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Abstract

Background: Transposable elements (TEs) are mobile DNA sequences present in the genomes

of most organisms. They have been extensively studied in animals, fungi, and plants, and have been

shown to have important functions in genome dynamics and species evolution. Recent genomic

data can now enlarge the identification and study of TEs to other branches of the eukaryotic tree

of life. Diatoms, which belong to the heterokont group, are unicellular eukaryotic algae responsible

for around 40% of marine primary productivity. The genomes of a centric diatom, Thalassiosira

pseudonana, and a pennate diatom, Phaeodactylum tricornutum, that likely diverged around 90 Mya,

have recently become available.

Results: In the present work, we establish that LTR retrotransposons (LTR-RTs) are the most

abundant TEs inhabiting these genomes, with a much higher presence in the P. tricornutum genome.

We show that the LTR-RTs found in diatoms form two new phylogenetic lineages that appear to

be diatom specific and are also found in environmental samples taken from different oceans.

Comparative expression analysis in P. tricornutum cells cultured under 16 different conditions

demonstrate high levels of transcriptional activity of LTR retrotransposons in response to nitrate

limitation and upon exposure to diatom-derived reactive aldehydes, which are known to induce

stress responses and cell death. Regulatory aspects of P. tricornutum retrotransposon transcription

also include the occurrence of nitrate limitation sensitive cis-regulatory components within LTR

elements and cytosine methylation dynamics. Differential insertion patterns in different P.

tricornutum accessions isolated from around the world infer the role of LTR-RTs in generating

intraspecific genetic variability.

Conclusion: Based on these findings we propose that LTR-RTs may have been important for

promoting genome rearrangements in diatoms.
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Background
Transposable elements (TEs) are mobile genetic
sequences found within the genomes of most organisms.
Sequences derived from TEs represent a genomic fraction
of 3% in baker's yeast [1], ~20% in fruit fly [2-4], 45% in
human [5,6] and over 80% in maize [7,8]. They are
thought to be important contributors to genome evolu-
tion by inserting into genes or genetic regulatory ele-
ments, thereby disrupting gene function, altering levels of
gene expression, triggering chromosomal rearrangements,
and adding to or subtracting from the physical size of a
host genome [9]. TEs are classified into two groups based
on their mode of transposition: retrotransposons or Class
1 TEs which replicate through reverse transcription of an
mRNA intermediate, and DNA transposons or Class 2 TEs
that use a "cut and paste" mechanism.

A pervasive group of retrotransposons are those flanked
by long terminal repeats (LTRs), also typical of retrovi-
ruses to which they are related. The LTR direct sequence
repeats flank the internal region that encodes both struc-
tural and enzymatic proteins with homology to the GAG
and POL proteins of retroviruses. The gag gene encodes
structural proteins that form the virus-like particle (VLP),
inside which reverse transcription takes place. The pol
gene encodes several enzymatic functions, including a
protease (PR) that cleaves the POL polyprotein, a reverse
transcriptase (RT) that copies the retrotransposon RNA
into cDNA, a ribonuclease H domain (RH), and an inte-
grase (IN) that integrates the cDNA into the genome. Two
main groups of LTR retrotransposons (LTR-RTs) are found
throughout eukaryotes, and are distinguished by the
organization of their pol genes and similarities among
their encoded RT proteins [10]. These groups are referred
to as Ty1/copia elements (Pseudoviridae) and Ty3/gypsy
elements (Metaviridae), which respectively display a PR,
IN, RT, RH and PR, RT, RH, IN gene organization.

The unicellular chlorophyll c-containing algal class Bacil-
lariophyceae (diatoms) is among the most successful and
diversified groups of photosynthetic eukaryotes, with pos-
sibly over 100,000 extant species [11] widespread in all
kinds of humid and open water environments. The contri-
bution of diatom photosynthesis to marine primary pro-
ductivity has been estimated to be around 40% [12,13].
Diatoms have a peculiar genetic makeup because they are
likely to have emerged following a secondary endosymbi-
otic process between a photosynthetic eukaryote, most
probably red algal-like, and a heterotrophic eukaryote
[14]. They are traditionally divided into two orders: the
centric diatoms which are radially symmetrical and are
thought to have arisen around 180 Million years ago
(Mya), followed by the pennate diatoms around 90 Mya
which are bilaterally symmetrical. Genome sequences of
the centric diatom Thalassiosira pseudonana and the pen-

nate diatom Phaeodactylum tricornutum have recently
become available [15,16]. Because diatoms are single
celled organisms that typically reproduce mitotically, the
activity of LTR-RTs might have particularly profound
effects on genome evolution since any non-lethal retroele-
ment insertion will be transmitted to subsequent genera-
tions.

In an analysis of the T. pseudonana genome, Armbrust and
collaborators identified several TEs [15]. In the current
work, we have identified additional TEs in both diatom
genomes and we show that LTR-RTs are the most abun-
dant elements, particularly in P. tricornutum where they
have amplified enormously. Phylogenetic analysis of the
RT domain shows that diatom Ty1/copia-like elements
belong to different lineages, and that two of them are dia-
tom specific. Examination of the CAMERA metagenomic
database reveals that these elements are also widespread
in different oceans. The potential ecological relevance of
these elements for driving genome and population evolu-
tion and heterogeneity has been assessed by examining
their expression in response to stress as well as their distri-
bution in P. tricornutum accessions collected from differ-
ent locations worldwide. We also examine whether or not
cis-regulatory elements within LTR sequences contain suf-
ficient information for driving retrotransposon transcrip-
tion in response to nitrate deprevation and if alterations
in cytosine methylation play a role in retrotransposon
expression.

Results
Expansion of LTR Retrotransposons in the P. tricornutum 

genome

We first examined the TE content of diatom genomes. In
the T. pseudonana genome Armbrust and collaborators
identified some Ty1/copia and Ty3/gypsy-like elements, a
family of RTE-like non-LTR retrotransposons, Mutator-
like (here denoted as TpMuDR1) and Harbinger-like DNA
transposons, as well as some unknown unclassified
repeated sequences [15,17]. In the present work, we could
identify additional LTR-RT elements in the T. pseudonana
genome (Figure 1). We also identified numerous Ty1/
copia-like elements in the P. tricornutum genome as well as
an RTE-like element, two distinct families of Mutator-like
elements (one being closely related to TpMuDR1 ele-
ments), and two other different types of uncharacterized
transposase-containing elements (one being weakly
related to piggyBac transposons and for which we also
found a homolog in the T. pseudonana genome (see Mate-
rials and Methods). Ty3/gypsy-like elements were not
found in the P. tricornutum genome (Figure 1A).

To analyse the contribution of TEs to diatom genomes we
used the diatom TE DNA sequences to run the RepeatMas-
ker program [18] on both genomes. In total, we found



BMC Genomics 2009, 10:624 http://www.biomedcentral.com/1471-2164/10/624

Page 3 of 19

(page number not for citation purposes)

that TEs contribute 1,665 kb (6.4%) of the P. tricornutum
genome and 590 kb (1.9%) of the T. pseudonana genome.
Of these, LTR-RTs are the most abundant in both genomes
and constitute 90% and 58% of the P. tricornutum and T.
pseudonana TE complement, respectively (Figure 1A and
1B). Harbinger elements also appear to represent a signif-
icant proportion in T. pseudonana. In total, the RepeatMas-
ker output indicated that sequences deriving from LTR-
RTs make up 5.8% of the P. tricornutum genome [16] and
1.1% of the T. pseudonana genome [15] (Figure 1C). It
thus appears that Ty1/copia-like LTR-RTs have signifi-
cantly expanded in the P. tricornutum genome.

Classification of LTR retrotransposon sequences

To further investigate the diatom LTR-RT elements, we
manually screened the P. tricornutum and T. pseudonana
nuclear genomes for the presence of putatively autono-
mous LTR-RTs (see Materials and Methods), and found a
total of 42 and 13 putative active elements in the final
unmasked assemblies of the P. tricornutum and T. pseudo-

nana nuclear genomes, respectively. Most of these have
greater than 95% identical LTR pairs and display only one
or no stop codon/frameshifts between the gag and pol
genes (Additional file 1 and Materials and Methods). All
the selected sequences from P. tricornutum and 11 from T.
pseudonana belonged to the Ty1/copia class with pol
domains ordered as expected (PR, IN, RT, RH), and the
two remaining sequences from T. pseudonana belonged to
the Ty3/gypsy class with pol domains also ordered in a typ-
ical fashion (PR, RT, RH, IN).

The 53 Ty1/copia-like elements identified in the P. tricornu-
tum and T. pseudonana genomes were classified on the
basis of RT domain sequence similarity (see Materials and
Methods). Seven groups of Ty1/copia-like retroelements
were identified and denoted CoDi1 to CoDi7 (Ty1/Copia-
like elements from Diatoms) (Additional file 1, Figure 1).
While the CoDi1 to CoDi5 groups are quite homogene-
ous, the CoDi6 group consists of a set of diverse elements.
The CoDi7 group is composed of a single element from P.

Composition of the TE complements in the P. tricornutum and T. pseudonana genomesFigure 1
Composition of the TE complements in the P. tricornutum and T. pseudonana genomes. (A and B) Pie chart repre-
senting the relative abundance of different TEs to the P. tricornutum (A) and T. pseudonana(B) TE complements. (C) Histogram 
representing percent genome coverage across the diatom TE complements. (D) Pie chart representing the relative contribu-
tion of the different CoDi groups to the P. tricornutum LTR-RT complement.
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tricornutum (PtC47). The CoDi1-2-3-7 groups are specific
to P. tricornutum whereas the CoDi4-5-6 groups are com-
posed of elements found in both diatom genomes. It
appears that the CoDi2 and CoDi4 groups are major com-
ponents of LTR-RT expansion in the P. tricornutum
genome (Figure 1D).

Phylogenetic analysis

We constructed a phylogenetic tree from a CLUSTALW
multiple alignment of the RT domains from the Ty1/copia-
like shown in Additional file 1 as well as reference
sequences for the Ty1 and Copia lineages (Tnt from
tobacco, copia from fruit fly, and Ty1 from budding yeast)
(Figure 2). We observed a distribution of sequences into
seven clusters corresponding to the groups defined previ-
ously (Additional file 1). The most homogeneous clusters
represent the groups CoDi1-2-3 composed of sequences

present only in P. tricornutum. The PtC47 element repre-
senting the CoDi7 group appears distantly linked to the
CoDi1-2 groups. The lineage linking the CoDi1-2-3-4-7
groups was denoted CoDiI (Figure 2). Like CoDi4, the
CoDi5 group is composed of sequences from both the
centric and the pennate diatom and constitutes a separate
lineage we called CoDiII. Finally, the elements from the
CoDi6 group which includes elements from both
genomes cluster into a highly heterogeneous lineage
together with the marker elements Tnt and copia. In this
tree, we can therefore recognize a class of diatom Ty1/
copia-like elements most closely related to known ele-
ments from the Copia lineage as well as two diatom-spe-
cific lineages, CoDiI and CoDiII (Figure 2).

To better clarify the evolutionary relationships between
the LTR-RTs from diatoms and other retrotransposable

Phylogenetic tree showing the relationships between the CoDis and other Ty1/copia-like elementsFigure 2
Phylogenetic tree showing the relationships between the CoDis and other Ty1/copia-like elements. This tree 
uses the RT domains from Ty3 and gypsy as outgoup and was constructed with the NJ method with the MEGA4 software [54]. 
The bootstrap values were calculated over 1,000 iterations and bootstrap scores over 70% are shown.
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elements, we studied RT sequences from a representative
subset of elements from each CoDi group defined on the
basis of our previous analysis (Additional file 1 and Figure
2) and RT sequences that we identified from the pennate
diatoms Fragilariopsis cylindrus; Pseudo-nitzschia multistri-
ata, and Pseudo-nitzschia multiseries. A phylogenetic repre-
sentation of diatom RT domains with those belonging to
the major lineages of LTR retrotransposons and retrovi-
ruses (see Materials and Methods) showed that the heter-
ogeneous CoDi6 group appears closest to the major Copia

lineage (Figure 3), which includes sequences from ani-
mals, plants, yeast, and heterokonts (diatoms), which
confirms the origin of the Copia lineage as deeply rooted
in eukaryotes. This tree also confirms the distant evolu-
tionary relationships that link the elements from the
CoDiI lineage to the Ty1 and Copia lineages and the even
more distant relationships that link the CoDiII lineage to
these other elements. We also note that the RT sequences
from the other diatoms cluster in the CoDiI, CoDiII and
Copia lineages, and that the Ty3/gypsy-like elements from

Phylogenetic tree showing the relationships between CoDis and other LTR-RT and retroviral lineagesFigure 3
Phylogenetic tree showing the relationships between CoDis and other LTR-RT and retroviral lineages. The 
bootstrap values were calculated over 1,000 iterations and are indicated for two basal nodes. The tree was constructed with 
the NJ method using the SplitsTree4 software [55]. Species abbreviations: P. mt (Pseudonitzschia multistriata); P. m (Pseu-
donitzschia multiseries); F. c (Fragilariopsis cylindrus).
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T. pseudonana, P. multiseries and P. multistriata also segre-
gate together in a diatom-specific cluster (Figure 3).

Expression of LTR retrotransposons in P. tricornutum 

and T. pseudonana

To examine TE expression, the complete nucleotide
sequences of the full length elements from P. tricornutum
listed in Additional file 1 were searched in the diatom dig-
ital gene expression database (available at http://
www.biologie.ens.fr/diatomics/EST3/) [19] using BLAST.
This database comprises more than 200,000 ESTs from P.
tricornutum and T. pseudonana cells grown in a range of dif-
ferent conditions, many of which correspond to different
abiotic stresses. The global EST profile of each CoDi group
reveals a pattern of higher expression levels under some
stress conditions (Figure 4). In particular, we focused on
two P. tricornutum CoDi1 lineage elements that were
strongly induced under conditions of nitrate starvation
and following exposure to the toxic reactive aldehyde dec-
adienal (DD) (Figure 4). These were denoted Blackbeard
(Bkb) and Surcouf (Scf), respectively, and the contribution
of CoDi3 and CoDi4 to the nitrate deplete and DD high
libraries are due exclusively to these elements. qRT-PCR
was subsequently used to confirm their upregulation in
response to nitrogen starvation and following exposure to
DD (Table 1).

Regulation of Blackbeard

In an effort to better understand Blackbeard expression in
response to nitrogen limitation, we examined its tran-
scriptional and chromatin-level regulation. Because cis-
acting elements regulating LTR-RT expression are typically
found within LTRs [20,21], we generated a construct con-
taining the Blackbeard LTR fused to the β-glucoronidase
(GUS) reporter gene. Although the Blackbeard LTR is only
163 bp, spectrophotometric GUS measurements on P. tri-
cornutum lines transformed with this construct showed
that it was sufficient to activate transcription in response
to nitrate starvation (Figure 5A). This shows that the Black-
beard LTR alone contains sufficient cis-regulatory element
information to drive Blackbeard expression in response to
nitrate limitation.

Cytosine methylation is commonly found in the DNA
sequences of transposable elements (at least in genomes
in which methylation occurs) and is thought to be
involved in the heterochromatin formation and mainte-
nance that controls TE mobility. TE mobilization has been
shown to be associated with DNA hypomethylation [22-
24], and hypomethylation has also been found to accom-
pany active transposition in response to stress [25,26]. We
therefore assessed whether the Blackbeard element was
methylated using McrPCR. In this method, DNA is
digested with McrBC which cleaves DNA containing
methylcytosine. Consequently, PCR using McrBC-

digested DNA as template leads to a decrease of amplifica-
tion at methylated (cut) loci with respect to untreated
DNA. We first observed that all LTR-RTs tested were meth-
ylated in the P. tricornutum genome under normal growth
conditions (data not shown), demonstrating that DNA
methylation does occur in this diatom. We then com-
pared McrPCR amplification levels using DNA extracted
from P. tricornutum cells grown in normal and nitrate lim-
iting conditions. Figures 5B and 5C show that the induc-
tion of Blackbeard in response to nitrate limitation was
accompanied by a decrease in cytosine methylation, sug-
gesting that chromatin remodeling occurs at the Black-
beard locus in response to nitrate limitation. Preliminary
results from bisulfite sequencing indicate that methyla-
tion at the Blackbeard locus occurs in a CpG context (data
not shown).

Insertion polymorphism between P. tricornutum 

accessions

Although suggestive, the induction of Bkb expression by
nitrate limitation is not proof that it can actually drive
genome rearrangements by de novo insertion in the
genome. In order to better evaluate this possibility, we
assessed the distribution of Bkb elements in thirteen P. tri-
cornutum accessions collected from different locations
worldwide by Sequence Specific Amplified Polymor-
phism (SSAP) [27] (see Materials and Methods). SSAP
amplifies the region between a PCR primer site near the
end of an element and an adjacent restriction site in the
flanking genomic DNA. This global analysis revealed clear
differences in Bkb insertion profiles in different acces-
sions, demonstrating that it has been transposing in natu-
ral environments (Figure 6). We were able to confirm the
same phenomenon with two other elements, Scf and
PtC34 (data not shown). We subsequently cloned several
bands from the SSAP gel in order to determine some inser-
tion sites in accessions other than the sequenced genotype
(Additional file 2). None of the sequences we obtained
were inserted inside genes, and most were inserted into
intergenic regions, sometimes very close to coding
sequences. For example, a PtC34 insertion found in Pt6-7-
8 is located 82 bp upstream of the 5' UTR of the gene
encoding uroporphyrinogen-III synthase, which catalyses
the sixth step of heme biosynthesis. We also found several
sequences corresponding to Bkb and Scf inserted into
other TEs (Additional file 2).

Two distinct haplotypes at loci containing TEs

Analysis of sequencing reads around several TE insertion
sites revealed that many were inserted in just one of the
haplotypes and that the other haplotype was apparently
intact. As an example, the Blackbeard insertion is shown in
Figure 7A and Additional file 3. For this (and all other)
insertion events, we could verify by PCR that the allelic
specificity is conserved in all accessions in which they are

http://www.biologie.ens.fr/diatomics/EST3/
http://www.biologie.ens.fr/diatomics/EST3/
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found (accessions Pt1, Pt2, Pt3, and Pt9 for Bkb), whereas
in the other accessions we could only detect the empty
locus (Figure 7). Because the oldest of these accessions
was collected more than one hundred years ago [27], we
can conclude that the Bkb insertion must have occurred
before this time.

TE-mediated recombination in the P. tricornutum 

genome

To shed light on the potential impact of LTR-RTs on
genome dynamics, we analyzed some signatures of intra-
or inter-element recombination in the P. tricornutum and
T. pseudonana genomes [28]. Unequal intrastrand homol-
ogous recombination between LTRs of different elements
belonging to the same family is a typical example and can
result in a net loss of the DNA in between the elements

Abundance of CoDi-encoding ESTs in different conditionsFigure 4
Abundance of CoDi-encoding ESTs in different conditions. (A) EST frequencies of the P. tricornutum CoDi elements 
listed in Additional file 1 within the 16 P. tricornutum cDNA libraries described and available at http://www.biologie.ens.fr/dia-
tomics/EST3/. CoDi7 group does not have any EST support. (B) EST frequencies of the T. pseudonana CoDi elements listed in 
Additional file 1 within the 7 T. pseudonana cDNA libraries described and available at http://www.biologie.ens.fr/diatomics/
EST3/. (A and B) Letter p indicates statistically-supported a (Pearson's Chi squares p = 0.0000) higher EST frequency of a CoDi 
group in this condition respect to the original library (non-stressed).

http://www.biologie.ens.fr/diatomics/EST3/
http://www.biologie.ens.fr/diatomics/EST3/
http://www.biologie.ens.fr/diatomics/EST3/
http://www.biologie.ens.fr/diatomics/EST3/
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involved. Five examples of this were found in our study of
the P. tricornutum genome, all of which resulted in clearly
recognizable recombinant products in which apparently
intact elements with more than 99% identical LTRs lacked
the target-site duplication (TSD) (see Additional file 1)
and were therefore expected to be the product of homolo-
gous recombination between two family members. On

the other hand, we found no example of this kind in the
T. pseudonana genome.

We also noticed that the two elements constituting the
CoDi2.3 family, PtC25 (on chromosome 11) and PtC75
(on chromosome 31), both lacked a TSD (Additional file
1). Closer examination of these loci revealed evidence that
these two elements have been co-involved in a recombi-

Table 1

Treatment Target Element Reference Gene 2-ΔΔCT(fold change)*

DD2 2 hrs Surcouf TBP 62.83 (38.35-102.94)

DD2 6 hrs Surcouf TBP 106.64 (78.14-145.54)

DD2 30 hrs Surcouf TBP 26.48 (15.27-45.92)

DD2 4 days Surcouf TBP 2.27 (1.56-3.28)

24 hrs (N limitation) Blackbeard 18S rDNA 3.51 (2.67-4.61)

2 weeks (N limitation) Blackbeard 18S rDNA 92.21 (61.59-138)

*Fold change with respect to expression levels in untreated cultures

Regulation of Blackbeard expressionFigure 5
Regulation of Blackbeard expression. (A) Effect of nitrate limitation on the expression of the pLTRbkb-GUS-FcpA con-
struct in transgenic P. tricornutum cells. Data represent the average with standard error from seven independent cultures after 
two weeks nitrate limitation (50 μM NO3-) compared to standard growth medium (882 μM NO3-). (B) Verification of Black-
beard transcriptional activation by semi-quantitative RT PCR in the cultures used for McrPCR. (C) McrPCR on Blackbeard and 
H4 and RPS controls using DNA extracted from P. tricornutum cells grown under normal and nitrate-limited conditions.
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nation event (Figure 8). Specifically, we found that the 5'
flanking region of PtC25 consists of a truncated CoDi5.3
element and that the 3' flanking sequence of PtC75 also
consists of a truncated CoDi5.3 which is the exact contin-
uation of the PtC25-flanking entity but in addition con-
tains a duplication of an ACAAG motif. The most
parsimonious explanation for this organization is that
either PtC25 or PtC75 inserted inside a CoDi5.3 element
and that this insertion generated duplication of the target
site (ACAAG). Subsequently, PtC25 and PtC75 engaged in
a recombination event that split the CoDi5.3 element into
the two halves found on chromosome 11 and 31.

Furthermore, these two genomic regions contain a group
of 5 orthologs of an unknown gene family (see Figure 8
and Additional file 4). The segment containing the two
copies located on chromosome 31 and their intergenic
region is located less than 1 kb downstream of the
CoDi5.3-like element and is highly similar (>97% iden-
tity) to the segment containing two of the copies located
on chromosome 11 and their intergenic region. The
Pt2_50888 gene in fact appears to be the product of
recombination between two distinct orthologs as its
beginning and downstream region is similar to the
Pt2_46949 locus and its end and upstream region appears
most similar to the Pt2_46950 and Pt2_50889 loci (Addi-
tional file 4). A >7 kb region between the Pt2_46950 locus
and the CoDi5.3 segment is also duplicated elsewhere in
the genome. These loci therefore provide compelling evi-
dence for TE-mediated recombination events in the P. tri-
cornutum genome.

A high diversity of RT domains from micro-planktonic 

organisms

Very little or no data about RT sequences are available
from other eukaryotic clades that include planktonic
organisms of ecological importance such as dinoflagel-
lates and coccolithophores. In order to investigate deeper
the diversity of LTR-RTs that can be found in planktonic
organisms, we used our diatom TE dataset to screen the
CAMERA metagenomic database http://camera.calit2.net/
, which contains sequences from environmental samples
collected during the Global Ocean Sampling (GOS) and
Sargasso Sea surveys [29,30]. These sequences are derived
from micro-organisms that were trapped on filters of dif-
ferent sizes (0.1-0.8 μm, 0.22-0.8 μm, 0.8-3.0 μm, 3.0-
20.0 μm) from the surface water of various parts of the
globe including Caribbean Sea, Eastern tropical Pacific,
Galapagos Islands, North American East coast, Polynesia
Archipelagos, and Sargasso Sea. The size of the database
for each filter and at each geographical position is indi-
cated in Figure 9A.

We queried by BLAST our entire set of RT domains against
the CAMERA protein dataset and retrieved a total of 175

Sequence Specific Amplified Polymorphism analysis of Bkb in 13 P. tricornutum accessionsFigure 6
Sequence Specific Amplified Polymorphism analysis 
of Bkb in 13 P. tricornutum accessions. Each amplified 
insertion is revealed as a band on a sequencing gel and 
genomic DNA from the different accessions produces a 
characteristic fingerprint of bands.

http://camera.calit2.net/
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subject sequences (Figure 9A), all of which have an LTR-
RT for best hit by BLAST comparison with Genbank (data
not shown). After normalizing the number of hits from
each filter size by its cognate sample size, we observed that
the larger the pore size of the filter, the more abundant is
the RT domain, with about 0.18 RT domains per Mb of
sequence from the 3.0-20.0 μm filters (Figure 9B). A total
of 115 of these sequences could be included unambigu-
ously in our RT domain alignment and were used to build
a phylogenetic tree in which we also incorporated RT
sequences from the green algae Chlamydomonas reinhardtii
and Ostreococcus tauri, the brown alga Aureococcus anophag-
efferens, and the RT domain from the PyRE10G element
found in the red alga Porphyra yezoensis [31] (Figure 10).
As expected, we observed an enormous diversity within
GOS sequences. It was found that GOS RT domains clus-
tered with all the LTR-RT lineages described here, includ-
ing the CoDiI and CoDiII lineages. However, RT domains
belonging to the Ty3/gypsy, Copia, and the recently iden-

tified red/aquatic species (RAS) lineage [32] are the most
abundant in the dataset analyzed. We also noticed that the
RAS-like lineage appears to be quite a diverse assemblage
(Figure 10). These RAS-like elements appear to be the
most abundant in the Sargasso Sea samples, especially
from the 0.22-0.8 μm filters (data not shown).

Discussion
In this work, we have identified seven groups of Ty1/copia-
like LTR-retrotransposons in diatom genomes. Four
groups (CoDi1-2-3 and CoDi7) were found only in the P.
tricornutum genome whereas elements belonging to the
CoDi4-5-6 groups were detected in both diatom genomes.
The presence of both classes suggests either that they were
present in the diatom common ancestor and that the
CoDi1-3 groups became extinct in the lineage leading to
the centric species T. pseudonana, or that representatives of
each group have been separately introduced horizontally
in pennate and centric diatoms. The topology of the tree

Analysis of the Blackbeard locusFigure 7
Analysis of the Blackbeard locus. (A) Schematic representation of the primer pairs used to perform PCR at the Blackbeard 
locus. Primer pairs are embedded within ovals and dashed lines indicate the projection of the Bkb locus found in haplotype b to 
its native target site on haplotype a. (B) Haplotype analysis by PCR to assess the presence/absence of the Blackbeard insertion 
in ten P. tricornutum accessions. Haplotypes a and b respectively refer to the absence and presence of the Blackbeard insertion.
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presented in Figure 2 shows that CoDi3 and CoDi4 are
bootstrap-supported sister groups that share a common
ancestor after the separation from CoDi1 and CoDi2.
This, together with the fact that we could not detect traces
of diverged remnant copies from the CoDi1-3 groups in
the T. pseudonana genome by BLAST searches (data not
shown) favors the horizontal transfer hypothesis to
explain the presence of CoDi4 elements in the T. pseudo-
nana genome.

Ty3/gypsy-like elements were found in the T. pseudonana
genome but not in the P. tricornutum genome. We also
identified RT sequences corresponding to Ty3/gypsy-like
elements from the pennate diatoms P. multiseries and P.
multistriata which clearly cluster with the GyDi elements

(Figure 3). Although the number of diatom species for
which data is available is low, this suggests that Ty3/gypsy-
like elements were likely present in the diatom common
ancestor, and that these elements have been lost in P. tri-
cornutum.

Figure 10 shows the retrotransposon sequences found in
the CAMERA dataset. Although the vast majority of the
sequences derived from these environmental genomic
surveys are of bacterial and archaeal origin [30], the
authors counted 69 18S rRNA sequences in the analysis of
the Sargasso Sea data [29] and 98 in the GOS sequence
collection (Doug Rusch, personal communication). Thus,
some small eukaryotes were also present in these datasets.
The observed higher abundance of RT domains in the frac-

Schematic representation of the PtC25 and PtC75 recombinant lociFigure 8
Schematic representation of the PtC25 and PtC75 recombinant loci. LTR-RT of the CoDi5.3 (orange) and CoDi2.3 
(blue) groups are drawn with their LTRs (flanking arrows). Gene family 1 (green) and gene family 2 (purple) and other genes 
(grey) are drawn as arrows. Gene family 1 is further distinguished by red and/or blue bar on top and similar colors indicate sim-
ilar sequences (see Additional file 4). Black or grey boxes with identical numbers indicate similar intergenic regions. Grey par-
allelograms project large duplicated regions from chromosome to chromosome. The blue parallelogram indicates the high 
similarity between the PtC25 and PtC75 elements. We indicate a 30 bp gap found in the CoDi5.3 segment flanking PtC75. We 
also indicate that the PtC25-associated CoDi5.3 entity contains a 5' truncated LTR which starts precisely where the gap 
described on chromosome 31 ends, further consolidating the historical link between these two loci. Bd 31.35 indicates a scaf-
fold that could not be successfully mapped during P. tricornutum genome assembly.
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tions containing the larger cells is consistent with higher
relative eukaryote/prokaryote abundance in these sam-
ples. The RT sequences studied display a huge diversity
including some clustering in the CoDiI and CoDiII line-
ages, which likely testifies for the presence of diatoms in
the samples. The other RT sequences may reflect the diver-
sity of LTR retrotransposons populating the genomes of
diverse tiny marine eukaryotes such as green, red, or
brown algae, dinoflagellates, haptophytes, or euglenoids.
For example, the abundance of RAS-clustering sequences
in the Sargasso Sea fractions may be indicative of the pres-
ence of red algae, although analysis of these eukaryotic
fractions did not reveal a particular abundance of red
algae [33]. It will therefore be important to determine
which eukaryotic branch or branches the RAS-like
sequences collected come from. In addition to the CoDiI,
CodiII, and RAS sequences, other discrete clusters shown
in Figure 10 are exclusively composed of RT sequences
from the CAMERA database and are likely to represent RT
domains from organisms for which we have little or no
genomic knowledge.

The mutagenic potential of LTR retrotransposons [34] and
the effects of their accumulation [35] and recombination
[36] together suggest that active retrotransposons may be
major contributors to genome diversification. Accumu-
lated data indicates that retrotransposons in plants [37],
animals and fungi respond to various forms of stress. It
has also been shown in natural wild barley populations
living on each side of a canyon that LTR retrotransposon
dynamics contribute to genome diversity in response to

sharp microclimatic divergence [38]. LTR-RTs are hence
thought to play a key role in long term adaptation of nat-
ural populations exposed to stress by generating genetic
diversity within populations. Evidence presented here
suggests that this may also be the case in diatoms. For
example, Blackbeard is one of the most highly expressed
genes in the EST library derived from P. tricornutum cells
grown under nitrate starvation and Surcouf is highly
expressed in response to DD treatment (Table 1, Figure 4).
If these expression levels correlate with completion of the
retrotransposition cycle, which ends with de novo inser-
tions, then nitrate starvation, DD exposure, and perhaps
other environmental stressors could lead to an increase in
genetic diversity in P. tricornutum. LTR-RTs may therefore
be major drivers of genetic diversity in P. tricornutum pop-
ulations. Although we have not been able to observe de
novo insertion of Bkb or Scf elements following stress, this
claim is supported by the different insertions that have
been observed in P. tricornutum accessions isolated from
different locations around the world (Figure 6).

The significance of these findings is strengthened by the
ecological relevance and common occurrence of stress in
marine environments. Nitrogen is the most widespread
limiting nutrient for marine phytoplankton [39], and
transitions between nitrate starved stratified waters and
nitrate replete upwelling conditions are a major influence
governing marine diatom population oscillations [40].
Conversely, diatom-derived unsaturated aldehydes can
regulate intercellular signalling, stress surveillance, and
defence against grazers [41-43]. Diatoms can sense these

Distribution of the GOS RT sequencesFigure 9
Distribution of the GOS RT sequences. (A) Size of dataset in megabases (Mb) for each filter across the different geo-
graphic positions examined. Numbers indicate the number of RT hits for each filter. (B) Frequency of RT hits across the differ-
ent filters.



BMC Genomics 2009, 10:624 http://www.biomedcentral.com/1471-2164/10/624

Page 13 of 19

(page number not for citation purposes)

aldehydes accurately, whereby subthreshold levels serve
as an early-warning protective mechanism, and lethal
doses initiate a cascade leading to autocatalytic cell death.
Activation of Surcouf only after exposure to high levels of
aldehydes supports a threshold-dependent response in
which activation only occurs under acute stress condi-
tions. Furthermore, the fact that significant aldehyde con-

centrations are only produced by nutrient-stressed and
wounded diatoms suggests a possible role in long term
adaptation to abiotic and biotic stress [44-47].

Conclusions
Sexual reproduction in P. tricornutum has never been doc-
umented. Here, we have seen that Blackbeard and Surcouf

Phylogenetic tree showing the relationships between the reverse transcriptase domains from the CAMERA database, retrovi-ruses, and LTR retrotransposonsFigure 10
Phylogenetic tree showing the relationships between the reverse transcriptase domains from the CAMERA 
database, retroviruses, and LTR retrotransposons. The tree was constructed with the NJ method using the SplitsTree4 
software [59]. The bootstrap values were calculated over 1,000 iterations and are indicated for two basal nodes. GOS 
sequences are labeled by a two- letter code indicating their geographic provenance: Caribbean Sea (CA), Eastern Tropical 
Pacific (ET), Galapagos Islands (GI), Indian Ocean (IO), North American East Coast (NA), Polynesia Archipelagos (PA), Sar-
gasso Sea (SS); followed by a number indicating filter size: 0.1-0.8 (1), 0.22-0.8 (2), 0.8-3.0 (3), 3.0-20.0 (4). These labels appear 
with blue background. Species abbreviations: P. mt (Pseudonitzschia multistriata); P. m (Pseudonitzschia multiseries); F. c (Fragilari-
opsis cylindrus); C. r (Chlamydomonas Reinhardtii); O. t (Ostreococcus tauri); A.a (Aureococcus anophagefferens).
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insertions occurred at least a century ago and that both (as
well as all other insertions tested; data not shown) have
remained in a heterozygous state until now, in accordance
with rare or absent meiotic cycles and only limited cross-
ing overs between chromosome pairs in P. tricornutum.
The maintenance of LTR-RT insertions in a heterozygous
state in the P. tricornutum genome could increase the
genetic variability between haplotypes and hence enhance
adaptation capacity to changing environments. Further-
more, the observation that the Blackbeard element is
hypomethylated in response to nitrate starvation provides
a direct link between environmental stress and chromatin
remodeling in diatoms. Such phenomena can confer phe-
notypic plasticity to an individual species, especially if
they are heritable, and may be more useful for environ-
mental adaptation than DNA-based modifications, which
are irreversible and more likely to lead to speciation and
therefore reproductive isolation. It is therefore possible
that epigenetic modifications, combined with TE-medi-
ated genomic rearrangements, maintain population diver-
sity in P. tricornutum, as opposed to sex-driven
chromosomal recombination. The potential capacity of
such processes to monitor and to respond rapidly to
changing environmental conditions may have contrib-
uted to the evolutionary and ecological success of diatoms
in contemporary oceans.

Methods
Identification of transposable elements

TE complements from the P. tricornutum http://
genome.jgi-psf.org/Phatr2/Phatr2.home.html and T.
pseudonana http://genome.jgi-psf.org/Thaps3/
Thaps3.home.html nuclear genomes were established by
BLAST search [48] using the Repbase library [49] or single
TE sequences, redundancy search and search for structural
features such as ORFs larger than 1000 amino acids
(which are characteristic of LTR-RT) and subsequent
BLAST comparison with GenBank. When necessary, full
length sequences were determined by examining multi-
copy alignment. We then searched for the presence of
LTRs upstream and downstream of the DNA sequence cor-
responding to the ORFs containing a polyprotein. LTR
size sometimes varied by a few nucleotides between pairs
and the length of the longest LTR is reported in Additional
file 1. The target site duplication was examined in the
genomic sequence directly flanking the LTRs. The DNA
sequences between LTR pairs were translated in order to
eventually identify another ORF (denoted ORF1 in Addi-
tional file 1) upstream of the ORF containing the polypro-
tein (ORF2). ORF2 and ORF1 were then submitted to
InterProScan http://www.ebi.ac.uk/InterProScan/. The
domain composition and order found in ORF2 was estab-
lished by performing multiple alignments of the puta-
tively active Ty1/copia-like elements from P. tricornutum
and T. pseudonana with Ty1 from yeast and Copia from

fruit fly and of the putatively active Ty3/gypsy-like ele-
ments from T. pseudonana with Gypsy from fruit fly, and
Ty3 from yeast.

RT domains from P. multiseries, P. multistriata, F. cylindrus
[50], O. tauri, C. reinhardtii, A. anophagefferens as well as
from the GOS and Sargasso Sea metagenomic surveys
were found using the RT amino acid sequences from the
diatom LTR-RTs identified in this work and a set of RT
domains assembled by Gao and collaborators (including
elements from the Ty3/gypsy, Ty1/copia, DIRS, and BEL
groups) as digital probes in BLAST searches [48] directly
on the respective cDNA, genomic, and metagenomic data-
bases.

Classification based on sequence similarity and structural 

features

We included the Blackbeard element in our analysis
although it appears to be haplotype-specific and is absent
from the final assembly of the P. tricornutum genome (see
Results). The seven CoDi groups were divided into 26 dis-
tinct families on the basis of nucleotide pairwise dis-
tances. Further analysis of these elements revealed
common structural features that were highly similar
within multi-copy families (Additional file 1). Overall,
the full length diatom retroelement sequences measure
between 5182 bp (TpC22) and 8062 bp (PtC26). LTR
length varies from 153 bp to 844 bp in the CoDi4.4 and
CoDi3.2 families, respectively, and percent identity
between LTR pairs varies from 94% to 100%, meaning
that all the elements examined are likely to have inserted
relatively recently in their respective genomes. The LTR
TG/CA terminal inverted repeat is found in 23 out of 26
families and is missing only in CoDi3.2, CoDi4.2 and
CoDi4.3. In some cases, such as the CoDi2.2 family, the
terminal repeat is longer and contains up to 8 conserved
nucleotides. The duplicated target site or direct repeat
(DR) is quite heterogeneous within the groups although
the P. tricornutum elements from the CoDi5 group consist-
ently differ in a few A/T insertions between duplicates (for
which the target site was found). Within the GAG-encod-
ing region of these elements, InterProScan detected tan-
dem CCHC zinc fingers in the elements belonging to the
CoDi6.2-6.3-6.4-6.5 families (this domain is commonly
found within this region of Ty1/copia-like elements).

The selected Ty3/gypsy-like elements from T. pseudonana
represent two rather closely related groups called GyDi1
and GyDi2 (Ty3/Gypsy from Diatoms). Structural features
of these elements are also shown in Additional file 1. We
submitted one element from each family to GenBank
(accession numbers are shown in Additional file 1).

http://genome.jgi-psf.org/Phatr2/Phatr2.home.html
http://genome.jgi-psf.org/Phatr2/Phatr2.home.html
http://genome.jgi-psf.org/Thaps3/Thaps3.home.html
http://genome.jgi-psf.org/Thaps3/Thaps3.home.html
http://www.ebi.ac.uk/InterProScan/
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Phylogenetic analysis

Multiple alignments were performed with the CLUSTALW
program [51]. Genetic distances were calculated with the
Poisson correction method [52] for amino acid sequences
and phylogenetic trees were constructed with the Neigh-
bor-Joining method [53]. These evolutionary analyses
were performed with the MEGA4 and SplitsTree4 plat-
forms [54,55].

In addition to the RT sequences identified in this work,
phylogenetic trees presented in Figure 3 includes RT
domains from Ty1/Copia, Ty3/Gypsy, DIRS and BEL LTR-
RT lineages [56], as well as RT sequences from the Retro-
viridae human immunodeficiency virus type 1 (HIV),
Rous sarcoma virus (RSV), and moloney murine leukae-
mia virus (MmLV) and from the Caulimoviridae Cauli-
flower mosaic virus (CaMV) and Rice tungro bacilliform
virus (RtBV).

In addition to the sequences used in Figure 3 and 115 RT
sequences from the CAMERA metagenomic database
http://camera.calit2.net/, Figure 5 is built from a CLUS-
TALW alignment including also four RT sequences from
C. reinhardtii, two from the O. tauri, one RT sequence from
A. anophagefferens http://www.jgi.doe.gov/, and the RT
sequence of the PyRE10G element from P. yezoensis
(AB286055). For all phylogenetic analysis, the residues
used were a modification of those originally identified by
Toh et al. [57,58] in retroviral, human hepatitis B virus
(HBV), cauliflower mosaic virus (CaMV), and several ret-
rotransposon sequences from Drosophila [10].

Cell culture and accessions

Axenic cultures of P. tricornutum Bohlin clone Pt1 8.6
(CCMP2561) were obtained from the culture collection
of the Provasoli-Guillard National Center for Culture of
Marine Phytoplankton, Bigelow Laboratory for Ocean Sci-
ences, USA. Cultures were grown in f/2 medium [59]
made with 0.2-μm-filtered and autoclaved local seawater
supplemented with f/2 vitamins and inorganic nutrients
(filter sterilized and added after autoclaving). Cultures
were incubated at 18°C under cool white fluorescent
lights at approximately 75 μmol.m-2.s-1 constant light and
maintained in exponential phase in semi-continuous
batch cultures. Sterility was monitored by occasional inoc-
ulation into peptone-enriched media to check for bacte-
rial growth [60].

In order to evaluate the effect of nitrate stress on Black-
beard mRNA levels, cells were transferred to media modi-
fied with 50 μM NO3

- and maintained in exponential
phase in semi-continuous batch cultures. Samples were
collected after 24 hrs and after 2 weeks exposure to nitro-
gen limitation. In order to evaluate the effect of diatom-
derived reactive aldehydes on Surcouf transcript abun-

dance, 2 liters of exponential P. tricornutum culture was
treated with 2 μg/mL (2E,4EZ )-decadienal (DD) and con-
trol culture was treated with equivalent volume of metha-
nol (DD solvent). Samples of 250 mL were collected in
the indicated time points (0, 2, 6, 30, 96 hr) after exposure
to DD treatment. (2E,4E/Z )-decadienal (DD) was
obtained from Acros Organics USA. DD was dissolved in
methanol, and concentrations were determined by meas-
uring absorption at the lambda max for DD of 274 nm,
using a Hewlett-Packard 8453 spectrophotometer. Dia-
tom cells were harvested by centrifugation for 15 min at
3,000 g, washed with 12 mL of PBS, aliquoted into 2 mL
Eppendorf tubes, and pelleted for 3 min at 10,000 g. Cell
pellets were frozen instantly in liquid nitrogen and stored
at -80°C before proceeding with RNA extraction.

The original sampling location of the P. tricornutum acces-
sions Pt1-10 have been recently described in [27]. We
recently obtained three additional P. tricornutum acces-
sions that we included for our SSAP analysis. Pt11 and
Pt13 were sampled in 2008, respectively, in the Gulf of
Naples and the Gulf of Salerno, Italy. Pt12 was obtained
from the Roscoff culture collection.

SSAP

SSAP experiments were conducted as previously described
[61]. Genomic DNA (500 ng) was digested with MspI and
ligated to an MspI adaptor obtained by the annealing of
two primers (Adap-MspI-C: 5'-CGT TCT AGA CTC ATC-3'
and Adap-MspI-L: 5'-GAC GAT GAG TCT AGA A-3'). SSAP
amplification was done by using a non labeled adaptor
primer Msp1 (5'-GAT GAG TCT AGA ACG GC-3') and one
of the following 33P-labelled LTR primers (Bkb, Scf and
PtC34). Amplified products were separated on 6% dena-
turing polyacrylamide gels and exposed after drying to
Kodak BioMax XAR films (Carestream Health Inc, Roches-
ter). List of LTR primers: Bkb-Rev: 5'-ACG ATA ACC GAC
CAG AAT CG-3' Scf-Rev: 5'-CCC GAA AAA CAT TGC CTC
TA-3' PtC34-Rev: 5'-ATC GGA TCC AGG ACT TTG TG-3'

RNA purification and reverse transcription

mRNA levels of Blackbeard and Surcouf were analyzed
using q-RT-PCR from triplicate samples collected from
biological replicates of nitrate starved or DD-treated expo-
nential grown cultures. Total RNA was extracted from
approximately 108 cells using TRIzol Reagent (Invitrogen)
and contaminating DNA was removed with TURBO
DNase via treatment (Ambion), both according to manu-
facturer's protocols. RNA was then reverse transcribed into
first strand cDNA with the SuperScript™ III First-Strand
Synthesis System for RT-PCR (Invitrogen) using oligo-dT
primers. Gene transcription was measured using the Bril-
liant® SYBR® Green QPCR Core Reagent Kit and the Strata-
gene MX3000P QPCR machine (Stratagene). Primers used
for real-time PCR were Surcouf Fwd, 5'-CGA CCA CCG

http://camera.calit2.net/
http://www.jgi.doe.gov/


BMC Genomics 2009, 10:624 http://www.biomedcentral.com/1471-2164/10/624

Page 16 of 19

(page number not for citation purposes)

GCA TAC TTA TT-3', Surcouf Rev 5'-GGT TGT ACC GCA
AGG CTA TG-3', Blackbeard Fwd 5'-GTG TTC TTG CTG
CAA ATG GA-3', Blackbeard Rev 5'-ATT CAT CGG GGT
CAC CAA TA-3', 18S rDNA Fwd 5'-CAT CCT TGG GTG
GAA TCA GT-3' and 18S rDNA 5'-TGC GCA AAC CAA
CAA AAT AG-3'. Additional primer sets were designed for
Histone H4 and for TBP (TATA box binding protein)
which served as a housekeeping gene for normalizing
expression of the target gene [62]. For each treatment, we
evaluated each of the housekeeping genes and selected the
one that showed the least amount of variation across con-
ditions.

GUS assay

The pLTRbkb-GUS-FcpA plasmid was constructed from
the FcpBp-GUS-FcpA vector [63] in which the FcpB pro-
moter has been removed by KpnI/SalI digestion and
replaced by ligation with a PCR fragment corresponding
to Blackbeard LTR amplified using the Fwd 5'-CTT AGT
GGT ACC TAG AAA AAC CCC ACG TCA AGC-3' and Rev
5'-CTT AGT GTC GACGAT AAA CTA GAA AAC TGC AAC
GAT AAC-3' and digested with KpnI/SalI. The pLTRbkb-
GUS-FcpA vector was introduced into P. tricornutum by
microparticle bombardment using a Biolistic PDS-1000/
He Particle Delivery System (Bio-Rad, Hercules, CA, USA)
as described by Falciatore et al. [63].

For β-glucuronidase (GUS) assays, 7 colonies carrying the
pLTRbkb-GUS-FcpA construct were grown to mid-log
phase in media containing 50 or 882 μM NO3

-. Two weeks
after cells were transferred to 50 μM NO3-, 20 ml cultures
were collected by centrifugation at 3,800 rpm for 15 min
at 4°C and resuspended in 120 μl freshly prepared GUS
extraction buffer (50 mM NaPO4 pH 7.0, 10 mM β-mer-
captoethanol, 0.1% Triton X-100), twice frozen in liquid
nitrogen and thawed at 37°C, and finally centrifuged at
12,000 rpm for 5 min at 4°C. Soluble proteins were quan-
tified with the Bio-Rad Protein Assay. The fresh extracts
were used for spectrophotometric GUS assays performed
by incubating at least 10 μg of total protein extract with
the GUS enzyme substrate p-nitrophenyl glucuronide
(PNPG) at a final concentration of 1 mM, in a total reac-
tion volume of 1 ml. After a one hour incubation at 37°C,
the colorimetric reaction was stopped by adding 0.4 ml
2.5 M 2-amino-2-methyl-1,3-propandiol and the absorb-
ance measured at 415 nm. The enzymatic GUS activity
was calculated on the base of the O.D. recorded and the
molar extinction coefficient of the GUS substrate p-nitro-
phenol. One unit is defined as the quantity of enzyme that
produces one nanomole of product in one minute at
37°C [64].

McrPCR

P. tricornutum cells grown were grown as described above
under normal and nitrate-limited conditions for two

weeks. DNA and RNA were extracted from 20 mL of cul-
ture for each condition. After cDNA synthesis from RNA
samples (as described above) Blackbeard expression was
verified by semi-quantitative RT PCR using the primers
used for Q-PCR (see above) and primers amplifying the
H4 and RPS housekeeping genes as controls [62]. For
McrPCR, 1 μg of DNA from each sample was incubated
for 1 hour at 37°C with 20 units McrBC endonuclease
supplemented with 100 μg/ml bovine serum albumin
and 1 mM guanosine triphosphate. Negative controls
were obtained with the same experimental procedure but
replacing guanosine triphosphate with water. The enzyme
was subsequently inactivated by incubation at 65°C for
10 minutes. Digestion efficiency of the Blackbeard locus
was measured by semi-quantitative PCR using forward
genomic primer -AAT ATT GGT CTT CGG CAA CG-3' and
the Blackbeard-specific reverse primer 5'-GCT TCC GTC
AAA CAC TCA CA-3' and we used the primers amplifying
the H4 and RPS genes as controls (see above).

PCR haplotype/accession analysis

Polymerase chain reactions were performed using tem-
plate DNA extracted from cultures of the ten different P.
tricornutum accessions (see previous). The primers used to
assess the presence of the two different haplotypes at the
Blackbeard locus in DNA extracts from the ten accessions
were the genomic Fwd 5'-AAT ATT GGT CTT CGG CAA
CG-3' paired with the genomic Rev 5'-TTT GAC CCT ATT
GGC TAC CG-3' or paired with the Blackbeard-specific Rev
5'-GCT TCC GTC AAA CAC TCA CA-3'. The primers used
to assess the presence of the two different haplotypes at
the Surcouf locus were the genomic Fwd 5'-TGT CTA TTG
ACA TTT TGG AAG GTG-3'paired with the genomic Rev
5'-AGA TTC ATC AAT GGA TCA TCT CTC-3' or paired
with the Surcouf-specific Rev 5'-GGG TAC CTG CTC CAT
ATG TAG GTT-3'. Additional primer sets were designed for
the other insertions analyzed.
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