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Abstract: Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental dis-
order that can diminish the quality of life of both children and adults in academic, occupational,
and social contexts. The kynurenine pathway (KP) contains a set of enzymatic reactions involved
in tryptophan (TRP) degradation. It is known to be associated with the risk of developing ADHD.
This review will address the KP and underlying mechanism of inflammation in ADHD. Potential
inflammatory biomarkers reported in the most recent studies are summarized. Although a strong neu-
roimmunological basis has been established due to the advances of recent neurobiological research,
the pathophysiology of ADHD remains unclear.
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1. Introduction

Attention deficit hyperactivity disorder (ADHD), one of the most commonly found
neurodevelopmental disorders in children and adolescents, is characterized by impairing
symptoms of inattention, hyperactivity, and impulsivity [1]. ADHD affects 3–10% of school-
aged children, with a reported prevalence rate of 5.9 to 8.6% in the Korean population [2]. Its
prevalence varies among studies. In a study in Taiwan, the local prevalence was estimated
to be 7.5% [3]. In a Norwegian study of children aged 8 to 10 years, its prevalence was
1.7% [4]. A meta-analysis reported that the worldwide prevalence of ADHD in children
and adolescents was 5.3% (95% CI: 5.01–5.56) in 2007 [5]. It has been shown that 60–85% of
ADHD cases diagnosed in children persist into adulthood [6]. Consistently, a meta-analysis
has reported that the prevalence of ADHD in adults is 2.4% [7].

ADHD has been associated with distinctively worse school performance indepen-
dent from socioeconomic factors among children [8]. It is also associated with significant
impairment of occupational, academic, and social functioning in adults [9]. According
to the DSM-5 criteria, the diagnosis of ADHD in children is based on the presence of at
least six out of nine symptoms in two areas of inattention and hyperactivity impulsivity
with observed behavioral issues [10,11]. The current diagnostic criteria of ADHD rely
on subjective reporting from patients or other informants (patients, teachers) and clinical
observations, which might not be able to differentiate definite illness from normal varia-
tion [12]. Meanwhile, public awareness and widespread recognition of this disorder have
led to an obvious increase in the diagnosis and treatment rate of adult ADHD over the last
decade [13]. Overdiagnosis and misdiagnosis are also a concern as they might result in
unnecessary labeling, extra costs for excessive tests, unneeded therapies, and increased
healthcare costs [14].

The precise mechanisms underlying ADHD have not yet been clearly established.
However, it has been shown that a reduced volume or functionality of the brain’s gray and
white matter might lead to deficits of attention, cognition, processing response speed, motor
planning, and other behavioral problems shown in ADHD [15,16]. Recent research studies
have proposed that the cerebellum, caudate, and prefrontal cortex (PFC) as primary areas
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related to deficits in ADHD are interconnected together as a neuronal network for regulating
attention, thoughts, behavior, actions, and emotions [17,18]. The network activity between
these areas is mediated by neurotransmitters (NTs), norepinephrine (NE), and dopamine
(DA) via multiple receptors in presynaptic or postsynaptic neurons [17,19–22]. Figure 1
demonstrates the integration of the hyper- and hypo-active catecholamine hypothesis of
ADHD [23].
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Figure 1. Integration of catecholamine hypothesis of ADHD. 1© Dopamine (yellow circles) acts on
postsynaptic D1-D5 receptors. D2 and D3 receptors are locally positioned on the presynaptic neuron.
Small amounts of dopamine stored in vesicles are released into the synapse from the presynaptic
terminal if there is no action potential. 2© This composes a tonic pool that acts on D2 and D3
presynaptic receptors, providing feedback to inhibit the release of DA. 3© Action potential arrives
at the presynaptic terminal. 4© A large amount of vesicular DA is released into the synapse. This
composes the phasic pool acting on postsynaptic receptors. The amount of DA released in the phasic
pool depends on feedback inhibition, which is fired by the stimulation of D2 and D3 receptors of
the tonic pool. 5© DAT-1 on the presynaptic terminal reuptakes DA and the action of DA on the
postsynaptic receptor is terminated. Similar action of NE and NE receptors (α and β) is shown in
the PFC. It is postulated that when an individual is fatigued or bored, activation of postsynaptic
D1 and α2A receptors is insufficient due to the lack of DA or NE release. This mechanism leads to
an individual being easily disturbed and impulsive. If too much of those NTs are released under
stressful conditions, it can lead to overstimulation of receptors, resulting in inattention and responses.
Focused, organized, and attentive actions and thoughts are produced after a modest stimulation of
postsynaptic receptors of DA and NE. In ADHD individuals, tonic pool is thought to be reduced,
which can result in more phasic release of DA, causing behavioral issues including inattention,
hyperactivity and impulsivity. By antagonizing DAT-1 and NET, stimulants can boost the tonic pool
and lessen the phasic release fired by action potential, which might be the underlying issue in ADHD.
AP, action potential; DA, dopamine; NE, norepinephrine; PFC, prefrontal cortex, DAT-1, dopamine
transporter-1; NET, norepinephrine transporter; Dn receptor, Dopamine-n receptor (n = number);
PFC, prefrontal cortex.

Several studies have measured the plasma levels of monoamines in an attempt to
explicate the underlying biological mechanisms involved in ADHD [24]. However, the
results are inconclusive, so further investigation is required. Another possible way to
explain the underlying pathophysiology of ADHD is the alteration of the tryptophan
metabolic pathway (TMP) [25,26]. Tryptophan (TRP) is the most prevalent amino acid with
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a significant role in the biosynthesis of proteins in humans and animals. The metabolic fate
of TRP is bifurcated into two pathways: the kynurenine pathway (KP) and the serotonin
pathway (SP) [27,28]. Several studies using animal/human models have shown the role of
tryptophan (TRP) metabolism in ADHD by demonstrating levels of TRP metabolites such
as kynurenine (KYN), kynurenic acid (KYNA), and 3-hydroxynurenin (3-HK) [29]. TRP
and its metabolites play an important role in mitigating diverse disorders ranging from
cancer to psychiatric or neurological diseases [30–32]. Recent studies have demonstrated
that KP can affect diverse biological systems. Therefore, the potential of using metabolites
in KP as promising therapeutic biomarkers has attracted great interest from biomedical
researchers [33]. Furthermore, the mechanisms linking KP to ADHD provide an excellent
opportunity to establish new treatment for neuropsychiatric disorders [33,34].

Currently, there has been no clinically reliable biomarker for the diagnosis of ADHD,
although several plausible inflammatory biomarker candidates have been suggested based
on recent advances in biochemical and molecular biology [12]. Determining stable and reli-
able biomarkers to separate definite ADHD from normal behaviors that are not etiologically
ADHD is highly desired to make less misdiagnosis.

From this point of view, the aim of the present review article was to summarize the
potential inflammatory biomarkers and the underlying mechanisms, including detailed
description of the kynurenine pathway, inflammatory-cytokine-mediated regulation of the
kynurenine metabolism, dysregulation of the kynurenine pathway in ADHD, and potential
biomarkers in ADHD.

2. The Kynurenine Pathway

The KP is involved in catabolic TRP degradation. It acts on glutamate receptors in
the central nerve system and potentially regulates the essential mechanisms of ADHD
by generating a number of neuro-active compounds collectively called kynurenines that
could interact with neurotransmitter (NT) receptors in the central nerve system (CNS) [35].
This pathway takes place in the liver, kidney, and brain of mammals such as human [36].
Although the liver and kidney show the highest concentrations of enzymes, all primary
enzymes are also found in the brain [37,38]. Kynurenine metabolism happens all over brain
cells despite various annexes of the pathway being segregated into specific cell types [39].

The KP pathway is initiated either by tryptophan-2,3-dioxygenase (TDO) in the liver
to open the TRP indole ring, or indole-2,3-dioxygenase (IDO) in the brain to produce
an instable metabolite of N-formylkynurenine [40,41] (Figure 2). The conversion of N-
formylkynyrenine to L-kynurenine (KYN) is then followed. KYN is a substrate of various
enzymes, including kynureninase (KYNU) for catalyzing the production of anthranilic acid
(AA), kynurenine aminotransferases (KATs I-IV) for kynurenine acid (or kynurenic acid,
KYNA), and kynurenic 3-monooxygenase (KMO) for 3-hydroxykynrenine (3-HK). From L-
KYN, the pathway bifurcates into two distinct branches often called “neuroprotective” and
“neurotoxic” arms. The neuroprotective arm is modulated by KAT, whereas the neurotoxic
part is modulated by KMO.

Brain kynurenine metabolism occurs mostly in glial cells. KMO, KYNU, and
3-hydroxyanthranillic acid oxidase (3-HAAO) can regulate the formation of L-KYN in
microglia, resulting in the formation of AA, 3-HK, 3-HAA, and quinolinic acid (QUIN).
QUIN is excitotoxic at NMDA glutamate receptors. It has a synergistic effect with 3-HK
in generating oxidative stress [42]. In astrocytes, L-KYN can be metabolized by KATs
alternately. KAT II is the predominant subtype in brains of humans and rats [43]. KATs
can catalyze L-KYN to KYNA, a glutamate neurotransmission inhibitor and a possible
antagonist at nicotinic α7 receptors. In conjunction with these roles, KYNA can interact
with arylhydrocarbon receptors and GPR35 [19,44]. In such a way, kynurenine-derive
neuro-active compounds have multiple receptor targets. Further research is needed to
clearly demonstrate their endogenous function. A third possible degradation modulated
by both KATs and KMO is xanthurenic acid (XA). Although not much is known about
XA, it might play a role in modulating glutamatergic neurotransmission by activating
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Group II metabotropic glutamate receptors (mGlu2 and mGlu3) or inhibiting vesicular
glutamate transporters, indicating that it could also modulate glutamate neurotransmission
by impacting presynaptic release [45,46].
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Figure 2. Schematic connection between the kynurenine pathway and nflammation. The kynurenine
pathway (KP) bifurcates into two distinct branches modulated by the availability of l-kynurenine
in the brain: KATs, and KMO. In addition, a variety of inflammation-related mediators known
to affect enzyme expression can regulate the metabolism of kynurenine by adjusting substrate
availability and metabolite formation, preferring the KMP direction of the pathway with immune-
related pathological conditions. TRP, tryptophan or L-tryptophan; TDO, TRP 2,3-dioxygenase; 5-HT,
serotonin; KYN, kynurenine or l-kynurenine; 5-HTP, 5-hydroxytryptophan; HPA-axis, hypothalamic-
pituitary-adrenal axis; KYNA, kynurenine acid; 3-HK, 3-hydroxykynurenine; AA, anthranilic acid;
XA, xanthurenic acid; NAD+, nicotinamide adenine dinucleotide; PIC, picolinic acid; 3-HAA,
3-hydroxyanthranilic acid; ACMSD, aminocarboxymuconate semialdehyde decarboxylase; QUIN,
quinolinic acid; NMDA-R, N-methyl-D-aspartate receptor; IDO, indoleamine-2,3-dioxygenase; KAT,
kynurenine aminotransferase; KMO, kynurenine 3-monooxygenase; KYNU, kynureninase; HAAO,
3-hydroxyanthranilic acid oxidase; LPS, lipopolysaccharide; BCG, bacillus Calmette-Guerin; IFNs,
interferons; TNF, tumor necrosis factor; IL, interleukin; TNF-α; tumor necrosis factor alpha, IFN-γ,
interferon gamma; COX2, cyclooxygenase 2.

During the last decades, the underlying regulatory mechanism of kynurenine metabolism
has been extensively investigated as it has a role in CNS disorders [47–49]. As ‘’neuroprotec-
tive” and “neurotoxic” branches of the pathway, KATs and KMO, respectively, can balance
the production of KYNA:QUIN which is essential in psychiatric and neuropsychiatric
diseases. Some kynurenine metabolites can pass through the blood brain barrier, indicating
that CNS levels of kynurenines are mostly regulated by peripheral enzyme activities [50].
However, a large neutral amino acid transporter can actively convey kynurenine into the
brain [51]. Most kynurenine which is metabolized into KYNA and QUIN is from the
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periphery under normal physiological conditions [52]. After systemic inflammation, nearly
all kynurenine in the CNS is derived from the periphery, at which IDO expression is greatly
increased [53]. However, the direct induction of CNS inflammation can result in over 98%
of kynurenine from local synthesis in the brain [52].

To the best of our knowledge, only three research groups have investigated serum levels
of kynurenines in patients with ADHD. Evangelisti et al. [10] have reported the most recent
measurements [25,54], showing that serum concentrations of kynurenic acid (KA), xanthurenic
acid, and anthranilic acid are lower, while tryptophan and kynurenine concentrations are
significantly higher in children with ADHD than in healthy controls. They found that the
existence of ADHD was significantly related to low AA levels and high TRP levels in a human
logistic regression model [10]. The following section summarizes the interaction between
inflammatory mediators and their underlying mechanisms regulating the KP.

3. Inflammatory Cytokine-Mediated Regulation of Kynurenine Metabolism
3.1. Indoleamine 2,3-Dioxygenase (IDO) and Inflammation Mediators

The first step of TRP catabolism takes place with IDO and TDO, which are generally
known to be differently modulated. While IDO is induced by pro-inflammatory cytokines
during immune response, TDO is induced by glucagon and corticosteroids [55]. There
is some evidence showing that other enzymes in the neurotoxic branches of the KP can
be also induced by pro-inflammatory cytokines. However, IDO regulation by interferon
(IFN)-γ has been investigated most widely.

While IFN- γ is regarded as the primary IDO inducer, there is evidence showing
that the expression of IDO can be induced independently of IFN- γ [56–58]. In vitro data
using HTP-a cells, i.e., a human monocytic cell line, have shown that LPS-induced IPO
activation is mediated by an IFN-γ-independent mechanism, including the synergistic
effects of TNF-β, IL-6, and IL-β 1 [57]. Connor et al. [56] have also suggested that IFN-γ
might not be necessary for LPS-induced IDO expression in mixed glia cultures harvested
from neonatal rat cortex. In human progenitor cells of the hippocampus, IL-β treatment
does not upregulate TDO, but greatly increases the expression of IDO transcript. This
supports the fact that IL-β can elevate functional levels of IDO enzyme [58].

Experiments investigating the role of anti-inflammatory cytokines in IDO expression
have shown limited and often conflicting results. This might be due to differences in
the models used and experimental conditions applied. For instance, IL-10 as one of the
major anti-inflammatory cytokines decreased LPS-mediated IDO protein expression in a
dose-dependent manner. However, IFN-γ-mediated IDO protein expression was increased
by IL-10 in mouse bone marrow-derived dendritic cells (BMDCs) [59]. This inconsistency
may propose that anti-inflammatory cytokines such as IL-10 can differentially regulate the
distinct mechanisms of IDO induction. However, it has not been demonstrated whether
this occurs in the brain. Notably, IFN-γ-treated IDO expression in a transformed mouse
neuronal cell line was suppressed by IL-10 [60]. In addition to the case of IL-10, studies
on human monocytes and fibroblasts have suggested that IL-4 can inhibit IDO mRNA
induction and IDO activity by IFN-γ. Opposed to this, a study using mouse microglia
cells reported that IL-4 can enhance IFN-γ induced IDO mRNA expression, which is
diminished by IL-4 antiserum addition [61]. Along with IL-4, IL-13 which utilizes the
same receptor subunit in signaling can potentiate IFN-γ treated IDO mRNA expression
in mouse microglia cultures [61]. Collectively, these findings indicate that responses to
anti-inflammatory cytokines in microglia and peripheral myeloid cells are different.

Other than those anti-inflammatory cytokines, pro-inflammatory cytokines (such as
TNF-α and IL-1β) and toll-like receptor (TLR) agonist (such as LPS) can synergistically
potentiate IFN-γ-treated IDO expression [62]. Moreover, TNF-α can synergistically in-
duce IDO expression with IFN-γ by increasing NF-κB-dependent IRF-1 expression and
STAT- nym1 activation [62]. Synergistic IDO induction by TNF-α and IFN-γ occurs in
primary mouse microglial cells. The mechanism has been utilized in a research model of
inflammation-related depression [53].
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IFN-γ-independent IDO induction is supported by studies using primary mouse
microglial cells demonstrating that IFN-γ mRNA is not detectable whereas IDO mRNA
levels are increased after LPS stimulation [19,56]. Other studies using THP-1 cells have
indicated that LPS-boosted L-KYN production does not occur with IRF-1 or STAT-1 binding
activation, but is lessened by p38 and NF-κB inhibitors [57]. To sum up, IDO induction
stimulated by LPS in monocytes is IFN-γ-independent and related to NF-κB as well as
stress-activated mitogen-activated protein kinases (MAPK) including JNK and p38 [19,
56,57]. Although subsequent mechanisms between JNK or p38 and IDO induction in
response to LPS stimulation have not been clearly established, AP-1 factors are conventional
substrates of MAPKs. They have critical roles as inflammation-related gene transcription
regulators [19].

3.2. Kynurenine-3-Monooxygenase (KMO) and Inflammation Mediators

Similar to IDO, pro-inflammatory stimuli may activate KMO enzymes downstream
of the pathway. After the systemic inoculation of LPS, KMO expression is induced in rat
brain [56]. KMO is also induced in both IFN-γ treated immortalized murine microglia (N11)
and macrophage (MTs) cells. However, KYNU is induced only in MT2 whereas 3-HAAO is
not affected [63]. In human progenitor cells of hippocampus, transcriptional levels of KMO
and KYMU are upregulated following IL-1β [58].

3.3. Kynurenine Aminotransferases (KATs) and Inflammation Mediators

Compared to the expression levels of IDO and other kynurenine enzymes in the
neurotoxic branch of the KP, KAT expression is neither elevated nor changed in response to
pro-inflammatory stimuli. Systematic LPS inoculation of LPS causes no change in KAT II in
rat brain cells [56]. In immortalized murine microglia (N11) and macrophage (MTs) cells,
KAT shows constitutive expression. IFN-γ treatment shows no effect on KAT activity [63].
In human progenitor cells of hippocampus, IL-1β treatment downregulates only KAT I and
III, showing no effect on KAT II [58].

4. Genetic Links between Inflammation and Kynurenine Metabolism in ADHD

Genetic studies have supported that gene polymorphisms are linked to the inflam-
matory pathway in ADHD. In a total of 398 subjects, Smith et al. [30] evaluated a set of
164 single-nucleotide polymorphisms (SNPs) from 31 candidate genes and found that two
SNPs in the ciliary neurotrophic factor receptor (CNTFR) were associated with the severity
of ADHD inattentive symptom. Odell et al. [64] conducted a population-based association
study with 546 ADHD patients vs. 546 controls and proposed an association between
CNTFR and ADHD in both children and adults. They also reported an association between
ADHD and major histocompatibility complex genes, demonstrating the role of inflam-
mation and autoimmunity in this disorder. However, recent findings of a genome-wide
association meta-analysis have failed to replicate these results [65].

Another genome-wide association study for 478 ADHD patients and 880 controls
has suggested no significant SNPs [66]. However, a pathway analysis has revealed an
association of ADHD with SNPs involved in gene expression regulation, cell adhesion,
and inflammation [30]. One study has inspected the genomic overlap between ADHD
and other psychiatric disorders in 318 individuals, including 93 who were diagnosed with
ADHD, and found a similar inflammation-related genetic signature between ADHD and
depression [67]. Segman et al. [68] evaluated IL-1 receptor antagonist gene variable number
tandem repeat polymorphism in a risk population of ADHD. As IL-1 is known to regulate
murine catecholaminergic transmission, it was selected for the study. Segman et al. [68]
found an association between a four-repeat allele and an increased risk for ADHD and
an association between a two-repeat allele and a decreased risk. However, they failed to
reproduce the same results with a larger sample later [69].

While there is a good number of genetic studies supporting the association between
inflammation and ADHD, there are high variations for methodologies applied in each
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study. Highly heterogeneous genetic features and clinical manifestation might take part in
the observed variation. Currently, there is no consensus about which inflammatory-related
genes precede ADHD. Future research on populations with heterogeneous features might
provide more conclusive findings.

5. Dysregulation of the Kynurenine Pathway in ADHD

A delay in the development of cortical maturation may cause evident deficits in
neuropsychological performances in ADHD [16]. Although the etiology of this delay is
unknown, impaired glial supply to support energy for neuronal activity has been sug-
gested to have a contribution. A recent study on ADHD proposed that patients may carry
subsyndromal immunological imbalances such as increased serum IFN-γ and IL-13 levels.
It also demonstrated a decreased 3-HK despite normal levels of L-KYN [26]. Compared
to medicated subjects, the alteration of pro-inflammatory cytokine production level and
kynurenine metabolism showed a trend toward normalizing in medication naïve subjects.
An impaired 3-HK production might be predisposed to reduced activation of microglia
and hence impaired neuronal pruning that could bring in developmental delays. These
reports might be congruous with early postulations about an imbalance of TRP metabolism
in ADHD, suggesting that patients can produce excess serotonin, at least in peripheral
compartments [70].

Although no report has directly explored cytokine and kynurenine profiles at the
CNS level in ADHD, a few studies have tried to establish the association between these
markers and behavioral endophenotypes by measuring their serum levels. Oades et al.
demonstrated that levels of S100b are negatively associated with oppositional and conduct
problems in ADHD [71]. Their study also demonstrated an inverse relationship between
S100b and IL-10/IL-16 in children with ADHD. A subsequent study has reported that
hyperactivity is strongly correlated with reduced S100b, while attention capacity may
be related to IL-13 [26]. Increased kynurenine and IFN-γ (though reduced TNF-α) are
related to faster reaction time, whereas TRP metabolism shows no relation with symptoms.
Another study conducted by Oades et al. [54] demonstrated that increases in 3-HK and IFN-
γ are linked to lower birth weight and shorter pregnancy in individuals with ADHD, which
are associated with the severity of symptoms. This result was only partially congruent
with former reports [26] of dysregulated cytokine production and kynurenine metabolism,
where a decrease in 3-HF was found. Although these findings of peripheral cytokine and
kynurenine system alterations are impressive, further research is required to elucidate
whether these peripheral measurements might be interpreted as changes in the CNS
compartment. In addition, a detailed analysis of cytokine levels and their relationship to
the KP in the brain throughout the disease might be beneficial to research on developmental
delay reported in ADHD patients.

6. Potential Inflammatory Biomarkers in ADHD

Recently, psychiatry research studies have measured and examined how individ-
ual cytokines known to be related to inflammatory processes are related to particular
diagnostic categories and related phenotypes. Individual relationships of these markers
with various mental disorders in perinatal and offspring outcomes, chronic states, and
pre/post-treatment have been examined based on cytokines, C-reactive protein, hormones,
neurotrophins, and so on. Some commonly investigated cytokine measures are summa-
rized in Table 1 [12,40,72–88]. When interpreting reports of individual studies, it is crucial
to consider the extent to which other factors affecting peripheral cytokines are accounted for
in specific analyses. Compounding factors including age, sex, weight, smoking, childhood
trauma, the timing of blood sampling, medical comorbidities, concurrent medication use,
and severity of illness are example variables that should be but are not always indicated in
studies. They are possible sources of discrepancy in results [82,89].
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Table 1. Commonly investigated inflammation-related cytokines in neuropsychiatric disorders.

Category Protein Designation Name Major Function

General CRP C-reactive protein

Acute-phase protein produced in response to
acute and chronic inflammation

Produced as a result of increasing
pro-inflammatory cytokines (IL-1 and IL-6)

and lipopolysaccharides

Pro-inflammatory
cytokine

IFN-γ Interferon gamma
Secreted by lymphocytes and is a potent

activator of macrophages
Critical to both innate and adaptive immunity

IL-1β Interleukin 1 beta

Induces prostaglandin synthesis, neutrophil
and T-cell activation, cytokine production,
B-cell activation and antibody production

Utilized as a biological response modifier in
cancer therapy

IL-6 Interleukin 6

Pyrogenic, acute-phase response mediator,
stimulating acute-phase protein synthesis and

production of neutrophils
Supports the growth of B-cell

IL-8 Interleukin 8
Chemotactic factor in the recruitment of

neutrophils and other immune cells to the site
of inflammation

IL-10 Interleukin 10
A potent anti-inflammatory cytokine that plays

a central role in limiting pro-inflammatory
cytokines and maintaining tissue homeostasis

IL-18 Interleukin 18

A pleiotropic cytokine produced mainly by
antigen-presenting cells, plays a key role in
autoimmune, inflammation, and infection

Enhances cytotoxic activity and the
proliferation of CD8+ T and NK cells

Stimulates the production of other cytokines
including IL-13

TNF-α Tumor necrosis factor
alpha

Produced by macrophages during acute
inflammation and plays a role for cell necrosis

or apoptosis

TNF-β Tumor necrosis
factor beta

Involved in autoimmune disorders, mediating
the inflammatory demyelination process

Adapted from Zlotnik (2012) [90] and Bishop et al. (2022) [91].

It has been reported that neuroinflammation might underlie the neurodevelopment
of the immune system, resulting in changes in normal microglia, astrocytes, chemokines,
cytokines, oxidative stress, and related metabolism in the first months or early years of
life [92]. In children with maternal inflammatory and immune system disruption, an
increased profile of ADHD risk has been observed [93]. Gustafsson et al. [94] suggested
that maternal serum levels of IL-6, TNF-α, and monocyte chemoattractant protein-1 (MCP-1)
are possible markers of ADHD risk, which is the first human study providing evidence of
an association between inflammation and brain developmental/behavioral defects.

Consistently, mechanistic evidence has been demonstrated by animal studies, which
show maternal immune activation in offspring with ADHD [29]. During perinatal develop-
ment, neurodevelopmental high inflammatory responses triggered by several mechanisms
of environmental factors such as heavy metal exposures may increase ADHD risk condi-
tionally [54].

Peripheral pro-inflammatory cytokines can cross the brain through humoral and neural
pathways and maintain inflammatory responses via neuroimmune systems. Inflammation-
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related cytokine changes in the brain are known to cause neurotransmission changes in
TRP metabolism and dopaminergic pathways in the brain, similar to those seen in patients
with ADHD [71]. At this point, prenatal exposure to inflammation may restrain brain
development resulting from structural changes in the volume of gray matter that can
cause permanent neural circuits to fail to mature or bring neuroendocrine changes, thus
elevating the risk of ADHD [95]. In addition, the interaction of the HPA axis with a chronic
increase in cytokine signals in the immune system during developmental processes is
associated with the pathogenesis of ADHD [96]. However, these serological changes in
inflammatory cytokines tend to wane or become reversed along with advances in the age of
ADHD patients. Therefore, the age of subjects in studies measuring potential inflammatory
biomarkers of ADHD should be included when interpreting study results.

In recent studies, various inflammatory cytokines in the central and peripheral samples
have been proposed as feasible potential biomarkers of ADHD risk. Table 2 lists potential
inflammatory biomarkers of ADHD risks suggested for youth and adult ADHD patients.

Table 2. Potential inflammatory biomarkers in youth and adult ADHD patients.

Biomarkers Youth References Adult 1 References

CRP ↑ [75,76] ↑ [87]
IL-1β ↓ [71] ↔ [87]
IL-6 ↑ [71,97,98] ↔ [86,99,100]
IL-10 ↑ [71,75,98] ↔ [86]
IL-13 ↑ [71,75] ↔ [86]
IL-16 ↑ [54,71]

TNF-α ↓ [71,86] ↓ [86]
Cortisol 2 ↓ [75,76,101,102] ↓ [103]

1 Compared to controls. 2 Cortisol: Morning salivary cortisol.

Chang et al. [75,76] evaluated CRP levels and found that its levels are elevated in
youth with ADHD compared to those in healthy youth. Concurrently, TNF-α levels have
been reported to be lower in children with ADHDsince IL-6 is known to have a suppressive
effect on TNF-α production [104]. They mutually counter-regulate each other during early
immune responses. Yang et al. [87] evaluated serum CRP and other cytokines in individuals
aged 5 to 55 years and provided sub-analysis results, showing that reported CRP levels were
elevated in the adult group. They analyzed scores of Difficulties in Emotion Regulation
Scale (DERS-16) and CRP levels and found that higher CRP levels were associated with
lower DERS-16 scores.

Oades et al. [71] investigated serum levels IL-1β, IL-6, IL-10, IL-13, IL-16, and TNF-α
in 21 children (mean age: 8.9 ± 1.4 years) with ADHD who are treatment-naïve compared
to the same number of controls (mean age: 12.6 ± 2.1 years). Lower IL-13 levels were
seen in the ADHD medication-naïve group compared to those in the control. With the
same sample, the authors further analyzed the correlation between levels of cytokines and
symptom scores. An increase in IL-13 was associated with increased inattention symptoms.
A high IL-16 level was associated with an increase in hyperactivity impulsive symptoms
and positively related to motor activity. Another study [54] reported that an increased IL-16
level in the ADHD group was related to poor infant health. Numerous reports have shown
that increased level IL-6 levels in ADHD are associated with an increased risk of ADHD in
children [71,75,97]. However, this evidence is diluted in advanced age groups of ADHD
patients [99,100].

Misiak et al. [86] conducted a systematic review on possible peripheral blood inflam-
matory markers in ADHD patients and found no association with IL-6 or IL-10 in ADHD.
However, individual case-control studies conducted by Donfrancisco et al. [98] have found
that IL-6 and IL-10 levels are elevated in children with ADHD. The heterogeneity of sub-
jective research in the systematic review might be one reason for the diluted result. A
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systematic review conducted by Misiak et al. [86] has also found that lower TNF-α is
meaningful in both adult and youth ADHD patients.

Chang et al. investigated inflammatory biomarkers in ADHD and revealed that morn-
ing salivary cortisol levels were lower in youths with ADHD than in healthy controls [75,76].
This result was reproduced in the study of Llorens et al. [101] recently, which also reported
lower morning cortisol levels in youths with ADHD with consistently high levels of hy-
peractivity and inattention symptoms since childhood. A previous research by Isaksson
et al. [102] found a similar result between childhood trauma and ADHD symptoms re-
garding morning cortisol levels, with children with ADHD showing a positive correlation
between childhood adversity and cortisol increase after awakening. Scassellati et al. [103]
performed a systematic review on potential biomarkers in adults with ADHD and reported
lower salivary cortisol levels from a meta-analysis.

Although the most recent research on ADHD biomarkers has suggested the possibility
of finding more objective forms of diagnostics compared to the current diagnostic criteria in
clinical use today, it remains unclear how these discrete markers are associated with diverse
clinical manifestations and different populations that persistently confound research on
ADHD. A few observational studies have evaluated different variables without adjusting
or controlling confounders to investigate the role of inflammation in the pathophysiology
of ADHD, yielding conflicting results. Further research overcoming these limitations of
previous research studies performed so far is needed.

7. Summary

The goal of this review was to explore the possible underlying etiopathophysiology
of KP in the regulation of ADHD. This reviewed summarized the current knowledge on
the range of possible peripheral inflammatory biomarkers. Uncertainty remains as to
whether neuroinflammation is a cause or consequence of the risk of developing ADHD.
However, some researchers have demonstrated that the KP and subsequent neuroinflam-
mation have a certain degree of association with the state of ADHD. Searching for reliable
peripheral inflammatory biomarkers is of great interest in terms of eliminating uncertainty
and overcoming diagnostic and treatment difficulties in the clinic. Although a solid neu-
roimmunological basis has been established through recent neuroimmunological advances,
there is a need for further studies to determine how changes in inflammatory markers are
related to disease status or whether these markers can be used to detect the development
of ADHD and predict its progression and response to treatment.
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