGAGCAACAGAA ACCTTAAGCTTTCCCCCAGA 55°C 15 392 66
Ya5NBC242 AACAAAATTCCCTTTCCTCCA GGCAATCTGACCTTGGGTAA 55°C 7 503 192
Ya5NBC7 TGATGGATATTTGGGTTGGTTC GGACTGTAAACTAGTTCAACCATTGTG 60°C 7 522 216
Ya5NBC205 ACATGAAGGGCCGACTGTAT TGCTGCTGCATTATCAACTG 50°C 21 435 81
Ya5NBC209 GTCTATGGGAAGATGAAGAATAGGA GATGGAGTCACTCATGTGAAAAGTA 55°C 14 447 116
Ya5NBC239 CAGCTGAGAACTGTCACAAATAGAA ATCAATGACTGACTTGTGCTGAGT 55°C 9 531 198
Ya5NBC243 CCATGATTCGTCATTCACCA AGGAGACCTGCCAATGAATG 60°C 21 406 86
Ya5NBC220 AAATCAAGCTGCCATACCTCA GAAACCATCCTTCACAGTGG 60°C 1 463 141
Ya5NBC235 CCCAAGGCACTTGCTGTTA CCCTTCGAGAAAGAGGAAGG 50°C 2 391 76
Ya5NBC244 CCTATGGCTGAAACTTCTGAAACT ATATCTTGGTCCACTAGACAAGCAC 60°C 18 453 130
Ya5NBC237d CCCATGGAGGGTCTTTCCTA CTGGAAACCATCCTTCACAGT 60°C 1 410 88

aAmplification of each locus required 2.5 min at 94°C initial denaturing, and 32 cycles for 1 min 94°C, 1-min annealing temperature
(A.T.) and 1-min elongation at 72°C. A final extension time of 10 min at 72°C was also used.
bChromosomal location determined from accession information or by PCR analysis of NIGMS monochromosomal hybrid cell line DNA
samples.
cEmpty product sizes calculated by removing the Alu element and one direct repeat from the filled sites that were identified.
dAlu Ya5a2 element of the FGFR2 gene.
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Alu elements, which are addressed in the discussion
section. However, we believe the most likely explana-
tion for the existence of these mosaic elements is
through gene conversion events. A limited amount of
gene conversion between Yb8 Alu elements has been

reported previously (Batzer et al. 1995; Kass et al.
1995). In theory, gene conversion may change the se-
quence of all or part of any Alu element in either an
evolutionarily forward (Ya5 subfamily in this case) or
backward (Y subfamily) direction by changing the di-

Table 3. Alu Ya5a2 (NF1)-Associated Human Genomic Diversity

Ya5a2 elements Accession no. (duplicates) Position Allele frequencya

Ya5NBC206 AC004057 76767–77048 fixed present
Ya5NBC207 AL118555 (AL132992) 9981–9700 (40728–41009) fixed present
Ya5NBC208 AL109919 70170–69889 intermediate
Ya5NBC220 AC007611 136715–136434 intermediate
Ya5NBC240 AC133410 (AL135841) 34800–35081 (49829–49548) intermediate
Ya5NBC241 AC018924 144017–144298 intermediate
Ya5NBC242 AC009517 161301–161582 intermediate
Ya5NBC7 AC004848 24522–24241 low
Ya5NBC205 AL011328 204488–204207 low
Ya5NBC209 AC00808 147056–146775 low
Ya5NBC239 AL133284 115867–115586 low
Ya5NBC244 AC026839 64885–64604 low
Ya5NBC243 AJ011929 151192–151473 low
Ya5NBC235b AQ748733 458–739 fixed present
Ya5NBC237c AL031274 33175–33501 intermediate

aAllele frequency was classified as fixed present, fixed absent, low, intermediate, or high frequency insertion polymorphism. (Fixed
present) every individual tested had the Alu element in both chromosomes; (low frequency insertion polymorphism) the absence of
the element from all individuals tested, except for one or two homozygous or heterozygous individuals; (intermediate frequency
insertion polymorphism) the Alu element is variable as to its presence or absence in at least one population; (high frequency insertion
polymorphism) the element is present in all individuals in the populations tested, except for one or two heterozygous or absent
individuals.
bSeveral Ns.
cYa5NBC237 is the exact match to the FGFR2 Alu insertion.

Table 4. Alu Ya5a2-Associated Human Genomic Diversity

Elements

African American Greenland natives European Egyptian

genotypea fAlub genotypes fAlu genotypes fAlu genotypes fAlu het.c

Ya5NBC206 20 0 0 1.000 20 0 0 1.000 20 0 0 1.000 20 0 0 1.000 0.000
Ya5NBC207 20 0 0 1.000 20 0 0 1.000 20 0 0 1.000 20 0 0 1.000 0.000
Ya5NBC208 4 1 7 0.375 3 0 4 0.429 13 0 6 0.684 7 0 5 0.583 0.482
Ya5NBC236 5 6 2 0.615 5 8 6 0.474 15 5 0 0.875 6 8 1 0.667 0.422
Ya5NBC240 5 1 9 0.367 11 0 4 0.733 5 1 10 0.344 5 3 3 0.591 0.464
Ya5NBC241 3 9 5 0.441 6 11 2 0.605 0 7 11 0.194 3 8 4 0.467 0.459
Ya5NBC242 2 13 1 0.531 7 4 3 0.643 3 4 11 0.278 3 3 1 0.643 0.474
Ya5NBC7 0 0 19 0.000 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0.000
Ya5NBC205 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0.000
Ya5NBC209 0 1 17 0.028 0 0 17 0.000 0 0 19 0.000 0 0 19 0.000 0.000
Ya5NBC239 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0.000
Ya5NBC243 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0.000
Ya5NBC220 0 14 5 0.368 1 15 2 0.472 0 18 1 0.474 0 9 2 0.409 0.502
Ya5NBC244 0 0 12 1.000 — — — — 0 0 10 0.000 0 0 8 0.000 0.000
Ya5NBC235 20 0 0 1.000 20 0 0 1.000 20 0 0 1.000 20 0 0 1.000 0.000
Ya5NBC237d 18 1 0 0.974 15 4 0 0.895 20 0 0 1.000 18 1 0 0.974 0.075

aGenotypes: +/+ Alu, +/� Alu, �/� Alu.
bFrequency of the presence of the Alu.
cAverage heterozygosity.
dYa5NBC237 is the exact match to the FGFR2 Alu insertion.
— not determined.
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agnostic mutations. In addition, double gene conver-
sions would be extremely rare, making the direction of
the gene conversion clear in some elements. We clas-
sified the 91 mosaic Alu element sequences as gene
converted forward (f), backward (b), or could not be
determined (-), (see Fig. 3) If the Alu elements that fit
the proposed sequential evolution are ignored in the
analysis, all of the other elements may be classified as
backward gene conversion (32 total) or could not be
determined (33 total), and none were clearly gene-
converted forward. Therefore, backward gene conver-
sion may have contributed to between 10% and 20%
(32 to 65/269 Ya5 + [91–17] Ya1–Ya4) of the Alu Ya5
sequence diversity. Interestingly, evaluation of the five
random Ya5a2 non-CpG mutations shows that one
mutation in position #13 is a backward mutation to
the Y subfamily, another putative example of a reverse
gene conversion.

In Search of Retroposition-Competent Alu Repeats
Sixteen different Alu insertions have been linked to
human diseases (Deininger and Batzer 1999). Four be-
long to the Alu Y subfamily, one to the Ya4 subfamily,
eight to the Ya5 subfamily, and three to the Yb8 sub-
family. Closer inspection of the nucleotide sequences
of these Alu elements show that they have some mu-
tations that are different from their respective subfam-
ily consensus sequences. Because these Alu insertions

are very recent in origin, they are likely to be identical
to their source genes aside from rare mutations intro-
duced during reverse transcription of the Alu element.
Therefore, sequence database queries utilizing each Alu
element along with its individual mutations (away
from the subfamily consensus sequence) may facilitate
the identification of the source Alu element that gen-
erated the copy. This strategy is similar to that used
previously in the identification of active LINE elements
from the human genome (Dombroski et al. 1993).

A database query using the sequence of the indi-
vidual Alu elements responsible for each disease to
mine three databases (nr, htgs, and gss) identified exact
complements to four of the disease-associated Alu re-
peats. Thirteen of the identified elements were exact
matches to the NF1 Alu insertion (Ya5a2 subfamily,
Table 3; Wallace et al. 1991); three were exact matches
to the BRCA2 Alu element (Miki et al. 1996) (accession
nos. AL121964, AL136319, and AL135778); one
matched the FGFR2 Alu repeat (Oldridge et al. 1999)
(accession no. AL031274); and one matched the Alu
repeat in the IL2RG gene (Lester et al. 1997) (accession
no. AC010888).

Potential Source Gene for the Ya5 Insert in FGFR2
As mentioned above, our BLAST query only detected
one exact match (accession no. AL031274 or
Ya5NBC237) to the Ya5 Alu found in the FGFR2 gene
that caused Apert syndrome. We estimated the level of
human genomic variation associated with Ya5NBC237
using the same human DNA panel and determined
that it was an intermediate frequency Alu insertion
polymorphism (Table 4).

Mobilization-competent Alu elements must be ca-
pable of transcription, the first step in the retroposition
process. To evaluate Alu Ya5NBC237 as a potential
source gene for the de novo insert in the patient with
Apert syndrome, we determined its transcription capa-
bility. Constructs with the genetic loci containing the
Ya5NBC237 Alu and the de novo Apert syndrome Alu
element were made. Transcription levels from the two
constructs were evaluated by Northern blot analysis
relative to a control plasmid in which the Alu element
is flanked immediately upstream by vector sequence.

Transient transfections (Fig. 4) of the constructs
into rodent cell line C6 (rat glial tumor) were per-
formed. Although the Alu element in the control plas-
mid has an intact internal Pol III promoter, Alu tran-
scripts are barely detectable from the control plasmid.
In contrast, the transcription from the Apert’s Alu ele-
ment and its potential source gene were elevated three-
to fourfold, as expected for putative mobilization-
competent Alu repeats. This result suggests that the
genomic flanking sequence of Ya5NBC237 probably
makes the Alu transcription competent, one of the sev-
eral requirements of a source gene. The same results

Figure 3 Evolution of the diagnostic nucleotide positions from
Y to Ya5 Alu elements. Alignment of the five Alu Ya5 diagnostic
nucleotides as defined by Shen et al. (1991) and the different
Ya1, Ya2, Ya3, and Ya4 elements found in the nr database. For
easy reference, individual elements containing different combi-
nations of the diagnostic mutations were numbered consecu-
tively in order of abundance (Ya3.1, Ya3.2, etc.). Ya4.4 elements
were considered as Ya5 elements in the first Ya5 subfamily analy-
sis in this paper. The total number of elements found for each
subgroup is indicated at left in parenthesis. Potential forward (f)
or backward (b) gene conversions are indicated at right. The
previously reported order of appearance of Ya5 diagnostic mu-
tations (Shaikh and Deininger 1996) is indicated below. Elements
with diagnostic mutations that follow the stepwise hierarchical
accumulation are circled.
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were obtained from transfections in the human embry-
onic kidney cell line 293 (data not shown).

DISCUSSION
Our computational and experimental analyses of the
Ya5 subfamily of Alu repeats provides an overall pic-
ture of the most active of the recently integrated young
Alu subfamilies from the human genome. The analysis
of Alu Ya5 repeats allowed us to address a number of
questions about the biology of these elements, such as
the potential impact of gene conversion events, and
the identification of Alu family members from the hu-
man genome that may be capable of retroposition.

Alu elements spread throughout the genome by
retroposition in the last 65 million years. The master/
source gene model (Batzer et al. 1990; Shen et al. 1991;
Deininger et al. 1992) posits that a very small subset of
the >1,000,000 Alu elements within the human ge-
nome are capable of high levels of retroposition; al-
though a much larger number may make a few copies.
The formation of Alu subfamilies may be explained by
the sequential accumulation of mutations within the
active source gene(s) followed by proliferation of the
mutated source elements. A number of studies indicate
that relatively few source Alu genes have played a
dominant role in the amplification and evolution of
Alu elements (Shen et al. 1991; Deininger et al. 1992;
Deininger and Batzer 1993; Kapitonov and Jurka
1996). Although retroposition is the primary mode of
SINE mobilization and sequence evolution through

mutations in the source gene(s), our analysis suggests
that gene conversion and genetic instability of Alu-
based simple sequence repeats have also had a signifi-
cant impact on the sequence architecture of this major
family of human genomic sequences.

There are several alternatives that could explain
the occurrence of mosaic Alu elements. First, some of
the mosaic Alu elements with a single mutation could
be explained by the occurrence of parallel mutations.
However, this seems unlikely unless there were selec-
tion for these specific mutations, possibly through a
post-transcriptional selection process (Sinnett et al.
1992). It is also difficult to envision a selection process
that would only select for mutations at adjacent diag-
nostic positions, such as we see here. Also, recombina-
tion between different Alu elements could have gener-
ated some of these intermediate Alu elements that con-
tain a mosaic of diagnostic mutations. However, in
many cases, multiple recombination events would be
required to obtain this outcome, making it highly un-
likely. Although there are alternative mechanisms, we
believe gene conversion is the most likely explanation
for the occurrence of mosaic Alu elements.

The mechanisms of genome-wide gene conversion
between mobile elements are not well understood in
humans (see Kass et al. 1995, and references therein).
Our data show that even the very short, dispersed Alu
elements appear to be capable of high levels of gene
conversion, which usually involve only short sequence
stretches. In addition, our data show that reverse or
backward gene conversions may be more favored. It
seems likely that higher levels of the Y element copy
number (Shen et al. 1991) or transcription (Shaikh et
al. 1997) may play a role in determining the direction-
ality of the gene conversion events. Although older Alu
subfamilies, such as J and Sx are present in higher copy
numbers in the genome, they diverged greatly from
their consensus sequences due to mutations that have
accumulated throughout evolution. Gene conversion
would not be favored between such divergent se-
quences. However, Alu Y elements tend to be more
conserved (better matches to Ya5) and with high copy
number (Batzer et al. 1995). Therefore, both abun-
dance (genomic copy number and/or transcript levels)
and sequence identity appear to be influential in the
Alu gene conversion events observed.

There are multiple examples of gene conversion
events in literature. Genetic exchange between exog-
enous and different endogenous mouse L1 elements
has been demonstrated previously to readily occur
(Belmaaza et al. 1990). Kass et al. (1995) reported pre-
viously a gene conversion event in which one of the
oldest Alu family members was converted to one of the
youngest Alu subfamilies, Yb8. In addition, a partially
converted Yb8 Alu element was also reported previ-
ously by Batzer et al. (1995). In yeast, some types of

Figure 4 Evaluation of transcriptional capability of the poten-
tial FGFR2 source Ya5 Alu element. The transcriptional efficiency
of the de novo FGFR2 Alu repeat and its putative source gene
were evaluated by Northern blot analysis from transient transfec-
tion studies. The following constructs were evaluated: (lane 1)
p-290Ap, (lane 2) p-416Ya5NBC237, and (lane 3) pNPYa5NBC237.
Lanes 4 and 5 are internal control only, and no DNA controls,
respectively. Small arrows indicate the Alu transcripts and the
open arrow indicates the internal control transcript. The ratio of
the Alu transcript/control transcript (numbers below) was nor-
malized to the pNPYa5NBC237 transcription ratio, which was as-
signed the arbitrary value of 1.
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mobile elements spread through the genome by gene
converting pre-existing elements (Hoff et al. 1998).
When we combine this type of mobilization in the
yeast genome with the Alu gene conversions reported
previously, as well as those in this paper, one could
argue that gene conversion may represent a second
type of amplification mechanism for short interspersed
elements in the human genome. These observations
suggest that evolutionary studies of all types of inter-
spersed elements that ignore gene conversion events
may lead to biased conclusions.

Variations in the length of the middle A-rich re-
gion and oligo-dA-rich tails of Alu elements are not
uncommon (Economou et al. 1990; Arcot et al. 1995b;
Jurka and Pethiyagoda 1995). Microsatellite repeats
have been found to be associated with the 3� oligo (dA)
tails and the middle A-rich region of Alu elements. In
the case of Friedreich ataxia, the most common muta-
tion is the hyperexpansion of a GAA trinucleotide re-
peat within the middle A-rich region of an Sx Alu
(Montermini et al. 1997). However, microsatellites in
the middle of Alu elements are not as common because
of the much shorter initial length of the middle A-rich
region. Arcot et al. (1995b) reported previously that
only about one-fourth of the Alu elements containing
(AC)n repeats had them as a part of their middle A-rich
region. The one specific example they studied in detail
had an evolutionary expansion of the A-rich region
(orangutan and gibbon) before the genesis of the AC
repeat; suggesting the requirement for an initial expan-
sion. Interestingly, our large-scale analysis of the
middle A-rich regions of Ya5 elements demonstrates a
trend toward expansion of the A region, providing ad-
ditional support for this region of the Alu elements to
act as a potential nucleus for the genesis of simple se-
quence repeats.

From our subset of 269 AluYa5 elements, we were
able to identify a new Alu subfamily termed Ya5a2. The
estimated average age of 0.62 million years (0.28–1.08
million years with 95% confidence) makes Ya5a2 the
youngest subfamily of Alu repeats identified in the hu-
man genome to date. It is as abundant as the Ya8 sub-
family (Roy et al. 1999) and its higher level of insertion
polymorphism suggests a higher level of current retro-
position. The Ya5a2 subfamily may have originated
from a Ya5 Alu element that inserted in a genomic
region that favored transcription and corresponding
retroposition activity of the element, thereby generat-
ing a source gene. The subsequent accumulation of the
two specific mutations facilitated the differentiation of
the copies made by the Ya5a2 source gene from the
larger background of several hundred genomic Ya5 Alu
family members. As new Alu elements integrate into
the genome in favorable genomic locations, they can
occasionally remain retropositionally competent and
generate copies of themselves. However, the frequency

of fortuitous insertions of new Alu elements into fa-
vorable genomic locations for subsequent mobilization
is still a rare event because the continuity of the hier-
archical subfamily sequence structure of the Alu ele-
ments is largely conserved throughout primate evolu-
tion.

Alu elements that are polymorphic for insertion
presence/absence have been proven previously to be
useful for the study of human population genetics and
forensics (Batzer et al. 1991; Jorde et al. 2000; Perna et
al. 1992; Batzer et al. 1994; Tishkoff et al. 1996; Stonek-
ing et al. 1997). The identification of a very young Alu
subfamily with a high proportion of polymorphic
members provides a new source of Alu insertion poly-
morphisms for the study of human population genet-
ics. However, it is important to note that theYa5a2
subfamily is extremely small (∼35 copies total in a
background of >1,000,000) comparable with Ya8, so
that an exhaustive analysis of a single human genome
would only generate ∼20 polymorphic Ya5a2 elements.

Because our analysis of Alu elements related to the
Apert’s insertion only included ∼40% of the human
genome (both finished and draft sequence included),
there are possibly one or two other perfect comple-
ments in the human genome that have not yet been
sequenced and may be the actual source gene for these
elements. The transcriptional potential of this element
would be consistent with its role as the potential
source Alu gene. This confirms the existence of minor
active source genes that differ from the source gene
that generated almost all of the Alu elements present in
the human genome today. In addition, the de novo
Apert’s Alu element was also transcriptionally active.
There are two possible explanations for this result.
First, the transcriptional capacity of the elements was
evaluated by transient transfections in tissue culture.
This system does not reflect the influence of chromatin
structure and methylation patterns (position effects)
on the transcription and presumably retroposition
potential of the two Alu repeats. Alternatively, the
de novo Apert’s Alu element may have inserted in
a region of the FGFR2 gene that fortuitously enhanc-
es its own transcription capability. Although further
studies will be required to make more definitive state-
ments in this regard, the transcriptional capability of
Ya5NBC237 is consistent with one of the many re-
quirements a source gene possesses, making it a plau-
sible candidate source gene for the de novo Apert’s
insertion.

In summary, the computational analyses of a sub-
set of recently integrated Alu elements demonstrate
that Alu sequence evolution is affected by a number of
dynamic events. New retroposition-competent Alu
source genes, gene conversion, and genetic instability
each play an important role in Alu sequence evolution
and proliferation within the human genome.
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METHODS

Computational Analyses
Screening of the GenBank nr, the htgs, and the gss databases
were performed by use of the Advanced Basic Local Alignment
Search Tool 2.0 (BLAST) (Altschul et al. 1990) available from
the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/). For the Ya5 subfamily analysis, the
database was searched for matches to the 281 bases of the Ya5
consensus sequence with the following advanced options:
-e 1.0 e-120, -b 1000, and -v 1000. A region composed of 500
bases of flanking DNA sequence directly adjacent to the se-
quences identified from the databases that matched the initial
GenBank BLAST query were subjected to annotation by use of
either RepeatMasker2 from the University of Washington Ge-
nome Center server (http://ftp.genome.washington.edu/cgi-
bin/RepeatMasker) or Censor from the Genetic Information
Research Institute (http://www.girinst.org/Censor Server-
Data Entry Forms.html) (Jurka et al. 1996). These programs
annotate the repeat sequence content of DNA sequences from
humans and rodents. The sequences were then subjected to
more detailed analysis by use of MegAlign (DNAStar version
3.1.7 for Windows 3.2). The following parameters were used
to select the Ya5 elements to be analyzed: (1) Ya5 had to have
all five diagnostic nucleotides (except for the first position, as
it is a highly mutable CpG). (2) No truncated Alu elements
were included in the analysis. (3) No Alu elements identified
as a result of directed cloning strategies designed to identify
Alu repeats were included (only those randomly found within
larger data sequence). (4) Duplicate Alu elements were elimi-
nated on the basis of flanking sequences. The consensus se-
quences of the Yb8 and Ya8 subfamilies were used for parallel
searches of the three GenBank databases mentioned above. A
complete list of the Alu elements identified from the GenBank
search is available from M.A.B. or P.L.D. and at http://
www.genome.org/cgi/doi/10.1101/gr152300.

To search for putative source genes of the Alu elements
that have been associated previously with different diseases,
the three GenBank databases were searched by use of the se-
quence of each individual repeat to identify exact comple-
ments (Deininger and Batzer 1999).

DNA Samples
Human DNA samples from the European, African-American,
Egyptian, and Greenland native population groups were iso-
lated from peripheral blood lymphocytes (Ausubel et al. 1996)
that were available from previous studies (Roy et al. 1999).

Oligonucleotide Primer Design and PCR
Amplification
A region composed of ∼500 bases of flanking unique DNA
sequences adjacent to each Alu repeat were used to design
primers for 14 Ya5a2 Alu elements (13 exact matches to con-
sensus, Table 2). PCR primers were designed with the Primer3
software (Whitehead Institute for Biomedical Research)
(http://www.genome.wi.mit.edu/cgi-bin/primer/primer3
www.cgi). The resultant PCR primers were screened against
the GenBank nr database for the presence of repetitive ele-
ments by use of the BLAST program, and primers that resided
within known repetitive elements were discarded and new
primers were designed. PCR amplification was carried out in
25-µL reactions with 50–100 ng of target DNA, 40 pM of each
oligonucleotide primer, 200 µM dNTPs in 50 mM KCl, 1.5

mM MgCl2, 10 mM Tris-HCl (pH 8.4), and Taq DNA polymer-
ase (1.25 units) as recommended by the supplier (Life Tech-
nologies). Each sample was subjected to the following ampli-
fication cycle: an initial denaturation of 2:30 min at 94°C, 1
min of denaturation at 94°C, 1 min at the annealing tempera-
ture, 1 min of extension at 72°C, repeated for 32 cycles, fol-
lowed by a final extension at 72°C for 10 min. Twenty micro-
liters of each sample was fractionated on a 2% agarose gel
with 0.25 µg/ml ethidium bromide. PCR products were di-
rectly visualized by UV fluorescence. The human genomic
diversity associated with each element was determined by the
amplification of 20 individuals from each of 4 populations
(African American, Greenland native, European, and Egyp-
tian; 160 total chromosomes). The chromosomal location for
elements identified from randomly sequenced large-insert
clones was determined by PCR analysis of National Institute
of General Medical Sciences (NIGMS) human/rodent somatic
cell hybrid mapping panels 1 and 2 (Coriell Institute for Medi-
cal Research, Camden, NJ).

Construction of Plasmids
The following constructs were made: p-416Ya5NBC237 (416
bp upstream genomic – Alu – 223 bases downstream);
p-290Ya5Ap (290 bp upstream genomic – Alu – 293 bases); and
pNPYa5NBC237 (no upstream vector flank–Alu – 223 bases).
Unless otherwise noted, PCR was performed in 20-µL reac-
tions by use of an MJ Research PTC 200 thermal cycler with
the following conditions: 1X Promega buffer, 1.5 mM MgCl2,
200 µM dNTPs, 0.25 µM primers, 1.5 units of Taq polymerase
(Promega) at 94°C for 2 min; 94°C for 20 sec, 55°C (annealing
temperature) for 20 sec, 72°C for 1 min, for 30 cycles; 72° C for
3 min. To PCR amplify and clone the 864-bp fragment con-
taining the de novo Alu Ya5 from Apert syndrome patient 1
(accession no. AF097344), the following primers were used:
forward, 5�-GGTGTGGCCAAAGTGGAGGATGTGTAC-3� and
reverse, 5�-TTATTCAAGGATAAAAGGGGCCATTTC-3� with
an annealing temperature of 50°C; and for the 920-bp frag-
ment containing AluYa5NBC237 (accession no. AL031274)
the primers used were: forward, 5�-TTATTCCATTG
GTCCTTTCCACCAG-3� and reverse, 5�-CAGGCAGGGAGG
TACTTGTCTCTTG-3� with an annealing temperature of 55°C.

For the pNPYa5NBC237, PCR amplification from the
clone was done with the same reverse primer and the FAlu5
primer 5�-GGCCGGGCGCGGTGGCTCA-3�.

The final PCR product of the complete construct was
cloned into pGEMTeasy Vector System I (Promega). Con-
structs were subjected to DNA sequence analysis to verify
their sequence context. Purified plasmids from the constructs
were prepared by alkaline lysis of bacterial cells followed by
banding in a CsCl gradient twice. DNA concentrations were
determined spectrophotometrically by use of A260 and veri-
fied by visual examination of ethidium bromide-stained aga-
rose gels.

Alu Transcription in Cell Lines and RNA Analysis
Transient transfections were carried out in the rodent cell line
C6 glioma (ATCC CCL107). Monolayers were grown to 50%–
70% confluency and transfected with 3 µg of the construct-
containing plasmid and 1 µg of control plasmid (p7SLBC1) by
use of LipofectAmine Plus (GIBCO Life Sciences) following
the manufacturer’s recommended protocol. Total RNA was
isolated 16–20 h post-transfection.

RNA was extracted from cell lines utilizing the Trizol Re-
agent (Life Technologies, Inc.) according to the manufactur-
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er’s protocol. Equal amounts of RNA were fractionated on a
2% agarose–formaldehyde gel and then transferred to a nylon
membrane, Hybond-N (Amersham). Northern blots were hy-
bridized utilizing the following end-labeled oligonucleotide
probes: unique-1 5�-TGTGTGTGCCAGTTACCTTG-3�

(complementary to the 3� end of the control plasmid) and
AluYA5-1 5�-ACCGTTTTAGCCGGGAATGGTC-3� (comple-
mentary to Ya5 Alu RNA, but not to 7SL) in 5� SSC, 5�

Denhardt’s, 1% SDS, and 100 µg/mL herring sperm DNA. Oli-
gonucleotides were end labeled by incorporating [�-32P]ATP
(Amersham) with T4 polynucleotide kinase (New England
BioLabs), and subsequently separated from free label by filtra-
tion through a Sephadex G-50 column. Blots were washed
three times at 45°C with a low stringency buffer (2� SSC and
1% SDS) and subjected to autoradiography or quantified with
a FujiFilm FLA-2000 fluorescent image analyzer (Fuji Photo
Film Co. LTD). Statistical analysis was performed with the
Jandel SigmaStat Statistical Software Version 2, (Jandel Cor-
poration).
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