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Abstract

Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such 
as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, 
which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has 
provided promise for the development of more robust pharmacological agents. However, the 
specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of 
nitrone chemistry and biological activity that could be implicated for the nitrone’s 
pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the 
possible roles of nitrones for altering cellular redox status through radical scavenging or nitric 
oxide donation, and their biological effects are presented. An interdisciplinary approach towards 
the development of novel synthetic antioxidants with improved pharmacological properties 
encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.

Among the most important signaling molecules in biological systems are the reactive 
oxygen species/reactive nitrogen species (ROS/RNS). ROS/RNS are small molecules, 
comprising a handful of atoms that come as radical or nonradical species, as well as in 
neutral or ionic forms. As natural by-products of O2 metabolism, ROS/RNS play an 
important role in modulating cell function, cell signaling and immune response [1-3]. ROS 
are mostly O2 derived [4] while RNS are NO-derived species in which the oxygen and 
nitrogen atoms participate in the redox reaction, respectively [5]. While the names ROS and 
RNS imply their reactive nature, their reactivity varies with different substrates. For 
example, O2

•− is practically unreactive with most amino acids, lipids or nucleotides but 
exhibits high reactivity with Fe-S clusters and other radicals such as tyrosyl and NO. The 
ability of ROS to cause post-translational protein modification results in changes in protein 
conformation and can have physiological consequences. For example, NO’s ability to bind 
to the heme of soluble guanylate cyclase is the main mechanism of NO’s vasodilatory effect 
in the vasculature. In cerebral arteries, activation of NADPH-oxidase causes production of 
O2

•−, and O2
•−-derived ROS results in increased vasodilation and may play a physiological 

role as a signaling molecule in cerebral circulation [6]. Redox regulation by ROS through 
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reversible or irreversible modification of thiol groups via oxidation, which also includes 
disulfide formation, nitrosylation and glutathiolation, has tremendous consequences in anti- 
or pro-apoptotic signal transduction processes [7,8]. Under oxidative-stress conditions, ROS 
unregulated production or concentrations can cause oxidative damage to key biomolecular 
systems such as lipids, nucleotides, carbohydrates and proteins, which can have significant 
effects in maintaining the integrity of cellular structure, controlling gene induction and can 
cause enzyme deactivation. Among the mechanisms that can trigger oxidative stress are 
downregulation and/or deactivation of antioxidant enzymes, mitochondrial dysfunction, 
activation of NADPH oxidase, aberrant activation of NF-κB and MAPK, and calcium 
signaling – all of which can result from ROS-mediated posttranslational protein 
modification. Oxidative stress most often results from the disturbance of the intracellular and 
extracellular redox environments, triggering a variety of events that can lead to apoptosis or 
necrosis. Oxidative stress has been implicated in the pathogenesis of cardiovascular diseases 
[9], cancer [10], neurodegeneration [11] and ischemic–reperfusion (I/R) injury [12,13], to 
name a few.

Antioxidant-based therapy based on in vitro observations has made some strides to 
minimize, prevent or ameliorate oxidative stress via a variety of different mechanisms, such 
as direct radical scavenging, bolstering of phase II enzyme expressions and/or activity, 
reversal of eNOS uncoupling or suppression of signal transduction and gene induction 
leading to apoptosis. Antioxidants can be categorized into subclasses of small molecules and 
macromolecules that are endogenously synthesized in the body, or exogenously introduced 
from diets. One of these classes is the antioxidant enzymes such as superoxide dismutase 
(SOD), catalase (CAT), heme-oxygenase, NAD(P)H dehydrogenase quinone 1, glutathione 
peroxidase and glutathione reductase. Due to the size of these molecules, high-molecular-
weight therapeutics has been the strategy of choice for their efficient delivery to cells that 
form the blood–brain barrier. Through the use of nanoparticulate systems, such as 
lyposomes or polymeric nanoparticles, antioxidant enzymes have been delivered to the cells 
imparting protective efficacies against oxidants. Poly(D,L,-lactide co-glycolide) polymer 
loaded with SOD was shown to protect cultured human neurons from H2O2-induced 
oxidative stress [14]. In in vivo models, immunotargeting using platelet–endothelial cell 
adhesion molecule antibodies conjugated to CAT showed immediate protective antioxidant 
effects in the pulmonary endothelium for the treatment of acute lung injury [15]. A gene 
therapy approach, however, can provide continuous delivery of the antioxidant enzymes at 
the site of the disease through just a single administration [16-18]. In vivo gene transfer of 
the cDNA encoding extracellular SOD exhibited substantial protection to the heart against 
myocardial stunning and decreased infarct size following myocardial infarction [19,20]. 
Inhibition of ROS-producing enzymes using small-molecule and peptide inhibitors has also 
shown promise in the treatment of vascular and renal dysfunctions [21]. For example, 
apocyanin, an NADPH oxidases inhibitor, has been employed in Type 2 diabetes rat models, 
showing reduction in markers of oxidative stress along with improvements in renal 
glomellular injury [22].

Small endogenously synthesized molecules such as α-lipoic acid (α-LA) have been shown 
to bolster antioxidant defenses through induction of phase II enzymes (e.g., heme-
oxygenase) via stimulated translocation of Nrf2 [23]. Supplementation of α-LA has been 
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shown to ameliorate oxidative stress-associated insulin resistance in whole body and skeletal 
muscle in the obese rats [24]. Gluthathione (GSH) is also one of the most ubiquitous small 
molecules present in biological systems. In humans, aerosolized thiols such as glutathione 
and N-acetylcysteine have been employed as therapeutic strategy against pulmonary cystic 
fibrosis to target inflammatory responses caused by neutrophil-dependent reactions 
catalyzed by myeloperoxidase [25].

Supplementation by diet-derived natural anti-oxidant vitamins has failed to reduce 
cardiovascular disease and has even been detrimental with single antioxidant therapy using 
vitamin E in clinical trials in adults [26]. Moreover, the use of vitamins E and C and β-
carotene alone or in combination blunts the protective HDL2 cholesterol response to HDL 
cholesterol-targeted therapy and, therefore, can be harmful [27,28]. However, early detection 
and treatment with vitamins C and E in hyperlipidemic children has been promising showing 
restored endothelial function that may retard the development of atherosclerosis [29]. 
Several plant-derived antioxidants, including isoflavones, indole-3-carbinol and 3,3′-
diindolylmethane, curcumin, epigallocatechin-3-gallate, resveratrol, lycopene and vitamins, 
exhibit inhibitory effect against oxidative stress and NF-κB activation in the development of 
cancers [30].

The use of synthetic antioxidants is attractive as it becomes possible to manipulate their 
physicochemical properties as well as their target specificity to enzyme, organelle or cell 
type for optimal pharmacological activity [31]. Molecules containing multiple α-LA 
moieties forming lyposomes can increase α-LA bioavailability [32]. Low-molecular-weight 
SOD mimetics show pharmacological potential with strong anti-inflammatory and 
cytoprotective properties [33], for example, the SOD/CAT mimetic, EUK-134, completely 
abolished the H2O2-mediated ROS release as well as the incidence of arrhythmias in rat 
hearts [34]. Synthetic phenolic-based compounds such as isoeugenol [35] showed improved 
antioxidant capacity compared with trolox and butylatedhydroxytoluene, while hydroxylated 
resveratrol analogues [36] show selective inhibition of COX-2 in vitro. Ebselen, a synthetic 
lipid-soluble selenium-based compound shows glutathione peroxidase 1-mimetic properties 
with anti-inflammatory and antioxidant activities by inhibiting 5-lipoxygenase, NOS, 
NADPH oxidase, PKC and ATPase activities [21]. Iron chelators have also shown promise 
as therapeutic agents, since evidence show that iron accumulates at the sites of tissue 
deterioration and, therefore, relieving iron overload at these sites is important [37-39]. Iron, 
through Fenton-type reactions, can generate radicals, therefore their sequestration can be an 
effective strategy to prevent oxidative damage to cellular systems. In neurodegenerative 
diseases, it has been shown that iron chelators not only suppress radical production, but also 
promote stabilization of HIF-1α and increase transcription of HIF-1-related survival genes – 
important for its neuroprotective effects [40].

Mitochondrial dysfunction has been implicated in the early development of diseases. 
Therefore, drugs that target the innermitochondria membrane agents through the use of 
electron acceptors, electron donors and hydride acceptors can be an effective therapeutic 
strategy [41]. Using nitroxides conjugated to a modified gramicidin S moiety, 
triphenylphosphonium lipophilic cationic compounds, sulfonylureas, anthracyclines, SS 
tetrapeptides with 2′,6′-dimethyltyrosine moiety, or to mitochondria-specific proteins/lipids, 
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were successfully used in preventing superoxide radical production in cellular systems and 
in protecting cells against apoptosis [41]. Nitroxides have found therapeutic applications by 
altering tissue redox status and have the ability to alter many metabolic processes [42,43]. 
Although nitroxides impart SOD-mimetic properties, in biological systems they can be 
rapidly reduced to hydroxylamines by enzymes such as CYP450 and nitroreductases. 
Nitroxide specificity to radicals is dependent on their structure, cellular 
compartmentalization property and rate of bioreduction. Since SOD is ubiquitous in cells, 
the nitroxide mode of action is only relevant under conditions where the O2

•− flux 
overwhelms that of SOD. For example, in conditions of ionizing radiation, nitroxides can 
serve as protective agents against radiation-induced oxidative damage via their direct 
reaction with radicals.

Application of nitrones as potential pharmacological agents was proposed by Novelli et al., 
demonstrating that administration of α-phenyl-tert-butyl nitrone (PBN) confers protection 
on rats from lethal whole-body trauma or circulatory shock [44,45]. Due to their efficacy in 
trapping free radicals generated inside the cells and tissues, nitrones have been used as 
pharmacological agents against several ROS-related disorders, such as brain injury [46,47], 
renal injury [48], visual loss [49], neuronal damage [50] and other age-related diseases [51]. 

The PBN derivative 2,4-disulfophenyl-N-tert-butylnitrone, referred to as NXY-059, was the 
first compound to reach Phase III clinical trials in the USA for the treatment of acute 
ischemic stroke [52]. Very recently, the cardio-protective functions of the cyclic nitrone, 5,5-

dimethyl-1-pyrroline N-oxide (DMPO), against I/R injury have been reported [53]. The 
anticancer role of PBN and its derivatives against various types of cancer is also well 
documented [54,55]. The PBN-derived nitrones are reported to inhibit tumor growth and 
progression in hepatocellular carcinoma [56,57], brain cancer [58,59] and colon cancer [60] 
models. However, experimental evidence suggests other mechanisms for its protection are 
involved other than its free radical-trapping ability. Aside from the free radical-scavenging 
property of nitrones, PBN and DMPO exhibit NO-releasing properties [61,62], which may 
be partly responsible for their pharmacological properties.

What are nitrones?

Nitrones are N-oxides of imines with a general formula of R1R2C = NR3 + O− (where R1, 
R2, R3 = any alkyl group; R1 or R2 = H). Nitrones have been widely employed as synthetic 
intermediates [63] and as a spin-trapping reagent for the detection of radicals in solution 
[64]. Nitrone chemistry parallels that of carbonyl compounds in which the nitronyl-carbon 
(α-carbon) (Figure 1) is susceptible to nucleophilic attack. Another unique property of 
nitrones is their ability to undergo a cycloaddition reaction, a property that has been widely 
exploited in the synthesis of more complex organic molecules [65].

Nitrones can undergo a radical addition reaction to form an aminoxyl-based paramagnetic 
adduct that is persistent enough to be detected by electron paramagnetic resonance (EPR) 
spectroscopy (Figure 2), and has become a popular analytical tool for the detection of 
radicals in chemical and biological systems [66], and in the synthesis of polymers [67].
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To date, there are two major types of spin traps, the cyclic (DMPO and 5-diethoxy-
phosphoryl-5-methyl-1-pyrroline N-oxide [DEPMPO]) and linear (PBN and NXY-059) 
forms (Figure 3). EPR spin trapping using DMPO has undoubtedly contributed significantly 
towards the understanding of some important free radical-mediated biochemical processes 
[68-72]. Nitrones have also found application in the fields of photodynamic therapy [73,74], 
fuel cell research [75], nanotechnology [76] and catalysis [77].

Importance of superoxide radical scavenging

Superoxide radical (O2
•−) is a paramagnetic and anionic molecule formed from the one-

electron reduction of triplet oxygen and is a major precursor of the most highly reactive 
species known to exist in biological systems (Figure 4). Superoxide can undergo further 
reduction to form ROS, causing oxidation of proteins, carbohydrates, lipids and DNA. 
Therefore, formation of O2

•− signals the first sign of oxidative burst and, therefore, its 
detection and/or sequestration in biological systems is important.

Superoxide can be enzymatically generated in biological systems from NO synthase 
uncoupling [78], stimulation of NADPH oxidase [79], CYP450 [80], FAD-containing 
monooxygenase [81], xanthine oxidase [82], or electron leakage from the mitochondrial 
electron transport chain (ETC) complexes [83]. Chemically, O2

•− can also be formed directly 
from alkali metal salts (NaO2 and KO2), or from redox cycling xenobiotics [84], 
photosensitization of quinones [85,86] and water-soluble fullerene C60 [87]. In chemical and 
biological systems, O2

•− itself is generally poorly reactive, showing high reactivity to only a 
few species such as tyrosyl radicals, metal ions and metalloproteins (e.g., aconitase), making 
O2

•− perhaps a more detrimental oxidant due to its reaction selectivity [88].

Traps versus probes

One can make a generalization that all spin traps are redox probes, but not all redox probes 
are spin traps. EPR spectroscopy exploits the magnetic moment of an unpaired electron 
where the absorption of microwave radiation by the unpaired electrons as a function of 
magnetic field strength is measured. EPR spectroscopic detection of O2

•− can either involve 
spin-quenching (or spin-loss) or spin-formation techniques where loss or formation of a 
signal is measured, respectively (Figure 5). An example of the spin-quenching method is 
through the use of the triarylmethyl (trityl)-based radical, which is considered an ‘inert’ free 
radical because of its inherent stability [89,90]. The redox reaction of trityl with O2

•− yields 
molecular oxygen and the EPR silent trityl anion. The synthetic trityl radicals TAM OX063 
and perchlorotriphenylmethyl (PCM-TC) have been shown to give high reactivity to O2

•− 

with second-order rate constants of 3.1 × 103 M−1 s−1 and 8.3 × 108 M−1 s−1, respectively 
[89,90]. Trityl radicals show inertness toward a majority of the common oxidoreductant 
species; however, they exhibit reactivity with other radical species, such as HO2

•, RO2
• and 

HO• [90].

A spin-generating system uses a diamagnetic probe that, upon its reaction with a free 
radical, forms an EPR-detectable paramagnetic species. Nitrones and hydroxylamines fall 
under this category. Original research on enzyme-catalyzed oxidation of hydroxylamines to 
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nitroxides dates back to 1977 [91,92]. Hydroxylamines are N-hydroxy-pyrrole or piperidine 
derivatives that are able to undergo oxidation by O2 •− via a simple electron transfer 
mechanism to yield a para-magnetic aminoxyl species and H2O2. The commonly used 
hydroxylamines TEMPONE-H, CP-H and PP-H are able to extracellularly or intracellularly 
scavenge O2

•− radicals [93,94]. The rate of hydroxylamine oxidation is dependent on 
structure. In the case of PP-H, its rate of reaction to O2

•− was found to be 840 ± 60 M−1 s−1. 
Although the hydroxylamine PP-H was shown to have tenfold higher reactivity with O2

•− 

than the nitrone DEPMPO, the paramagnetic species generated does not allow 
discrimination between the different radicals generated since this reaction is not specific to 
O2

•− and other radicals can cause one-electron oxidation of the hydroxylamine. Moreover, 
the H2O2 generated from the redox reaction can lead to the production of other ROS and is, 
therefore, susceptible to false interpretation [95]. Addition of SOD can serve as control, but 
in many biological systems this is not possible.

Nitrones, however, can undergo addition of a free radical at the α-carbon (C-2) to form an 
aminoxyl product in which the unpaired electron is almost equally distributed between the N 
and O atoms (Figure 6).

By virtue of resonance stabilization between the aminoxyl-O and -N (with a stabilization 
energy of ΔG298K ~30 kcal/mol) [96], the spin adduct is more persistent than the transient 
free radical being trapped, thus allowing for their spectrum to be observed by EPR. The 
spectra arising from various radical adducts allow for their discrimination due to the 
characteristic spectral profiles they exhibit and is by far a better technique in identifying 
specific free radicals. For example, DMPO-OOH exhibits a unique 12-line EPR spectrum 
compared with the four-line EPR spectrum for DMPO-OH, the latter nitroxide may be 
derived from the reduction of DMPO-OOH by gluthathione (GSH) [97]. Spin trapping has 
also been employed to detect enzymatically generated O2

•−, such as from xanthine oxidase 
[98], the mitochondrial ETC [83,99], thioredoxin reductase [100] and NADPH oxidase 
[101]. Nitrones have also been successfully used to detect O2

•− generation in human 
epithelial cells [102], human neutrophils [103], reperfused cardiac tissue [104] and, as a 
secondary radical adduct from small animals using an ex vivo technique [105]. Ex vivo spin 
trapping was best exemplified through the I/R studies of Boll and colleauges [106], and 
Zweier et al. [107] in which the spin trap was administered to the animals before the onset of 
ischemia. The reperfusates were then collected and radical adduct generation was detected 
by EPR spectroscopy.

Like other probes mentioned above such as trityl and hydroxylamine, nitrone spin traps are 
also susceptible to the formation of artifactual adducts, which can be generated via 
nonradical addition mechanisms to nitrones. There are three accepted nonradical pathways 
for the formation of spin adducts: direct addition of nucelophiles to nitrones to form the 
hydroxylamine and subsequent oxidation to nitroxide mainly by O2; metal-catalyzed 
(typically by Fe2+ or Cu+) nucleophilic addition reaction to nitrones and subsequent 
electron-transfer with the metal; inverted spin trapping in which the nitrone is initially 
oxidized to the radical cation and addition of nucleophile forms the nitroxide. The 
nucleophilic addition/oxidation is usually referred to as the Forrester–Hepburn mechanism 
and is a common source of spin adduct artifacts in aqueous solution [108,109]. However, 
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control experiments through the use of chelating agents, such as SOD or CAT, can well 
differentiate such nonradical addition mechanism from the actual spin trapping reaction. In 
in vivo systems, the formation of nitrone-sulfite spin adduct was observed although the exact 
mechanism of the adduct formation is still a matter of controversy but nevertheless 
important in sulfur dioxide-exposure detoxification [110].

Reactivity of nitrones to superoxide

One direct proof for the reaction of nitrones with O2
•− is through EPR spin trapping, which 

continues to be the most unequivocal detection technique for O2
•− due to the distinctive EPR 

spectrum that the O2
•− adduct imparts (Figure 7) compared with other radical adducts 

[111,112]. The limitations encountered using spin traps for the detection of O2
•− is the slow 

reactivity of O2
•− addition to nitrones, lack of target specificity making it difficult to identify 

the site of radical production in the cell and short adduct half-life, which limits their 
detectability. The first two limitations are important for the therapeutic applications of 
nitrones and efforts to overcome these problems will be discussed in detail in the following 
sections.

Why do nitrones trap superoxide radicals poorly?

From a purely thermodynamic standpoint, the order of increasing favorability as expressed 
by the free energies of reaction (ΔGrxn,aq,298K [kcal/mol]) for the addition of different 
radicals to nitrones in general is: NO (14.1) < O2

•− (10.0) < HO2
• (-7.0) < HS• (-13.6) 

< •CH3 (-32.9) < HO• (-38.9). The σ-type radicals (e.g., HS•, •CH3 and HO•) have exhibited 
higher reactivity compared with the π-type radicals, NO, O2

•− and HO2
• [113-116]. This 

mirrors the computational findings by Boyd and Boyd [117] where the order of increasing 
formation energies for the nitroso HN=O spin adducts (in kcal/mol) is: NO (-7.8) < HO2

• 

(-8.4) < HS• (-21.5) < HO• (-32.6) < •CH3 (-53.9); and for CH3N=O in kcal/mol is: NO 
(-8.1) < HO2

• (-7.5) < HS• (-18.2) < HO• (-35.8) < •CH3 (-50.1) at the MP2/6–
31G(d,p)//HF/6–31G(d) level of theory.

In general, this trend in reactivity follows the order of the degree of spin density residing on 
the attacking atom of the radical; that is, 100% spin density on the O, S and C atoms of 
HS•, •CH3 and HO•, compared with 70% (N), 50% (O) and 73% (terminal O) spin density 
distribution in NO, O2

•− and HO2•, respectively. The same partial electrostatic effect on 
radical reactivity was also observed for the radicals; that is, HO• (O, -0.50 e), •CH3 (C, -0.58 
e), HS• (S, -0.12 e), HO2

• (Oterminal, -0.15 e), O2
•− (O, -0.50 e) and NO (N, +0.20 e). Table 1 

shows the charge and spin (where applicable) densities of HO•, O2
•−, HO2

•, HO2
− and HO−, 

as well as the free energies of their addition to DMPO. In general, addition of anions is 
endoergic compared with radical addition to nitrones, with the exception of O2

•−. Although 
both O2

•− and HO• have the same charge density (i.e., 0.50 e) on the O-atom, the higher spin 
density distribution on the hydroxyl-O than superoxide-O makes HO• more reactive than 
O2

•−, indicating the partial electrophilic character of radical addition to nitrones. As shown 
in Table 2 [118-120], this electronic property of the radicals determines their redox 
properties. Therefore, both charge and spin density distribution on the attacking atom govern 
radical reactivity to nitrones.
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The thermodynamic trend in radical reactivity to nitrones parallel that of the apparent rate 
constants. For example, experimental rate constants for the reaction of DMPO with radicals 
are (HO•) [121]: 1.93 × 109 M−1 s−1; (CH3

•CHOH) [122]: 1.1 × 106 M−1 s−1; (glutathiyl 
radical GS•) [123]: 2.6 × 108 M−1 s−1; and (O2

•−) [124,125]: 10–50 M−1 s−1. The rate 
constant for the trapping reaction of BocMPO with O2

•− at pH 7.0 was reported to be 75.0 
± 10.5 M−1s−1, while at pH 5.0, when HO2

• is predominant, the rate constant is 239.2 ± 10.5 
M−1 s−1 [126].

Effect of nitronyl-C (or C-2) charge density on its reactivity to superoxide

The nucleophilic nature of O2
•− reaction to nitrones (Figure 8) is demonstrated in Figure 9 

where the charge density on C-2 for various C-5-substituted nitrones was correlated to the 
calculated kinetics and thermodynamics of O2

•− addition to these nitrones [127].

The formation of O2
•− adducts from the mono-substituted N-methylamide nitrones (AMPO, 

MAMPO and EMAPO), and that of TFMPO are the most kinetically favored at the mPW1K 
level of theory, while DEPMPO gave the slowest rate constant, followed by DMPO, 
DiMAMPO and CPPO. Intermediate rate constants were predicted for the alkoxycarbonyl-
substituted nitrones, EMPO and DEPO, and for the lactone CPCOMPO and the lactam 
TAMPO. The favorable formation of O2

•− adducts in N-monoalkylamide nitrones is due to 
the relatively high positive charge on the C-2 position, as well as the early formation of 
hydrogen bonding interaction in the transition state between the amide-H and the O2

•−, 
thereby facilitating the formation of the O2

•− adduct. These data suggest that the use of 5,5-
disubstituted nitrones with electron-withdrawing alkoxycarbonyl and monoalkylcarbamoyl 
substituents could be ideal multifunctional spin traps in which target-specific and adduct-
stabilizing moieties can be tethered in the parent nitrone molecule employing ester or amide 
units as linker groups.

While the common nitrones, DMPO and PBN, are able to trap O2
•−, the measured rates of 

adduct formation are too low. In the case of PBN, the PBN-OOH adduct is not observed due 
to its instability (half-life <1 min) [124]. The trend in O2

•− reactivity observed with PBN 
derivatives may not follow that observed with DMPO derivatives due to differences in the 
electronic property of their respective nitronyl-carbons. Results show that these reactions do 
not correlate with the calculated charge densities on the nitronyl-carbon for PBN derivatives. 
It was assumed that due to the higher observed electron density on the nitronyl-carbon in 
PBN derivatives compared with DMPO derivatives, the nature of O2

•− addition to PBN may 
be considered as a borderline case (i.e., partly electrophilic), which explains the observed 
non-correlation between the rate constants and charge densities for the PBN derivatives 
[128].

Effect of the presence of hydrogen bond donors on the nitrone reactivity to superoxide

The spin and charge density distribution on the O2
•− and HO2

•, and their short O-O bond 
distances of 1.33 Å, are characteristics of a π-radical. By virtue of symmetry, the charge and 
spin density distribution on the two oxygen atoms of O2

•− are equivalent; but addition of a 
proton to one of the oxygens to form HO2

• perturbs the electronic and charge distribution 
between the two oxygen atoms, resulting in higher spin density on the terminal oxygen atom 
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(73%) compared with the oxygen atom (35%) bound to the hydrogen atom (Table 1 & 
Figure 10). This polarization in the charge and spin density distribution in HO2

• can have a 
significant effect on its reactivity, as shown by the difference in the reduction potentials 
between O2

•− and HO2
• of Eo′ = 0.94 and 1.06 V [4], respectively, in which the latter is 

more oxidizing than the former. Hydrogen bond interaction of O2
•− with hydrogen bond 

donors such as amides serve as an initial ‘anchor’ for O2
•− prior to its addition to the nitrone 

(Figure 10). Superoxide complexation with 1-methyl-1-carbamoylcy-clopentane gave 
calculated favorable ΔGrxn,298K,aq and ΔHrxn,298K,aq of -4.1 and 4.7 kcal/mol, respectively. 
This interaction has a significant effect on the electronic property of O2

•− in which it can 
assume a spin and charge density distribution intermediate to that of uncomplexed O2

•− and 
HO2

•. We hypothesized that the presence of hydrogen bond donors, in general, may affect 
the rate of O2

•− addition to nitrones in which the O2
•− hydrogen bonding interaction with 

nitrones can exhibit reactivity close to that of a hydroperoxyl radical (HO2
•) [127].

Increased favorability (both kinetically and thermodynamically) of O2
•− addition to nitrones 

in the presence of amide substituents compared with methyl, ester or phosphoryl substituents 
was observed [127]. It was later concluded that factors such as intramolecular hydrogen 
bonding of O2

•− in the transition state and electrostatic effects facilitate the O2
•− adduct 

formation [127]. The phenomenon called α-effect plays an important role in increasing O2
•− 

reactivity upon hydrogen bonding. α-effect is exhibited by a class of nucleophiles that have 
an electronegative atom (with one or more lone pair of electrons) adjacent to the 
nucleophilic center called α-nucleophiles [129,130]. α-nucleophiles tend to be very strong 
electron donors and yet are very weak bases due to the inductive effect of the heteroatom 
adjacent to it. This high activity is due to the repulsive interactions between the unshared 
electron pairs on adjacent atoms between the lone pair of electrons on the α-atom and those 
on the nucleophilic center. This makes an α-nucleophile unstable and, hence, more reactive 
[129].

Further conjugation of the nitrone spin traps with β-cyclodextrin (CDNMPO [131] and 
C12CDMPO [132]) or calix[4]pyrrole [133], using amide or ester linker groups, respectively, 
can further enhance the spin-trapping ability and bioavilability of the nitrones. For example, 
CDNMPO, C12CDMPO and CalixMPO gave improved rates for spin trapping of O2

•− and 
longer O2

•−-adduct half-lives. The spin-trapping rates have been determined to be 58 
(CDNMPO) [131], 221 (C12CDMPO) [132] and 680 (CalixMPO) [133] M−1s−1, and 
improved their respective O2

•− adduct half-lives (t1/2), which are CDNMPO: 6 min, 
C12CDMPO: 9 min and CalixMPO: 25 min in DMSO compared with DMPO alone, which 
has a rate constant of only 2 M−1s−1 and O2

•− adduct half-life of 6 min in DMSO [133]. The 
high reactivity of O2

•− to CalixMPO was rationalized to be due to a synergistic effect from 
the polarization of O2

•− through hydrogen bonding with calix[4]pyrrole, enhanced positivity 
of the nitronyl-C through hydrogen bonding of the nitronyl-O and proximity of the nitrone 
group to the calix[4]pyrrole via conjugation (Figure 11).

The same behavior was observed for O2
•− with various amino acids, which shows strong 

hydrogen bond interactions with the amino, carboxylic acid and guanidinium hydrogens 
[134]. These hydrogen bonding interactions result in significant perturbation of the spin and 
charge densities of the O2

•−. The low endoergicity of the free energies and exoergicity of the 
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enthalpies of complexation of O2
•− with amino acids may translate to a favorable complex 

formation in solution. Ramification of O2
•− hydrogen bonding towards facilitation of its 

addition to tyrosyl radical (TyrO•) to form tyrosyl hydroperoxide had been demonstrated by 
Winterbourn et al. [135], where it was shown that there is an increase in tyrosyl 
hydroperoxide formation in peptides containing an amino group, such as lysine, which is 
adjacent to the tyrosyl group. The same enhancement in tyrosyl hydroperoxide formation 
was observed in the presence of free lysine or ethanolamine [135]. It is, therefore, 
reasonable to assume that -NH–O2

•− complex formation may play an important role in the 
facilitation and selectivity of O2

•− addition to TyrO• in protein systems, especially when 
these hydrogen bond donors are in close proximity to the TyrO• group.

Effect of pH on the nitrone reactivity to superoxide

The original research on the pH dependence of rate of O2
•− trapping was first investigated by 

Finkelstein et al. [124]. The mechanism of nitrone antioxidant activity is intriguing, since at 
neutral pH, the reactivity of O2

•− to DMPO is slow, with a second-order rate constant of only 
2.0 M−1 s−1; however, at acidic pH the reactivity is approximately 27 M−1 s−1 or 103 M−1 

s−1 at pH 6.2 [136] and 5.0 [124], respectively. The high reactivity of O2
•− to DMPO in 

acidic pH was proposed to be due to the protonation of O2
•− to form hydroperoxyl radical 

(HO2
•), since the pKa for O2

•− and HO2
• is 4.8 [137] and 4.4 [138], respectively, and that 

HO2
• is a stronger oxidizer than O2

•− (Eo′ = 1.06 and 0.94 V, respectively) [4]. The higher 
reactivity of HO2• to DMPO compared with O2

•− was theoretically rationalized and the 
predicted rate constants in aqueous phase for the O2

•− and HO2
• addition to DMPO were 

found to be 5.9 × 10−5 M−1 s−1 and 285 M−1 s−1, respectively, at the PCM/B3LYP/6–
31+G**//B3LYP/6–31G* level of theory [127,139]. At the same level of theory, the 
calculated thermodynamic data in aqueous phase also show a more facile addition of HO2

• 

to DMPO compared with O2
•− with ΔGrxn of -4.6 and 11.9 kcal/mol, respectively [139].

Three possible mechanisms for the DMPO-OOH formation have been proposed (Figure 12). 
At neutral pH, the addition of O2

•− to DMPO in aqueous solution at pH 7.2 is 
thermodynamically endoergic (ΔG298K = 11.9 kcal/mol) with an experimental rate constant 
of 1.3 × 10−3 M−1 s−1 (Mechanism A) [127]. While the established pKa for O2

•− is 4.8, the 
pKa for DMPO was unknown. The pKa of the conjugate acid of DMPO was determined to 
be 6.0 using potentiometric, spectrophotometric, 1H- and 13C-NMR, as well as 
computational methods. An alternative mechanism for the spin trapping of O2

•− in mildly 
acidic pH was, therefore, proposed [140], which indicates that in slightly acidic medium, 
DMPO can be protonated first (Mechanism B) and can compete with the alternate 
mechanism where protonation of O2

•− leads to the addition of HO2
• to DMPO (Mechanism 

C), which is more favorable than the addition of O2
•− (Figure 12). A tenfold increase in the 

charge density of C-2 was observed upon protonation of the nitronyl-O, therefore, increasing 
the electrophilicity of the nitrone towards O2

•− [140]. Reactivity of DMPO in mildly acidic 
pH (5.0–7.0) (Mechanism C) can have biological relevance. Mild acidity is characteristic of 
acidosis and has been observed in hypoxic systems (e.g., ischemic and cancer cells). Since 
acidosis plays a critical role in the initiation of brain [141,142] or heart damage [143,144] 
during ischemia, and that production of O2

•− is ubiquitous during these pathophysiological 
events, spin trapping of O2

•− by nitrones in mildly acidic environment is therefore relevant.
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Reactivity of nitrones to other radicals & nucleophiles

Reactivity with CO2
•− & CO3

•−

Nitrone addition to CO2
•− and CO3

•− can minimize the effects of these radicals in causing 
oxidative damage [145,146]. CO2

•− is formed in acute sodium formate poisoning [147] and 
is also generated as a metabolic product of CCl4 in rat liver microsomes [148,149]. CO2

•− 

anion is also a key intermediate in both decarboxylase and oxidase biochemistry and has 
been detected as an oxalate-derived free radical using spin trapping [150]. The carbonic 
acid–bicarbonate ion equilibrium plays an important role in maintaining pH in blood plasma 
[151,152]. It has been shown that bicarbonate anion (HCO3 −) enhances the peroxidase 
activity of copper–zinc SOD (SOD1) and that this effect involves CO3

•− formation as 
induced by cysteine [153] or H2O2 [154]. Moreover, CO3

•− has been found to be produced 
from a copper–zinc SOD/H2O2/HCO3 − system [155] or as a decomposition product of the 
reaction of ONOO− and CO2 (i.e., ONOOCO2

−) [156]. EPR spin trapping of CO2
•− and 

CO3
•− using DMPO shows formation of C-centered carboxylate (DMPO-CO2

−) and O-
centered carbonate (DMPO-OCO2

−) adducts. The fate of DMPO-OCO2
− in solution was 

computationally and experimentally rationalized, and results show that the major 
decomposition pathway for DMPO-OCO2 in solution is via ring-opening of the pyrrolidine 
ring with subsequent elimination of nitroxyl (3NO−) to form nitrite (NO2

−) [146].

Reactivity with reactive sulfur species

Sulfite (SO3
•−) is an important reactive intermediate and has been shown to be enzymatically 

generated from eosinophil peroxidase [157] or xanthe oxidase/H2O2-catalyzed [158] 
oxidation of sulfite; therefore, SO3

•− may be implicated in the initiation of oxidative damage 
[159,160]. Generation of SO3

•− [161,162] in the presence of spin traps has been shown to 
give EPR spectra using DMPO. Conflicting reports still arise into the nature of the sulfite 
adduct formation; for example, Khramstov and co-workers [110] suggest a nonradical 
pathway via nucleophilic addition reaction and subsequent oxidation; while Ranguelova and 
Mason proposed direct SO3

•− addition to DMPO from a one-electron oxidation of HSO3
− as 

catalyzed by a horseradish peroxidase/H2O2 system [109,161]. For the nucleophilic addition 

reaction mechanism (Figure 13), the equilibrium constant for the formation of the product of 
DEPMPO with S-centered nucleophiles decreases in the following order: sulfite > 
thioglycolic acid > cysteine > glutathione [163]. Reaction of thiols with nitrones can affect 
local redox states in biological systems and can have implications in cell-signaling events.

Reactivity with reactive nitrogen species

Nitrones have been used for the detection of RNS [164] and have been shown to trap 
decomposition products and tertiary radicals formed from ONOO− [165]. Aside from the 
nitrone reactivity with ONOO−, nitrones have been shown to react with a variety of 
inorganic radicals and nonradical nucleophiles such as azidyl radicals [166,167], cyanidyl 
radical [168] and nitrogen dioxide radical [164]. Nitrones are not reactive to NO; instead, 
nitronyl nitroxide (although not purely a nitrone) [169] and Fe(II)-thiocarbamates have been 
used as probes for NO detection in a variety of experimental conditions [170,171].
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Reactivity with protein radicals

Existence of one-electron oxidized forms of amino acid residues in proteins had been 
proven, and they play crucial roles in the normal function of an enzyme. Tyrosyl, cysteinyl, 
glycyl and tryptophanyl radicals have been identified as either important cofactors or 
involved in turnover by enzyme catalytic action [172]. However, oxidative modification of 
proteins also accounted for their inactivation. Antioxidants may, therefore, act in either 
preventing enzyme inactivation via reversing the oxidation state of the active sites; 
preventing protein unfolding through competitive reaction between the antioxidant and the 
protein radical for the oxidant; or direct reaction of the antioxidant with the protein radical. 
Formation of protein radicals specifically through cysteine residues can have significant 
implications in redox signaling and inflammatory responses, which can have a role in the 
development of pathophysiological conditions. DMPO had been shown to form adducts with 
glutathiyl, hemoglobin-cysteinyl and hemoglobin-tyrosyl radicals from ONOO–-mediated 
oxidation of oxyhemoglobin [173]. A variety of proteins, as well as DNA radicals, have 
been shown to react with DMPO to form the macromolecule– DMPO adducts. These 
adducts were detected using the immune spin-trapping technique [174,175]; for example, 
DMPO adducts of CPB1 [176], myoglobin [177] and mitochondrial cytochrome C [178] via 
DMPO binding to the tyrosyl and cysteine residues.

Reactivity with lipids

Antioxidant termination of lipid peroxidation chain reaction processes is important in 
preserving cellular membrane integrity. Peroxyl radicals of polyunsaturated fatty acids, such 
as linoleic, arachidonic and linolenic acids, play crucial roles in lipid peroxidation and have 
been shown to form alkoxyl adducts with DMPO [179,180]. Formation of alkoxyl radical 
adducts was observed from polyunsaturated fatty acid hydroperoxides in the presence of 
Fe2+ and in intact cells [179]. Nitrones have also been shown to form adducts with the 
radicals of arachidonic acid, dihomo-γ-linolenic acid or docosahexaenoic acid via 
cyclooxygenase-mediated radical formation [181,182], metal-catalyzed oxidation of diacyl-
glycerophosphatidylcholines [183] or reactions with soybean lypoxygenase [184].

Decomposition of superoxide adduct

The potential therapeutic property of a nitrone does not only rely on its reactivity to radicals 
and nucleophiles, but the decomposition of the aminoxyl-based adducts formed after spin 
trapping could also further exhibit therapeutic properties. As mentioned above, tetra-alkyl-β-
substituted aminoxyl compounds such as TEMPO and PROXYL have been shown to impart 
therapeutic properties and have found clinical use. However, their radical-scavenging 
property in vivo may not compete with SOD unless in conditions of extreme oxidation 
stress, such as in the presence of ionizing radiation. Nevertheless, TEMPO shows SOD 
mimetic properties, where it catalytically transforms O2

•− to H2O2 at physiological pH at 
rate constants 104–105 M−1 s−1, which is four to five orders of magnitude lower than SOD 
[185]. SOD was also found to reduce nitroxides to their corresponding hydroxylamine in the 
presence of thiols [186]. However, the main structural difference between tetraalkyl-β-
substituted aminoxyls and that of the adducts formed with cyclic nitrones is the presence of 
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β-H. The absence of β-H in TEMPO and PROXYL is the basis of the reversibility of their 
redox reactions (Figure 14).

Using a density functional theory approach, the redox properties of the O2
•− adducts of 

nitrones were investigated [187]. Unlike TEMPO and PROXYL nitroxides, nitrone-radical 
adducts have β-H that make them susceptible to degradation, hence their redox reactions are 
not reversible. Figure 15 shows the one-electron oxidation and reduction of O2

•− adducts 
leading to the formation of various products. The thermodynamically preferred 
decomposition pathway for the one-electron reduction of DMPO-OOH is via formation of 
the hydroxylamine and subsequent ring opening to form the aldehyde and elimination of 
HNO2. For the one-electron oxidation of DMPO-OOH, the preferred decomposition is the 
formation of the hydroxamic acid via nucleophilic addition of water. IN addition, the 
formation of C-nitroso aldehyde was shown to be thermodynamically favorable upon 
DMPO-OOH oxidation (Figure 15). The redox reactions of O2

•− adduct leads to the 
formation of NO, H2O2 and hydroxamic acid. Hydroxamic acid, for example, is widely 
employed as an iron chelator and enzyme inhibitor [188-190]. The redox activity of nitrones 
and their spin adducts, as well as the formation of biologically active byproducts, could play 
crucial roles in regulating cellular redox states, and may explain the pharmacological 
activities of nitrones against oxidative stress.

By virtue of the oxidation state of O2
•−, it can serve as both a reducing and oxidizing agent 

leading to the formation of O2 and peroxide (O2
2−), respectively. Unlike TEMPO or 

PROXYL, DMPO-OOH does not act as an SOD mimetic and its reaction to O2
•− can lead to 

decomposition products (Figure 16). Compared with DMPO alone, DMPO-OOH gave 
higher electron affinity, making the nitroxides more susceptible to reduction than nitrones. 
The ionization potentials of DMPO and DMPO-OOH are not significantly different, but in 
general are higher compared with the more stable nitroxides such as TEMPO, PROXYL, 
DMPO-OH and DMPO-CH3 adducts, indicating a more facile oxidation for these latter class 
of nitroxides [187]. In buffer solution, kinetic analysis for the decomposition of various 
nitrone-OOH yields pseudo-first-order rate constants in the range of 0.6–9.0 × 10−3 s−1 

corresponding to half-lives of approximately 1–20 min [191]. The short half-lives of the 
O2

•− adducts can be accounted for by the fact that the O2
•− self-dismutation, whose rate is in 

the order of 105 M-1 s−1, can compete with the nitroxide oxidation by O2
•−, whose rate is 

also in the same order of magnitude [185,192,193]. Base-catalyzed decomposition of 
DMPO-OOH can also yield C-nitroso aldehydes, which explains the instability of such 
species in basic medium (Figure 17) [194].

Disproportionation of the radical adduct to yield the nitrone and hydroxylamine bearing the 
radical moiety can have implication for further reaction with ROS. Although this 
disproportionation to form stable nitrone-OOH and hydroxylamine-OOH diamagnetic 
products seems unlikely for O2

•− adducts due to the lability of the O–O bond; formation of 
nitrone-SO3

− and hydroxylamine-SO3
− were stable enough to be observed in solution using 

NMR [110]. Moreover, trapping of C-centered radicals can also yield stable adducts that can 
disproportionate to nitrone-R and hydroxylamine-R species. The implication of the 
formation of hydroxylamine and nitrone from the spin adduct can further enhance the radical 
scavenging property of nitrones. For example, the observed rate constant for the reaction of 
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O2
•− with hydroxylamine to form the nitroxide and H2O2 is in the order of 103 M−1 s−1 

[195] and 109 M−1 s−1 for HO• reaction with hydroxylamine [196]. In fact, hydroxylamine 
had been shown to confer protection in cardiomyocytes against oxidative stress [197].

Nitric oxide production from DMPO-OOH decomposition

One-electron reduction (Figure 15) and base-catalyzed decomposition (Figure 17) of 
DMPO-OOH are some of the pathways leading to the formation of C-nitroso aldehyde. 
However, unimolecular decomposition via homolytic O-O bond cleavage is one of the main 
pathways for DMPO-OOH decomposition, as shown in Figure 18. The unimolecular 
decomposition of the O2

•− adduct of DMPO, DEPMPO and EMPO was experimentally 
investigated and shows first-order decay kinetics during the whole course of adduct 
decomposition [198]. Table 3 [199-201] shows the experimental first-order half-life of O2

•− 

adduct of various nitrones in aqueous solution. The overall calculated ΔGrxn,aq of the O2
•− 

adducts of AMPO, EMPO, DEPMPO and DMPO decomposition to their respective C-
nitroso aldehydes are exoergic, ranging from -2 to -13 kcal/mol, with DMPO-OOH being 
the most favorable. Less exoergic ΔGrxn,aq of decomposition were observed for the adducts 
with electron-withdrawing group substitution at C-5, which qualitatively follows the 
experimentally observed half-lives with DMPO-OOH having the shortest half-life [202].

Decomposition of O2
•− adducts of DMPO, EMPO and DEPMPO in aqueous solution lead to 

the formation of NO as detected by EPR spin trapping using Fe(II) N-methyl-D-glucamine 
dithiocarbamate. NO release was observed from the O2

•− adduct formed from hypoxanthine/
xanthine oxidase, phorbolmyristate acetate-activated human neutrophils, and DMSO 
solution of KO2 (Figure 19). However, NO formation was not observed from the 
independently generated hydroxyl radical adduct. Formation of NO was also indirectly 
detected as nitrite (NO2

−) utilizing the Griess assay. Nitrite concentration increases with 
increasing O2

•− concentration at constant DMPO concentration, while NO2
− formation is 

suppressed at anaerobic conditions [61]. This decomposition chemistry of DMPO-OOH can 
have implication for controlled delivery of NO through radical scavenging. It can be 
considered that nitrones are both radical scavenging ROS and NO donors (Figure 20). Most 
of the NO donor drugs are limited by their stability, controlled delivery and targeting 
properties [203]. In contrast, nitrones can both scavenge ROS and exhibit controlled release 
of NO as a consequence [61,202] and are, therefore, more desirable and unique among 
current NO-donating drugs.

Intracellular compartmentalization properties

The reported partition coefficients for cyclic nitrones (Kp = [nitrone]n-octanol/[nitrone]water) 
are generally low; that is, Kp < 0.2, unlike the PBN-type nitrones that can have Kp of up to 
30 [204-206]. Recently, various lipid-soluble spin traps derived from EMPO and DEPMPO 
have been synthesized [205,206]. One of the major limitations of spin traps is their inability 
to specifically detect radicals at the site of radical formation. Therefore, conjugating spin 
traps with substituents that are known to compartmentalize in the membrane, cytosol, 
extracellular matrix and mitochondria could overcome such limitations and can provide 
optimal radical scavenging, since radicals could be targeted at the site of their production. 
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Although nitrones such as DMPO, PBN and NXY-059 have been employed as 
pharmacological agents, they are limited by their lack of intracellular target specificity.

Cell membrane

Radical-induced oxidative damage to the cell membrane primarily occurs through lipid 
peroxidation process. Membrane-bound radical generators such as NADPH oxidases 
[207,208] and uncoupled eNOS [209], as well as exogenously produced ROS or ionizing 
radiation [210], are potential targets for antioxidant therapy. Since the structural organization 
of the cell membrane bilayer is comprised mainly of phospholipids and sterols, employing 
cholesterol and long-chain hydrophobic groups as target ligands for membrane 
compartmentalization is promising [211]. Figure 21 shows some examples of lipophilic 
nitrones with conjugation to cholesterol (5-ChEPMPO) [212], cyclic-phophoryl group 
(CyDEPMPO) [213], adamantane [214] and intermediate chain length aliphatic 
hydrocarbons, BBPO [215], have been previously synthesized but their biological activity 
has not been explored.

Cytosol—ROS-producing cytosolic enzymes as mediated by CYP450 [216,217] and non-
P450 enzymes, such as aldehyde oxidase [218,219] and xanthine oxidase [98,220], have 
been implicated in pathological conditions, such as in I/R injury, and play an important role 
in the biotransformation of drugs and xenobiotic [221-223]. Some of the NO synthase 
(NOS) isoforms are also found mainly in the cytosol and catalyze NO (or O2

•−) production 
[224,225]. Esterification is the most common method employed in the delivery of probes or 
drugs inside the cell [226]. Rosen et al. employed the use of acetoxymethyl ester-derivatized 
nitroxides and had shown high intracellular retention in Jurkat lymphocytes due to efficient 
hydrolysis of the ester by the cytosolic esterases [227,228]. Several ester derivatives of 
nitrones have also been synthesized. Examples of esterified nitrones that can potentially 
compartmentalize intracellularly are DEEPN [204], DEPO [229], EMAPO [132] and BMPO 
[230] (Figure 22).

Mitochondria—Mitochondrial respiration accounts for approximately 90% of the oxygen 
consumed in the cell and produces high levels of ROS, and has been implicated in a variety 
of pathophysiological conditions [231-233]. The mitochondrial respiratory chain is a major 
source of O2

•− and is central to activating apoptosis. Oxidative damage due to unregulated 
production of O2

•− can lead to cell death. Antioxidants have been successfully delivered to 
the mitochondrion through conjugation with a lipophilic triphenylphosphonium cation (TPP) 
[234-236]. Mitochondrial uptake of TPP occurs through permeation in the lipid bilayers and 
accumulation within the mitochondria by several hundred-fold due to the large 
mitochondrial membrane potential of -150 to -170 mV versus the plasma membrane 
potential (-30 to -60 mV) [237]. Studies show that TPP can also concentrate from the 
extracellular fluid into isolated cells from which they further concentrate within the 
mitochondria by approximately 90%. Selective target delivery to the mitochondria in 
principle can be achieved through conjugation of TPP with spin traps such as in the case of 
MitoPBN [237], MitoDEPMPO [238] and MitoSpin [239], as shown in Figure 23. 
Moreover, some positively charged N-aryl [240] and N-alkyl [241,242] pyridinium nitrones 
have also been synthesized to investigate O2

•− production from mitochondria, and were 
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shown to successfully trap O2
•− produced from intact mitochondria, albeit not from intact 

cells.

Extracellular & amphiphilic nitrones—Application of spin traps that can exclusively 
accumulate outside the cell is important for the investigation of free radicals produced by 
exogenous agents such as ionizing radiation, particulates, cell culture medium, or through 
diffusion of H2O2 (and, hence, HO• via Fenton-type reaction) to the extracellular matrix 
[243,244]. Due to the high impermeability of lipid bilayers to polar molecules [245], 
substituents that contain terminal ionic groups such as carboxylates can be potential 
extracellular spin traps, such as in the case of CMPO (Figure 24), although its ability to trap 
O2

•− is limited [246], perhaps due to the repulsive effect of the carboxylate group.

Amphiphilic nitrones, composed of a hydrophilic polar head and a lipophilic group, were 
shown to efficiently inhibit oxidative stressmediated damages with a high potency 
[247-249]. Amphiphilic compounds possessing both hydrophilic and lipophilic groups may 
exhibit improved cellular permeability [247,250,251]. The hydrophilic polar head of the 
amphiphiles provides water solubility while the hydrophobic tail ensures sufficient 
lipophilicity to pass through cell membranes. Durand et al. reported the synthesis of novel 
amphiphilic amide nitrones, comprising a lactobionic acid based polar head group and an 
alkyl chain, both linked via an amide bond to the N-tert-butyl group and the phenyl ring of 
the PBN moiety (LPBNAH and LPBNH15) were found to improve the mitochondrial 
bioenergetics and confer protection against dopamine-induced mitochondrial dysfunction 
[252]. Glycosylated amphiphilic linear and cyclic nitrones, (FAPBN and FAMPO) [247] and 
lectin directed [253] ones have also been synthesized, however their application for the 
detection of O2

•− in cells has yet to be evaluated. Co-conjugation of long chain 
hydrocarbons to β-cyclodextrin nitrone conjugate (CDNMPO) forming C12CDMPO [132] 
also showed amphiphilic property (Figure 24).

Peptidic nitrones—Previously, a PBN-type nitrone with an iodoacetamide group was 
recently synthesized by Liu et al. and was used to conjugate with GSH (to form GS-PBN or 
GS-PPN) (Figure 25) or bovine serum albumin (BSA) [254,255]. The PBN-peptide 
conjugate was successfully used to trap C-centered radicals in water and O2

•− in the case of 
GS-PPN. The synthesis of the biotinylated analogue of DMPO (Bio-SS-DMPO) could allow 
facile conjugation of targeted peptidic ligands to nitrones [256].

Biconjugation—Through bi-functionalization of the nitrones, one would be able to 
integrate most of the desired spin-trapping properties in one molecular design such as high 
reactivity to O2

•−, improved bioavailability and target specificity. Only a limited number of 
disubstituted nitrones, however, have been synthesized over the past years, such as C-5 
diesterified nitrone (DECPO) [257], N-hydroxysuccinimide-, biotin-, alkylphosphonium-, 
Me-β-cyclodextrin-conjugated DEPMPO at C-4 (as NHS-DEPMPO, biotin-DEPMPO, 
mito-DEPMPO and CD-DEPMPO, respectively) [238,258], amphiphilic PBN derivative 
(LPBNAF) [259] and the C-5 disubstituted cyclic nitrone with a long-chain hydrocarbon and 
β-cyclodextrin (C12 CDMPO) (Figure 24) [132]. There are three popular linker groups that 
have been employed for molecular tethering of cyclic nitrones, that is, ester, amide and 
phosphoryl groups. The main advantage of these groups is that due to their electron-
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withdrawing properties, they can increase the electrophilic character of C-2 through 
inductive effect and, in the case of amide substitution, α-effect can facilitate O2

•− addition to 
nitrones. The biconjugation of the nitrone, such as in the case of C12 CDMPO, can provide 
opportunities for a nitrone design that includes target specificity to cellular compartments.

Recently, it has been predicted through a computational approach the unusually high 
exoergic ΔG298K,aq’s for O2

•− adduct formation for (2S,4S)-2-methyl-2,4-
bis(methylcarbamoyl)-1-pyrroline N-oxide (Figure 26) and HOO adduct formation for (2R,
3R)-2-(dimethoxyphosphoryl)-3-(ethoxycarbonyl)-1-pyrroline N-oxide with ΔG298K,aq = 
-3.3 and -9.4 kcal/mol, respectively. These energetics are the most exoergic ΔG298K,aq 

observed thus far for any nitrones at the level of theory employed in this study [260].

Stability, cytotoxicity & cytoprotective properties

Nitrone stability

The reported reduction potentials for nitrones are mostly >-2.0 V [261] while GSH and 
ascorbate have standard reduction potentials of Eo red = 0.92 V and 0.28 V [118], 
respectively. Therefore, nitrones in the presence of ascorbate and GSH are stable. The 
oxidation potential of DMPO, for example, (Eo Ox = 1.63 V) [262] is significantly higher 
than any of those generated in biological systems in which the only conceivable oxidants are 
the radicals themselves [109]. In general, nitrones with electron-withdrawing group 
substitution at the C-5 position result in higher calculated electron affinities and ionization 
potentials, making these nitrones more susceptible to reduction, but they are more difficult to 
oxidize compared with DMPO. Reduction of nitrones yielded elongated N-C2 and N-O 
bonds but shorter C5-N bonds, while their oxidation only results in a slight elongation of the 
N-C2 bond. Figure 27 shows the mesomeric forms for the oxidized and reduced nitrones 
showing electron delocalization on the nitronyl-N and -O for the reduction and oxidation 
forms, respectively [187].

Cytotoxicity

Nitrone toxicity on bovine aortic endothelial cells was assessed on various spin traps and 
nitroso compounds after 24 h of incubation. The lowest toxicity was observed for DMPO 
(IC50 ~140 mM), but toxicity was highest for the nitroso compounds (IC50 ~0.1 mM) [263]. 
The more lipophilic nitrone, PBN, gave higher toxicity (IC50 ~9 mM) than DMPO. In a 
separate study, cytotoxicity of DMPO, CMPO, EMPO, BMPO and DEPMPO were 
compared using Chinese hamster ovary cells and results indicate negligible toxicity within 
the concentration range of 2.5–50 mM of spin trap concentrations, except for BMPO, which 
gave significant toxicity at 50 mM. Effect of the spin traps on the number of colonies formed 
in Chinese hamster ovary cells and 9L-tumor cells was found to be cell-type dependent 
[264]. Cytotoxicity of various derivatives of EMPO on different carcinoma cell lines also 
show BMPO to be the most toxic (IC50 ~5–6 mM) for all cell lines [265], with DEPMPO 
and i-PrMPO as the least toxic (IC50 ~100–300 mM), but are cell-line dependent. 
Conjugation of an amphiphilic carrier to PBN and DMPO to form FAPBN and FAMPO, 
respectively, only affects FAMPO toxicity but not FAPBN. FAMPO showed 20% and 50% 
decrease in cell viability at 0.5 and 1 mM, respectively, while the carrier alone gave cell 
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toxicity of 5–25% at 0.025–1.0 mM [247]. These results indicate that cellular permeability 
plays an important role on nitrone toxicity.

Cytoprotective properties

The cytoprotective property of nitrones is dependent on nitrone cellular permeability and 
oxidant compartmentalization properties. Cytoprotection of fluorinated amphiphilic carrier 
(FA) conjugates of cyclic (FAMPO) and linear (FAPBN) nitrones against hydrogen peroxide 
(H2O2), ONOO− (via SIN-1) and 4-hydroxynonenal-induced cell death using BAEC was 
investigated [247]. FAPBN gave the most robust protection against H2O2 while FAMPO was 
found to be most protective against SIN-1, and none of the spin traps were protective against 
4-hydroxynonenal. HPLC analyses revealed that FAMPO and FAPBN localize extra- and 
intra-cellularly, respectively, only during the first 2 h of incubation. It is expected that H2O2 

(pKa >15) can diffuse inside the cell while ONOOH (pKa = 6.8) is mostly present as anion 
in neutral pH, and therefore should be extracellular. Our unpublished results show that 
C12CDMPO was relatively more protective than the nonconjugated cyclodextrin and β-CD-
nitrone conjugate, CDNMPO [Villamena F, Unpublished data]. However, the nontarget-
specific nitrones, AMPO, a carbamoyl-substituted nitrone and DMPO gave the highest 
protection compared with C12CDMPO, indicating the varying cellular localization of the 
nitrones affects their cytoprotective properties.

Therapeutic applications of nitrones

Since the seminal work of Novelli et al. [45,266], nitrone spin traps have been widely used 
as protective agents in several biological models, such as I/R injury to the heart 
[53,267,268], brain [269,270] and lung [271], stroke [47,55,272,273] neurodegenerative 
diseases [274-276], cancer [54,56,277,278], ageing [248,279], visual impairment [49,280] 
and loss of hearing function [281-283]. In two review articles published by Floyd et al. 
[51,55] the protective properties of the PBN nitrones against stroke, neurodegenerative 
disorders, hearing impairment, aging and cancer have been elaborately discussed. In this 
section, we have included only the most recent developments in nitrone therapeutics for both 
PBN and DMPO against ROS-related disorders, with special emphasis on their mechanism 
of action.

Cardioprotection

The heart is one of the major organs affected by uncontrolled ROS production. Recent 
evidence suggests that oxidative stress is a common denominator in many aspects of 
cardiovascular diseases. Mitochondrial dysfunction, which is characterized by inactivation 
of the ETC, is an important source of ROS during ischemia [107,284]. There are several 
reports of ROS from mitochondria [285], NADPH oxidases [286], xanthine oxidase [287] 
and NOS [288,289] being key mediators of cardiac damage during I/R injury. A reperfusion-
associated burst of O2

•− generation has been shown to occur when isolated hearts are 
subjected to ischemia and reperfusion [104,107]. The radical-scavenging properties of 
nitrones have enhanced their applications as cardioprotective agents in the last two decades 
due to the critical roles free radicals play in the phathogenesis of I/R-induced myocardial 
dysfunction. In the early 1990s, there were reports of applications of PBN and DMPO 
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against cardiac injuries [290-293]. DMPO was shown to confer protection against I/R-
induced oxidative damage in isolated rat and guinea pig hearts. Recently, Tanguy et al. 
reported that LPNAH, an amphiphilic derivative of PBN, exhibits cardioprotective properties 
in isolated rat hearts [249]. Aside from the conventional nitrones, PBN and DMPO, a novel 
second-generation azulenyl nitrone known as stilbazulenyl nitrone was also reported to 
confer protection against myocardial I/R injury [267]. While the mechanism of 
cardioprotective action for nitrones is not well understood, it is becoming apparent there is 
more to the radical-scavenging property of nitrones to explain their cardioprotective 
properties. Zuo et al. showed that DMPO confers protection against cardiac I/R injury by 
salvaging the mitochondrial ETC complexes [53]. This report adds a new insight to the 
mechanism of cardio-protection by nitrones. It is well established that inactivation of the 
mitochondrial ETC is an important event for ROS generation [285,294]. It was observed that 
DMPO treatment reduces ROS formation, improves the recovery of left ventricular function 
and coronary flow in the post-ischemic heart models and decreases the infarct size. The 
infarct size was found to be decreased significantly from 23.0 ± 3.0% in the untreated 
control hearts to 14.4 ± 2.6% in those treated with 1 mM DMPO (Figure 28). The enzymatic 
activities of the mitochondrial ETC complexes were also found to be recovered in DMPO-
treated hearts. Upregulation of the mitochondrial proteins associated with ETC, such as 
FMN-binding subunit of complex I, FAD-binding subunit of complex II, and subunits I and 
Vb of complex IV was observed in post-ischemic hearts treated with DMPO (Figure 29). 
eNOS-derived NO is known to play an important role in mitochondrial biogenesis 
[295,296], but it is not very clear whether DMPO itself modulates eNOS activity or if NO is 
originating as a metabolite product from decomposition of the nitrone [61]. Hence, future 
studies are needed to further characterize the precise molecular mechanisms of DMPO-
induced myocardial protection.

Retinal protection

Retinal dystrophies in humans comprises a group of inherited ocular disorders characterized 
by the loss of visual functions including night blindness, narrowing of the visual field, 
reduced central vision and increasing sensitivity to glare. Exposure to bright light enhances 
the progression and severity of the age-related macular degeneration and some forms of 
retinitis pigmentosa [297,298], usually observed in older adults resulting in blindness and 
visual impairment. Apoptosis of photoreceptors and retinal pigment epithelial cells due to 
acute light exposure has been reported as the key events that lead to age-related macular 
degeneration and retinitis pigmentosa [299,300]. Oxidative stress is known to be an early 
event in light-induced retinal damage and has been detected within minutes of light exposure 
[301]. Generation of ROS due to the retinal exposure to intense light has been implicated as 
a key mediator of photoreceptor death in multiple ocular disorders [302-304]. It has also 
been reported that exposure of the cultured rod cells to blue light leads to ROS generation 
via impairment of the mitochondrial ETC [305], whereas the cultured retinal ganglion cells 
were reported to exhibit mitochondrial-mediated oxidation and apoptosis as a consequence 
of light-induced oxidative stress [306].

Various natural and synthetic antioxidants, such as coenzyme Q [307], melatonin [308], 
sulforaphane [309], α-tocopherol [310], CAT [311] and antioxidant gene therapy [312] have 

Villamena et al. Page 19

Future Med Chem. Author manuscript; available in PMC 2017 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been reported to either directly or indirectly prevent the retinal degeneration. Due to its 
radicalscavenging property, PBN was administered to prevent the light-induced ocular 
dysfunction. Therapeutic application of this spin trap against light-induced retinal damage 
was first reported by Ranchon et al. [313]. According to their study, direct injection of PBN 
into retina of the albino rats confers protection against light-induced retinal degeneration. 
Over the past decade, several studies have been performed to elucidate the exact mechanism 
of protection by PBN against light-induced visual damage. Intraperitoneal administration of 
PBN (50 mg/kg) to the rats 30 min prior to light exposure (2700-lux intensity of fluorescent 
light) was found to inhibit the induction of apoptosis in the treated animals compared with 
control rats [314].

Activation of the transcription factor AP-1, which mainly consists of a c-Fos/junD 
heterodimer [300,315], is known to be a crucial event in light-induced apoptosis of the 
retinal cells [314,315]. In the c-Fos-depleted mice (c-fos−/−), the normal retinal function and 
morphology was found to be similar to that of the wild-type, but the c-fos−/− mice were 
found to be highly resistant to light damage compared with the wildtype mice [316]. 
Furthermore, it was reported that deletion of JunD or c-Jun has no effect on retinal 
protection [317,318], which confirms the importance of c-Fos in AP-1-mediated apoptosis 
of the retinal cells. Tomita et al. reported that pretreatment of Sprague-Dawley rats with 
PBN significantly inhibited both c-Fos expression and AP-1 activation [314]. But the 
mechanism by which AP-1/c-Fos activation is inhibited by PBN is not very well understood. 
It has been reported that expression of c-Fos in mouse retina depends on the light–dark cycle 
(visual cycle) [319]. In Rpe65−/− mice depleted for Rpe65 (an important enzyme 
participating in the visual cycle), c-Fos expression was significantly decreased compared 
with the wild-type [320]. The gene rpe65 codes for a 65 kD enzyme, which catalyzes the 
hydrolysisisomerization of all-trans-retinyl esters to 11-cis-retinol, an important step of the 
visual cycle [321-323]. The 11-cis-retinol after being oxidized to 11-cis-retinal binds 
covalently to the protein opsin to form the visual pigment rhodopsin [323]. Thus, 11-cis-
retinal acts as a chromophore of rhodopsin, and since rhodopsin bleaching is reported as the 
‘trigger’ for retinal light damage [324,325], prevention of rhodopsin regeneration within the 
visual cycle may lead to the protection from light-induced retinal damage. This hypothesis 
was strongly supported by the knockout animal studies, where it was shown that the Rho−/− 

(depleted for rhodopsin) and Rpe65−/− mice had acquired resistance to light damage [320]. 
Mandal et al. reported that the pretreatment, but not the post-treatment, of Albino Sprague-
Dawley rats with PBN resulted in the inhibition of light-induced retinal damage, indicating 
that PBN might interfere with the initial events that trigger the light-induced damage [49]. 
Interestingly, they observed that the isomerohydrolase activity of Rpe65 is inhibited by PBN 
and this is accompanied by the suppression of rhodopsin regeneration [49]. This report adds 
up a new insight in explaining the molecular mechanism of PBN-induced ocular protection. 
Since it is known that a full visual cycle is required for c-Fos expression [319], inhibition of 
the visual cycle by PBN may be the mechanism by which c-Fos expression is modulated in 
PBN-treated retinal cells.

Photobleaching of the visual pigment rhodopsin is the key event that triggers light-induced 
damage [323]. The rate of rhodopsin regeneration is an important factor in modulating the 
light sensitivity of the retina. Rapid regeneration of rhodopsin after photobleaching increases 
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the retinal susceptibility to light exposure, whereas reversing this process enhances the 
resistance of the photoreceptors to light-induced damage. Although it was reported that PBN 
treatment resulted in the significant inhibition of the visual cycle enzyme Rpe65, the 
mechanism of inhibition required further discussion. One hypothesis put forward in the same 
article stated that the isomerohydrolase reaction catalyzed by Rpe65 involved the formation 
of an intermediate retinoid radical cation and PBN might trap this radical to inhibit the 
progression of the reaction [49]. It has been reported that PBN can form stable adducts with 
the carotenoid radicals [326] and, furthermore, it was observed that PBN did not bind to free 
Rpe65 enzyme but rather binds to the enzyme–substrate complex to inhibit Rpe65 activity in 
an uncompetitive fashion [49]. This observation strengthens the idea that PBN may bind to 
the retinoid radical intermediate that forms a complex with the enzyme at its active site. Due 
to its hydrophobicity, PBN can readily enter the active site of the enzyme and can trap the 
retinoid radical to inhibit the reaction. S-PBN, a relatively hydrophilic derivative of PBN, is 
reported to be unsuccessful in inhibiting Rpe65 activity, and simultaneously does not confer 
protection to retina against lightinduced damage. In one study, Poliakov et al. had reported 
that more hydrophilic spin traps, such as DMPO, S-PBN, α-(4-pyridyl 1-oxide)-N-tert-
butylnitrone and NXY059, did not inhibit Rpe65 activity up to 400 μM [327], which clearly 
suggests the SAR behind the antagonistic roles of nitrones against light-induced retinal 
damage. In spite of the progress made in the elucidation of nitrone protection against ocular 
degeneration, the mechanism of action of nitrones is still not well understood and warrants 
further investigation.

Anticancer properties—Based on the fact that ROS play a crucial role in carcinogenesis, 
PBN and its derivatives, such as 4-OHPBN or 3-OHPBN and OKN-007, have been 
administered against several carcinoma models [58,277,328-330]. In reviews by Floyd et al., 
the anticancer role of PBN and PBN-derived compounds against hepatocellular carcinoma 
and glioma models had been elaborately discussed [54,55]. In this article, we have tried to 
focus on the recent developments of nitrone therapeutics in anticancer research and also 
highlight the mechanisms behind the anti-tumorigenic properties of nitrones, although the 
exact mode of nitrone action is still far from being understood.

The anticancer property of PBN nitrones was first reported by Nakae et al. on choline-
deficient L-amino acid deficient (CDAA) rats with hepatocarcinoma [331]. Recently, anti-
tumorigenic properties of PBN and OKN-007 were further investigated in glioblastomas, 
which represent the most common form of adult brain tumors. It was reported that 
application of PBN compounds inhibited the rate and extent of tumor progression and 
angiogenesis in C6 rat glioma models [58,328]. PBN was administered to the rats in 
drinking water (75 mg/kg/day) either 5 days prior to implantation with C6 glioma cells 
(pretreatment group) or approximately 14 days after the glioma implantation (post-treatment 
groups). Parameters associated with tumor progression and angiogenesis were assessed by 
MRI and magnetic resonance angiography, respectively. It was observed that administration 
of PBN resulted in the significant inhibition of tumor growth and progression in both pre- 
and post-treatment conditions, while the survival of the implanted rats had increased 
considerably (up to 40%) in PBN-treated groups [328]. The PBN-derivative OKN-007 was 
also found to induce tumor regression and enhance the survival of C6 glioma rats when 
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administered in post-tumor stage. Treatment with OKN-007 resulted in the drastic reduction 
of tumor volume (~threefold), a decrease in apparent diffusion coefficients (~20%) and a 
simultaneous increase in the tissue perforation rates compared with the untreated rats [58].

After the successful application of PBN nitrones against liver and brain cancer models, they 
were challenged against colon cancers. The anticancer potential of nitrones was investigated 
in APCmin/+ mice models for colorectal cancer [60]. APC is a multifunctional protein that 
can trigger the activation of β-catenin and induction of WNT signaling [332,333]. In 
APCmin/+ mice, the adenomas are developed in the early stages of infancy and they are 
subjected to death at 16–20 weeks of tumor progression due to intestinal hemorrhage [334]. 
When these tumor-bearing mice were administered with PBN in drinking water (100 mg/kg/
day), a significant reduction in the tumor volume and associated intestinal adenomas were 
observed [60].

Although PBN-derived nitrones were found to be effective against various tumor models, the 
mechanism by which they induce tumor regression is not very clear. Unlike the popularly 
used anticancer drugs – curcumin, resveratrol, cisplatin and doxorubicin, to name a few – 
nitrones do not possess cytotoxic potential against cancer cells. It is reported that PBN had 
no detrimental effect on cancer cells [60]. But the anti-inflammatory properties of nitrones 
may be the key to their effectiveness against tumor progression as inflammation and cancer 
development are intertwined. There is a long-standing relationship between cancer and 
inflammation, and the modulators of inflammation, such as NF-κB, Cox-2 and iNOS, are 
known to play important roles in carcinogenesis [335-337]. It has been reported that PBN 
treatment resulted in downregulation of the expression of these inflammatory genes in liver 
carcinogenesis [331] and macrophages [338]. NO plays an important role in tumor growth 
and angiogenesis, and the hepatocytes isolated from CDAA rats were found to produce high 
levels of NO compared with those isolated from the rats fed with normal diet. Similarly, the 
bile flowing in the liver of the CDAA rat showed enhanced NO production compared with 
normal rats, confirming the importance of NO in liver carcinogenesis [54]. The cyclic 
nitrone, DMPO, was found to inhibit LPS-induced oxidative and inflammatory stresses in 
cultured macrophages. DMPO protected cells from LPS-induced toxicity via downregulation 
of iNOS expression after 24 h of nitrone incubation. Early genes were also investigated 
within 16–60 min and showed DMPO inhibition of MAPKs, Akt and IκBα phosphorylation, 
and reduced the NF-κB p65 translocation [339].

Beside the anti-inflammatory activity of nitrones, PBN compounds were also reported to 
modulate tumor metabolism in glioma models [58]. In a very recent report by He et al. it 
was shown that treatment of C6 glioma rats by PBN and OKN-007 resulted in the alteration 
of the levels of metabolites associated with brain cancer [58]. MRI results revealed that 
levels of the major metabolites such as choline, creatine, N-acetyl aspartate and lipids (lip 
1.3 and lip 0.9) were affected by nitrone treatment throughout the course of tumor 
progression. Thus, the levels of N-acetyl aspartate and creatine were found to decrease in the 
untreated C6 rats, but in the presence of PBN and OKN-007 their levels had increased 
significantly. Alterations in lipid levels have been previously demonstrated to be a marker of 
tumor malignancy and indication of response to treatment [340,341]. When C6 rats were 
treated with nitrones, drastic alterations in lipid levels were observed at different phases of 
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tumor progression. Thus, it may be concluded that nitrones can induce tumor regression by 
inhibiting the onset of inflammation and also by modulating tumor metabolism.

Conclusion

By exploiting the intermolecular and intramolecular hydrogen bonding interaction from an 
amide linker group and substitutents with the nitrone moeity and O2

•−, O2
•− addition 

reaction to nitrones can be greatly facilitated. For targeting O2
•−, employing anion 

recognition using synthetic receptors, which has been gaining attention in the field of host–
guest chemistry due to their potential biological and environmental applications [342], could 
be a very promising strategy in increasing O2

•− reactivity to nitrones. Synthetic anion 
receptors employ hydrogen bond donors using amide, urea, thiourea, sulfonamides or 
hydroxyl groups mimicking naturally occurring anion-binding sites. Results (both 
computational and experimental) indicate extraordinary enhancement of O2

•− addition 
reaction to nitrone via conjugation of the nitrone to calix[4]pyrrole and protection of the spin 
adduct from O2

•− itself, thereby significantly increasing the adduct t1/2 [133]. Synthesis of 
nitrone–anion-receptor conjugates can potentially extraordinarily enhance the rate constants 
for O2

•− addition to nitrones, increase biostability of the nitrones and adducts by making 
them less susceptible to bioreduction/oxidation, and improve cellular permeability through 
biconjugation to target specific groups.

The mechanism by which nitrones impart their antioxidant properties in cells or animal 
models is not clear cut, where their spin-trapping property is not solely responsible for their 
therapeutic property. However, what is clear is that nitrones can act in a variety of pathways 
that can alter the redox state of the system via ROS/RNS scavenging and NO donation – all 
of which have significant implications in the control of signaling transduction and gene 
induction. The lack of multifunctional antioxidants that can ameliorate cardiovascular 
disease is a key factor limiting the application of antioxidants as therapeutic agents. 
Synthetic antioxidants commonly function as direct radical scavengers (e.g., SOD mimetics, 
mitochondria-targeted nitroxides, quinones and vitamin E) or indirectly by bolstering 
antioxidant defense mechanisms (e.g., ebselen derivatives and αLA), but nitrones offer 
promising therapeutic potential by scavenging ROS/NOS, increasing NO bioavailability, 
bolstering antioxidant defenses and by inhibiting pro-apoptotic pathways. Nitrone 
therapeutics as applied to the treatment of diseases, with the goal of ameliorating, reversing 
or preventing the effect of oxidative injury, have yet to be fully explored due to lack of 
innovative nitrone designs that can increase bioavailability and target the specific subcellular 
effector compartments. Given the number and the variety of antioxidant-based therapeutic 
strategies, few antioxidants have found clinical application, such as N-acetylcysteine, α-LA 
and some flavonoids [343]. Nitrones offer potential as therapeutic agents due to the rich 
chemistries and biological activities they impart. However, the unsuccessful application of 
NXY-059 to clinical use, as discussed by Firuzi et al. [343] showed a need for developing 
antioxidants that are more disease-specific, organelle- or cellular-targeted, and bioavailable.

Nitrone therapeutics can be mechanism specific. For example, in the pharmacology of 
cardiovascular disease affecting contractile function of the heart, uncoupling of the 
mitochondrial ETC and NOSs or ROS/RNS-mediated alteration in intracellular calcium 
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handling, are reasonable targets. Compounds that can target these mechanisms all at once by 
preventing, minimizing or ameliorating the effects of ROS can be a powerful therapeutic 
strategy. ROS generation can increase under conditions of hyperoxia and post-I/R and can 
cause mitochondrial dysfunction via inactivation of the ETC complexes. Therefore, 
therapeutic drugs that are targeted to the mitochondria may provide better pharmacological 
effects against I/R injury. Moreover, abnormalities in calcium handling have been implicated 
in many forms of cardiac disease. An increase in intracellular calcium can result in further 
release of calcium from the sarcoplasmic reticulum (SR) via the ryanodine receptor, and this 
increases free intracellular calcium concentration by several-fold. Evidence is also mounting 
that neuronal NOS enhances contractile function through regulation of SR calcium cycling 
[344]. Altered regulation of O2

•− and NO occurs in various cardiomyopathies (i.e., I/R injury 
and heart failure), making NOS an ideal target for therapeutic study. I/R is characterized by 
upregulated overproduction O2

•− and, therefore, NO bioavailability can be compromised due 
to the high rate of O2

•− reaction with NO approaching diffusion controlled limit to form 
ONOO−. In conditions of oxidative stress, eNOS can switch from producing NO to O2

•−, a 
process called eNOS uncoupling. This uncoupling is presumed to be primarily caused by 
oxidation of the cofactor BH4 by ONOO− [345]. An increase in ROS, such as O2

•−, together 
with decreased NO bioavailability contribute to endothelial dysfunction, which can lead to 
cardiovascular disease. Therefore, therapeutic agents that can target cytosolic matrix and 
affect kinase-mediated phosphorylation processes in the cell may be able to upregulate 
eNOS. Nitrones being both O2

•− scavengers and NO donors [61] may exhibit 
pharmacological activity against cardiac mechanical dysfunction caused by I/R injury. 
Recently, lipophilic NO-donor and lipophilic antioxidants, when introduced as hybrid 
molecules, not as a mixture, can exhibit cardiac protection from I/R through significant 
reduction of infarct size with improved recovery of cardiac function [346]. Moreover, 
magnesium lithospermate B has been shown to protect endothelium from hyperglycemia-
induced dysfunction via eNOS phosphorylation and induction of phase II enzymes by Nrf-2 
nuclear translocation, while α-LA was claimed to be unable to cause these effects [347]. 
Recently, our laboratory had shown that nitrones can inhibit ROS-induced apoptosis in 
endothelial cells via increased phase II enzyme activity through Nrf-2 nuclear translocation 
and suppression of mitochondrial-dependent pro-apoptotic signaling [348].

Future perspective

Our hypothesis centers on how nitrones can regulate S-glutathionylation. S-glutathionylation 
[349] has been gaining attention as an important mechanism in the induction of signal-
transduction processes as regulated by the cellular redox status. Glutathionylation is a post-
translational oxidative protein modification that involves cysteine coupling with the 
tripeptide glutathione, an abundant low-molecular-weight molecule. It has been shown that 
glutathionylation is involved in modulating Nrf-2 transcription and in the induction of 
antioxidant genes expression. Moreover, glutathionylation of cysteine proteins under 
oxidative stress conditions has been implicated in altered Ca2+ signaling [350,351], 
mitochondrial damage [352] and eNOS uncoupling [353], the three major biochemical 
events that have the most profound effect on I/R. Therefore, determination of the main 
location of oxidant production relevant to glutathionylation is important. We have 
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preliminary evidence showing that DMPO and some of its analogues salvage mitochondrial 
ETC dysfunction during I/R, reverse eNOS uncoupling and improve Ca2+ handling, which 
could explain the cardioprotective property of DMPO in isolated rat heart during I/R [53]. 
Considering that eNOS is mostly localized near the cell membrane and that mitochondria 
and SR are mostly cytosolic, the use of nitrones that can specifically target these 
compartments can provide opportunities to pinpoint the most effective cellular sites for the 
prevention of S-gluthionylation since nitrones such as DMPO and DEPMPO have been 
shown to reversibly add to glutathiyl radicals [354,355]. By identifying which targeted 
cellular event/s contributes the greatest to I/R injury, and which target-specific nitrone (or 
combinations thereof) will exhibit the most robust protection, can give valuable insights into 
the mechanisms of nitrone protection. Also, by correlating the degree of S-glutathiolation 
with the ability of spin trap to reverse eNOS uncoupling, salvage mitochondrial dysfunction 
and improve contractility, will be helpful in determining the main cause of oxidative stress.

Successes in nitrone therapeutics can perhaps be accomplished by also focusing on the 
organelle specificity of drug delivery. Targeting organelles where mechanisms of oxidative 
stress mentioned above mostly occur can be an effective strategy in minimizing oxidative 
stress. For example, Golgi apparatus [356] have been gaining attention as an important 
organelle implicated in oxidative stress since it is a vital organelle responsible for protein 
misfolding, resulting in many pathophysiological conditions such as neurodegeneration and 
cardiovascular diseases [357]. Endoplasmic reticulum (ER) stress has also been implicated 
in various pathophysiological conditions. The ER is an organelle responsible for protein 
folding, calcium homeostasis and lipid synthesis, and deviation from its normal function can 
lead to the accumulation of unfolded or incorrectly folded proteins resulting in ROS 
production [358,359]. The activity of eNOS is highly regulated by the post-translational 
myristoylation and palmatoylation of the enzyme, which results in its translocation from 
Golgi to the cholesterol-rich domains of the plasma membrane including the calveolae and 
lipid rafts [360]. Therefore, targeting post-translational regulation of NOS activity in specific 
organelles, such as the plasma membrane, SR/ER or Golgi, may salvage or reverse eNOS 
uncoupling where it is most susceptible. Conjugating Golgi-specific lipids such as C5-
ceramide and C6-sphingomyelin or ER-targeting carbocyanine moieties to spin traps will 
facilitate their better compartmentalization in the cellular milieu. Thus, the application of 
these novel conjugated nitrones to elucidate mechanisms of NOS uncoupling in each of the 
subcellular compartments may enhance the scope of nitrone therapeutics in the treatment of 
ROS-related disorders.

Nitrones can be applied as potential therapeutic agents in the treatment of chronic metabolic 
disorders comprised of inter-related pathophysiological conditions such as hypertension, 
diabetes, chronic kidney disease and hypercholesterolemia. Nitrones have potential in 
modulating insulin signaling and resistance by minimizing the effects of ER stress, which 
play a crucial role in the regulation of several metabolic pathways that can lead to chronic 
metabolic disorders. Perhaps one effective therapeutic strategy is a multidrug delivery 
approach, in which various organelle-specific nitrones can be introduced in vivo, which may 
provide a more effective way of sequestering ROS at different locations simultaneously.
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Looking into the future of nitrone therapeutics, the diagnostic ability of nitrone to detect free 
radicals can be concurrently exploited and employed as theranostic agents for future 
applications similar to that of nanoparticles [361], since multiconjugation of the nitrone is 
now possible. Co-conjugation of nitrones with other probes, drugs, delivery vectors and/or 
stabilizing agents can further enhance nitrone theranostic ability. The biomedical values of 
developing new spin traps include understanding the origin of radical production, toxicology 
of xenobiotics and antioxidant activity of some compounds, as well as improving the 
accuracy of radical identification, which could potentially open up new grounds Looking 
into the future of nitrone therapeutics, the diagnostic ability of nitrone to detect free radicals 
can be concurrently exploited and employed as theranostic agents for future applications 
similar to that of nanoparticles [361], since multiconjugation of the nitrone is now possible. 
Co-conjugation of nitrones with other probes, drugs, delivery vectors and/or stabilizing 
agents can further enhance nitrone theranostic ability. The biomedical values of developing 
new spin traps include understanding the origin of radical production, toxicology of 
xenobiotics and antioxidant activity of some compounds, as well as improving the accuracy 
of radical identification, which could potentially open up new grounds in spin-trapping 
applications from cellular level to whole animals. However, this would entail big leaps in the 
development of spin traps with extraordinary stable spin adducts in vivo and the 
development of spin traps with platforms different to the parent DMPO, coupled with 
advances in imaging technology either by nuclear medicine, magnetic resonance or optical 
imaging.
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Glossary

Reactive oxygen species/reactive nitrogen species

Examples of radical reactive oxygen species are O2
•−/HO2

•, HO•, RO2
•, RO•, CO3

•− and 
CO2

•−; nonradicals include: H2O2, HOCl, O3, O2
1Δg and ROOH; while examples of 

reactive nitrogen species are NO, ONOO−, •NO2 or ROONO.

Oxidative stress

Biological imbalance between the pro-oxidant generation and antioxidant repair mechanisms 
in favor of the former.

Antioxidant therapy
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Pharmacological strategy to suppress minimize or reverse oxidative stress through direct 
sequestration of reactive species, induction of antioxidant enzymes expression or activity, 
suppression of signal transduction or gene induction leading to apoptosis, and reversal or 
suppression of pro-oxidative enzyme activity, among others.

NXY-059

Disulfonyl derivative of α-phenyl-tert-butyl nitrone. Was under development for the 
treatment of acute stroke by AstraZeneca and was the first nitrone-based compound to reach 
the SAINT-1 Phase III clinical trials.

DMPO

First synthesized by Sir Alexander Todd, 1957 Nobel laureate in chemistry, as a model 
compound to investigate the corrin nucleus of vitamin B12. Iwamura and Inamoto in 1967 
first demonstrated the spin trapping of C-centered radicals by 5,5-dimethyl-1-pyrroline N-
oxide, and Janzen coined the word spin trapping in 1968.
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Executive summary

Innovative spin-trap design

▪ Spin-trap development requires incorporation into one 
molecular design of the three major required qualities that 
are still lacking from the currently used nitrones; that is, high 
rate constant for O2

•− trapping, biostable spin adduct and 
target specific.

▪ Using computational chemistry, rational design of spin traps 
can be achieved. Advancements in spin-trap development 
over the past few years had focused on increasing spin trap 
reactivity to O2

•− by exploiting the electron-withdrawing 
ability of amide substituents, as well as its interaction with 
the O2

•− via α-effect.

▪ Spin adducts with extraordinary stability can be achieved 
through nitrone conjugation with cyclodextrin or anion 
receptors such as calixpyrroles.

▪ Subcellular specificity of nitrones can be realized via bi-
conjugation with target-specific groups.

Nitrone chemical properties

▪ Nitrones react with a variety of reactive oxygen, nitrogen and 
sulfur species, as well as nucleophiles that are implicated in 
the initiation of oxidative damage to key biomolecular 
systems.

▪ Nitrones (conjugate acid pKa = 6.0 versus pKa for HO2
•/O2

•− 

= 4.8) react more efficiently under slight acidic pH than in 
neutral pH to O2

•−, which is relevant in acidosis condition 
such as in ischemic and cancer cells.

▪ Cyclic nitrones (e.g., 5,5-dimethyl-1-pyrroline N-oxide) 
react to O2

•− and HO2
• faster than the linear nitrones such as 

α-phenyl-tert-butyl nitrone.

▪ The first example of an antioxidant that can convert reactive 
oxygen species to more beneficial radicals such as NO. 
Nitrone O2

•− adducts decompose to yield NO, thereby 
making them controlled delivery systems for NO as a 
function of reactive oxygen species generation.

Nitrone biological properties

▪ Nitrones have been applied in both in vitro and in vivo 
systems as therapeutic agents against cardiovascular disease, 
neurodegeneration (which includes ocular damage) and 
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cancer. Other than their spin-trapping ability, the exact 
mechanisms of their protection is not clear.

▪ In vitro studies show that nitrone protection against various 
types of oxidant is dependent on nitrone structure.

▪ Nitrone pharmacological activity was found to be due partly 
to salvaging the mitochondrial electron transport chain, 
increasing mitochondrial biogenesis, activation of 
transcription factors and downregulation of modulators of 
inflammation such as NF-κB, Cox-2 and iNOS.

▪ Preliminary evidence in our laboratory shows that nitrones 
can bolster antioxidant enzymes activity (e.g., SOD, catalase, 
heme oxygenase and glutathione reductase) via Nrf-2 
nuclear translocation, increase glutathione levels, improve 
contractile function of the nNOS−/− knockout myocytes, 
inhibit caspase-3 activation and reverse eNOS inactivation.
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Figure 1. Analogy between carbonyl compounds and nitrones showing the electropositive α-
carbon
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Figure 2. Formation of aminoxyl spin adduct from nitrones
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Figure 3. Common cyclic and linear nitrones
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Figure 4. Formation of reactive species from O2
•−
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Figure 5. Electron paramagnetic resonance spectroscopic techniques for the detection of O2
•−

Detection of O2
•− using (A) spin-formation and (B) spin-scavenging methods.
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Figure 6. Reaction of a nitrone with a free radical
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Figure 7. The electron paramagnetic resonance spin-trapping process

Showing the formation of a unique spectral profile of (A) the DMPO-OH and (B) DMPO-
OOH adducts.
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Figure 8. DMPO type nitrones used as models for the theoretical investigation of spin trapping of 
superoxide radical

Reproduced with permission from [127] © American Chemical Society.
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Figure 9. Nitronyl-C (C-2) charge densities

Correlation of the nitronyl-C (C-2) charge densities with that of the (A) free energies 

(ΔGrxn-1, 298K′ kcal/mol) (r2 = 0.78) and (B) rate constants (log krxn-1) of O2
•− addition to 

nitrones in the aqueous phase at the Polarizable Continuum Model (water)/mPW1K/6–
31+G(d,p) level of theory at 298 K (r2 = 0.76, excluding the outliers DEPMPO and 
DIMAPO). Shows the degree of correlation between log krxn-1 and ΔGrxn-1 at the same level 
of theory with r2 = 0.73 excluding the outliers DIMAPO and DEPO).
Reproduced with permission from [127] © American Chemical Society.
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Figure 10. Perturbation on the spin and charge density distribution on the superoxide radical 
upon hydrogen bonding with MCCP and AMPO showing intermediate electronic distribution 
between superoxide and hydroperoxyl radicals

Villamena et al. Page 57

Future Med Chem. Author manuscript; available in PMC 2017 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. Improved spin trapping of O2
•− using calixpyrrole conjugated to DMPO

Reproduced with permission from [133] © American Chemical Society.
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Figure 12. Suggested mechanisms and free energies (∆G298K,aq in kcal/mol) of O2
•−/HO2• 

addition to a nitrone at the Polarizable Continuum Model (water)/B3LYP/6–31+G(d,p)//
B3LYP/6–31G(d) level of theory
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Figure 13. Nucleophilic addition/oxidation (Forrester–Hepburn) mechanism for the formation of 
radical adduct

SR: Sarcoplasmic reticulum.
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Figure 14. Examples of tetra-alkyl-β-substituted nitroxides, TEMPO and PROXYL, showing the 
reversibility of their redox behavior and superoxide dismutase mimetic property
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Figure 15. Superoxide radical adduct of DMPO showing the irreversibility of its reduction and 
oxidation leading to the formation of various biologically relevant by-products

Reproduced with permission from [187] © American Chemical Society.
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Figure 16. Redox reaction of O2
•− with superoxide radical adduct of DMPO leading to the 

formation of various products
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Figure 17. Mechanism of decomposition of superoxide radical adduct of DMPO under basic 
conditions
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Figure 18. Unimolecular decomposition of the hydroperoxyl adduct of nitrones

Reproduced with permission from [202] © American Chemical Society.
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Figure 19. X-band electron paramagnetic resonance spectra of NOFe(MGD)2 complex

Spectra resulting from purging DMPO solution containing (A) phorbolmyristate acetate-

activated human neutrophils at pH 6.7; (B) xanthine/xanthine oxidase; (C) KO2 in phosphate 

buffer solution-DMSO at pH 8.1 with argon to a solution of Fe(MGD)2; (D) KO2 in 
DEPMPO at pH 8.1 with argon to a solution of Fe(MGD)2.
Reproduced with permission from [61] © The Royal Society of Chemistry.
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Figure 20. Superoxide scavenging by spin trap and decomposition leads to NO release
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Figure 21. Examples of lipophilic nitrones
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Figure 22. Examples of esterified-nitrones
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Figure 23. Lipophilic positively charged nitrones
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Figure 24. Extracellular (CMPO) and amphiphilic nitrones

Villamena et al. Page 71

Future Med Chem. Author manuscript; available in PMC 2017 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 25. GS-PBN, GS-PPN and bio-SS-DMPO
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Figure 26. Enhanced reactivity to O2
•− by biconjugated DiAMPO
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Figure 27. Resonance structures

The radical (A) anion and (B) cation showing the location of the unpaired electron. 
Reproduced with permission from [187] © American Chemical Society.
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Figure 28. Reduction in the left ventricular infarct size in untreated and DMPO-treated rat heart 
after ischemia and reperfusion using isolated heart Langendorff preparation

Reproduced with permission from [53] © American Society for Pharmacology and 
Experimental Therapeutics.
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Figure 29. Effect of DMPO treatment on the protein expression of mitochondrial electron 
transport chain in the postischemic heart

Tissue homogenates of untreated and 1 mM DMPO-treated post-ischemic hearts were 
subjected to SDS-PAGE and then immunoblotted with antibodies against mitochondrial 

electron transport complex (A–D). The antibodies used are: anti-51 kDa (FMN-binding 
subunit) polyclonal antibody for complex I, anti-70 kDa (FAD-binding subunit) polyclonal 
antibody for complex II, and anti-CoX I and anti-CoX Vb monoclonal antibodies for 
complex IV.
I/R: Ischemic–reperfusion.
Reproduced with permission from [53] © American Society for Pharmacology and 
Experimental Therapeutics.
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Table 2

Average free energy of reaction ΔGrxn of radicals with nitrones at 298.15 K and their corresponding reduction 

potential Eo′.

Radical Average ∆Grxn (kcal/mol) Half reaction Eo′, V Ref.

HO• -43.66 HO•, H+/H2O 2.31 [118]

•CH3 -32.17 H3CH2C•, H+/CH3CH3 1.90 [118]

HS• -16.67 HS•/HS− 0.92 [119]

HO2
• -13.92 HO2•, H+/H2O2 1.06 [118]

O2
•− -7.61 O2

•−, 2H+/ H2O2 0.94 [118]

NO 14.57 NO/3NO− -0.80 [120]
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Table 3

Reported experimental first-order half-lives of the O2
•− adduct of cyclic nitrones.

Adducts t1/2 (min) Ref.

DMPO-OOH 1.0 [111]

EMPO-OOH 8.6 [199]

DEPMPO-OOH 14 [200]

AMPO-OOH 9.9 [201]
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