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Objectives: Noninvasive brain stimulation (NIBS) is an emerging tool for treating autism

spectrum disorder (ASD). Exploring new stimulation targets may improve the efficacy of

NIBS for ASD.

Materials andMethods:We first conducted a meta-analysis on 170 functional magnetic

resonance imaging studies to identify ASD-associated brain regions. We then performed

resting state functional connectivity analysis on 70 individuals with ASD to investigate brain

surface regions correlated with these ASD-associated regions and identify potential NIBS

targets for ASD.

Results: We found that the medial prefrontal cortex, angular gyrus, dorsal lateral

prefrontal cortex, inferior frontal gyrus, superior parietal lobe, postcentral gyrus,

precentral gyrus, middle temporal gyrus, superior temporal sulcus, lateral occipital

cortex, and supplementary motor area/paracentral gyrus are potential locations for

NIBS in ASD.

Conclusion: Our findings may shed light on the development of new NIBS targets for

ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a highly prevalent disorder (1). Despite decades of research, the

treatment of ASD is far from satisfactory (2). To date, only a handful of treatment options have been

shown to ameliorate the symptoms associated with the disorder (3). Developing new intervention

methods for ASD is therefore urgently needed.

Noninvasive brain stimulation (NIBS) is an emerging tool for the treatment of ASD. Such a

technique may include repetitive transcranial magnetic stimulation (rTMS), transcranial direct
current stimulation (tDCS), and transcranial alternating current stimulation (tACS) (4, 5).

Preliminary evidence has demonstrated the potentials of rTMS and tDCS in the treatment of

ASD (6–8). However, results from recent meta-analyses regarding the effectiveness of these NIBS
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techniques in ASD treatment are inconsistent (9–11),

necessitating that researchers further investigate and improve

NIBS treatment.

Refining stimulation targets may be a promising way to

improve the treatment effect of NIBS. Currently, multiple NIBS

targets for ASD treatment have been explored, including the
dorsal lateral prefrontal cortex (DLPFC), motor cortex, inferior

frontal gyrus (IFG), dorsal medial prefrontal cortex (dmPFC),

and temporoparietal junction (TPJ) (9, 10, 12–14). However, the

rationale for choosing these areas is often ambiguous,

significantly limiting the optimization of NIBS and its

application in ASD.
Neuroimaging studies have discovered a large number of

ASD-associated brain regions and have expanded our

understanding of ASD pathophysiology (15–18). However,

clinical translation is still limited. One way of selecting target

brain regions for NIBS from neuroimaging research is through

meta-analysis of previous studies. However, some brain regions
identified from these meta-analyses, such as the fusiform gyrus

and amygdala, are located in areas that are inaccessible for

certain NIBS technologies such as tDCS.

Recently, investigators have started to apply resting state

functional connectivity methods to optimize the locations of

NIBS for depression treatment and have achieved some

encouraging results, demonstrating the potential of resting
state functional connectivity in refining NIBS target locations

(19–21). Nevertheless, few studies have systematically

investigated potential locations for ASD using brain imaging.

This study aims to explore new potential target locations for

NIBS in ASD treatment by combining meta-analysis and resting

state functional connectivity methods. Specifically, we first
performed an automated meta-analysis of ASD and defined

regions of interest (ROI). Then, we investigated the resting

state functional connectivity of those ROIs in 70 ASD patients

to identify easily accessible locations for NIBS, particularly tDCS.

MATERIALS AND METHODS

Identifying ASD-Associated ROIs From the
Meta-Analysis
To extract ASD-associated ROIs, we used Neurosynth (22)
(http://neurosynth.org/; accessed 11 March 2020) as a

metadata reference of the neuroimaging literature. Under the

search string “autism spectrum,” 170 fMRI studies were

identified, and a uniformity test map was generated to identify

ASD-associated brain regions. A complete list of the 170 fMRI

studies extracted from Neurosynth can be found in

Supplementary Material Table S1.
To create ASD-associated ROIs for further analysis, we first

used xjView toolbox (http://www.alivelearn.net/xjview/) to

identify the coordinates with peak z-scores within all clusters

larger than 50 voxels on the uniformity test map. Then, 6-mm

radius spherical masks centered on the identified peak

coordinates were created using WFU_PickAtlas toolbox
(version 3.0.5b, http://fmri.wfubmc.edu/software/PickAtlas).

The ROIs were further refined by taking the overlap of the

uniformity test map with the whole brain cortical masks (see

Supplementary Material Figure S1) from the WFU_PickAtlas

for the purpose of maintaining regional specificity.

Subjects and MRI Data Acquisition
Data were extracted from Autism Brain Imaging Data Exchange

II. Subjects were selected from three data sites: Georgetown

University, New York University (sample 1 and sample 2), and
Kennedy Krieger Institute from Autism Brain Imaging Data

Exchange (ABIDEII) (23). We selected subjects based on the

following criteria: (1) 5–12 years old; (2) full-scale IQ (FIQ)

scores > 80; (3) diagnosis of ASD based on DSM-IV-TR and

assessed with the Autism Diagnostic Observation Schedule

(ADOS) (24) and/or the Autism Diagnostic Interview–Revised
(ADI-R) (25); (4) no history of attention-deficit hyperactivity

disorder, oppositional defiant disorder, or phobia. All procedures

from these three sites were approved by their local Institutional

Review Boards.

The resting-state fMRI and high-resolution T1-weighted

brain structural images were acquired on 3T MRI scanners
(see details of the acquisition parameters in http://fcon_1000.

projects.nitrc.org/indi/abide/abide_II.html).

Image Preprocessing
The images were preprocessed in CONN version 18a (https://sites.

google.com/view/conn/) (26) and SPM 12 (http://www.fil.ion.ucl.ac.

uk/spm/) using CONN's default preprocessing pipeline. The

preprocessing steps included slice-timing correction, realignment,

normalization (3×3×3 mm3 in MNI space), and smoothing (6×6×6

mm3). During preprocessing, the Artifact Detection Tool (https://
www.nitrc.org/projects/artifact_detect/) was used to detect outliers

(> 3 SD and/or >0.5mm). The outliers were used for subsequent

scrubbing regression. The structural images were segmented and

used to create gray matter, white matter (WM), and cerebral spinal

fluid (CSF) masks of each subject. Then, linear regression using

WM & CSF signals (CompCor; 5 components for WM and CSF),
linear trend, subject motion (six rotation/translation motion

parameters and six first-order temporal derivatives), and outliers

(scrubbing) was conducted to remove confounding effects.

Afterwards, the residual BOLD time series were band-pass filtered

(0.008–0.09 Hz).

Functional Connectivity Analysis
Similar to our previous study (27, 28), to explore potential brain

surface regions related to ASD, 21 ROIs identified from the meta-

analysis were used to conduct seed-to-voxel functional
connectivity analyses on resting-state fMRI data from all

selected ASD subjects. The residual BOLD time course was

extracted from the 21 ROIs, and Pearson's correlation

coefficients were computed between the ROIs and all other

brain voxels for each subject to create subject-level seed maps.

The resulting correlation coefficients were subsequently
transformed into z-scores to increase normality. At the group

level, all subject-level seed maps were included in a one-sample t-

test to obtain a group-level correlation map.
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After the one-sample t-test, a brain surface mask was created

to exclude brain regions that are not on the brain surface

(inaccessible to NIBS). The regions included in the brain

surface mask were the bilateral pre and postcentral gyri;

superior and middle frontal gyri; superior, inferior, and middle

occipital gyri; superior and inferior parietal lobules;
supramarginal gyrus; angular gyrus; superior temporal gyrus;

superior temporal pole; middle temporal gyrus; middle temporal

pole; inferior temporal gyrus; opercular inferior frontal gyrus;

Rolandic operculum; triangular inferior frontal gyrus; superior

medial frontal gyrus; calcarine sulcus; orbital middle, superior,

and inferior frontal gyri; orbital medial frontal gyrus;
supplementary motor area; paracentral lobule; precuneus; and

cuneus (see Supplementary Material Figure S1 for detailed

mask image).

Exploring Potential NIBS Locations for ASD
Similar to our previous study (27, 28), three different pipelines

were applied to identify potential brain surface regions for NIBS
in ASD (Figure 1). The most straightforward approach was

pipeline 1, which used the meta-analysis to identify brain areas

associated with ASD. Unfortunately, most of these brain areas

are not located on the brain surface and therefore may be

inaccessible to neuromodulation methods. We thus also

employed pipelines 2 and 3 to identify surface brain areas that
are functionally linked to deep brain structures associated with

ASD, and hopefully stimulating these surface areas may

influence the function of the deep brain areas.

Pipeline 1. We selected brain surface clusters in the

uniformity test map from the meta-analysis by applying the

whole brain cortical mask. These clusters represent potential

brain surface regions (that are accessible to NIBS) directly

involved in the pathophysiology of ASD.

Pipeline 2. The 21 refined ASD-associated ROIs from the
meta-analysis were combined to form one ROI, which

represented the ASD network for seed-to-voxel connectivity

analysis in CONN. Then, we selected 4–6 brain surface clusters

with the largest peak z-scores among all clusters with a voxel size

larger than 50 and intensity larger than 4 on the group-level

correlation map (positive and negative correlation maps
separately). These clusters represent the brain surface regions

that have the strongest correlations with the ASD functional

network. A voxel-wise level threshold of p < 0.001 and a cluster

level family-wise error (FWE) of p < 0.05 were applied to obtain

group-level correlation maps of the ROIs.

Pipeline 3. We saved the group-level correlation maps of each
ASD-associated ROI to a binary mask. The binary masks of all

ROIs were added together to form a third-level map, positive

correlation map, and negative correlation map separately. The

intensity of each voxel in the third-level map may represent the

number of ASD ROIs correlated to the voxel. Then, we selected

4–6 brain surface clusters with the largest peak z-scores among

all clusters with a voxel size larger than 50 and intensity larger
than 4 on the third-level correlation map as potential regions.

These clusters represent the brain surface regions correlated with

the largest number of ASD ROIs. A voxel-wise level threshold of

FIGURE 1 | Methods and tools. ROI, regions of interest; ASD, autism spectrum disorder; FC, functional connectivity.
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p < 0.001 and a cluster level family-wise error (FWE) of p < 0.05

were applied to obtain group-level correlation maps of the ROIs.

The results from the three pipelines were mapped onto a

standard brain using Surf Ice (https://www.nitrc.org/projects/

surfice/) and a standard head using MRIcroGL (http://www.

mccauslandcenter.sc.edu/mricrogl/) with the international 10-20
system in MNI space. The MNI coordinates of the 10-20 system

were extracted from a previous study (29).

RESULTS

Participant Demographics and
Characteristics
Demographic and clinical characteristics of the study groups are

summarized in Table 1. In total, 70 ASD subjects (58 males) were
included in the study. The mean age of the study group was

8.98 ± 1.97 (SD) years old with an average FIQ of 112.79 ±

16.67 (SD).

Regions of Interest Identified From the
Meta-Analysis
Twenty-one peak coordinates were identified from the uniformity

test map of the meta-analysis (Table 2). The 21 coordinates were

then used to create 6-mm radius spherical masks (see

Supplementary Material Figure S2 for the 21 spherical masks).

The masks included the bilateral hippocampus/amygdala, bilateral

fusiform gyrus, medial prefrontal cortex (mPFC), bilateral insula,
bilateral ventral lateral prefrontal cortex (vlPFC), bilateral dorsal

lateral prefrontal cortex (dlPFC), bilateral supplementary motor

area (SMA), bilateral caudate, bilateral angular gyrus (AG),

posterior cingulate gyrus (PCC), left middle temporal gyrus

(MTG), left lateral occipital gyrus, right superior temporal gyrus

(STG), left frontal eye field (FEF), left superior parietal gyrus, left
postcentral gyrus, and left precentral gyrus. Themaskswere refined

by taking the overlap of the masks and the original forward

inference map. Then, the refined masks were used as ROIs in the

seed-to-voxel connectivity analysis.

Potential NIBS Locations for ASD
The results of the three pipelines were mapped onto a standard
brain and a standard head in MNI space (Table 3 and Figure 2).

In Pipeline 1, the mPFC, bilateral AG, bilateral dlPFC,

inferior frontal gyrus (IFG), precentral gyrus, MTG/superior

temporal sulcus (STS), lateral occipital cortex (LOC), left SMA/

FEF, superior parietal lobe (SPL), and postcentral gyrus were

identified as brain surface regions that may be directly involved

TABLE 2 | Coordinates of ASD ROIs identified from meta-analysis.

Cluster

ID

Cluster

size

Peak T Peak coordinates Brain regions

x y z

1 390 11.3205 26 −6 −18 Hippocampus/amygdala_R (BA54/53)

2 355 11.3205 −22 −8 −20 Hippocampus/amygdala_L (BA54/53)

3 740 8.3575 40 −50 −20 Fusiform gyrus/LOC/MTG_R (BA37/19/21)

4 136 5.9871 −36 −50 −16 Fusiform gyrus_L (BA37)

5 533 7.1723 −2 58 20 mPFC (BA10)

6 86 7.1723 −60 −14 −14 aMTG_L (BA21)

7 1,053 10.1353 −34 22 4 Insula//IFG/dlPFC/precentral_L(BA13/44/45/47/9/6)

8 1,302 12.5057 36 22 0 Insula/IFG/dlPFC/precentral_R(BA13/44/45/47/9/6)

9 103 6.5797 22 −30 −4 Hippocampus_R (BA53)

10 52 5.9871 8 8 −4 Caudate_R (BA48)

11 271 8.3575 −46 −66 0 LOC_L (BA19)

12 65 5.3945 −10 10 −8 Caudate_L (BA48)

13 78 5.9871 −56 −42 2 pMTG/STS_L(BA21)

14 141 6.5797 54 −32 6 STS_R (BA22)

15 236 7.1723 50 −58 24 AG_R (BA39)

16 348 7.1723 −2 −54 24 PCC (BA23)

17 90 5.9871 −48 −66 28 AG_L (BA39)

18 397 8.3575 −2 10 52 SMA/FEF_L (BA6/8)

19 190 5.9871 −40 −42 48 SPL_L (BA7)

20 59 4.8019 −46 −30 52 Postcentral gyrus_L (BA1)

21 53 5.3945 −26 0 56 Precentral gyrus_L (BA6)

ASD, autism spectrum disorder; ROI, regions of interest; L, left; R, right; BA, Brodmann area; mPFC, medial prefrontal cortex; aMTG, anterior middle temporal gyrus; pMTG, posterior

middle temporal gyrus; LOC, lateral occipital cortex; IFG, inferior frontal gyrus; dlPFC, dorsal lateral prefrontal; SMA, supplementary motor area; STS, superior temporal sulcus; AG, angular

gyrus; PCC, posterior cingulate cortex; FEF, frontal eye field; SPL, superior parietal lobule.

TABLE 1 | Subject demographics and characteristics.

Characteristics Mean ± SD (n = 70)

Age 8.98 ± 1.97

Gender (female/male) 12/58

Full-scale IQ 112.79 ± 16.67

SRS Total 76.19 ± 16.15

ADI-R Social Interaction 18.57 ± 5.66

ADI-R Communication 15.14 ± 4.75

ADI-R RRB 5.77 ± 2.39

SRS, Social Responsiveness Scale; ADI-R, Autism Diagnostic Interview; RRB, Restrictive

and Repetitive Behavior.
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in the pathophysiology of ASD (see Supplementary Material

Figure S3 for statistical maps of pipeline 1). The 10-20 system

coordinates corresponding to the centers of these regions were

located approximately at Fz, P3, and P4 (left and right AG),

posterior to F3 and F4 (left and right dlPFC), posterior to F7 and
F8 (left and right IFG), anterior to C3 and C4 (left and right

precentral gyrus), center at T3 and T4 (left and right MTG),

center at T5 and T6 (left and right LOC), posterior to Fz, anterior

to P3, and posterior to C3.

In Pipeline 2, the bilateral SPL, SMA / paracentral gyrus, right

dlPFC, AG, and postcentral gyrus were identified as brain surface
regions positively correlated with the ASD network (see

Supplementary Material Figure S4 for statistical maps of

pipeline 2). The 10-20 system coordinates corresponding to the

centers of these regions were located approximately anterior to

P3 and P4 (left and right SPL), posterior to Cz, posterior to F4,

center at P4, and posterior to C4, respectively. No cluster was

found to be negatively correlated with the ASD network.
In pipeline 3, the mPFC, bilateral precuneus, temporal pole

(TPO)/MTG/STS, AG, dlPFC, IFG, SPL, postcentral gyrus, LOC,

right supramarginal gyrus (SMG), and left precentral gyrus were

identified as brain surface regions positively correlated with ASD

ROIs (see Supplementary Material Figure S5 for positive

statistical maps of pipeline 3). The 10-20 system coordinates

corresponding to the centers of these regions were located

approximately at Fz, posterior to Cz, T3, and T4 (left and right
TPO/MTG/STS), P3 and P4 (left and right AG), posterior to F3

and F4 (left and right dlPFC), posterior to F7 and F8 (left and

right IFG), anterior to P3 and P4 (left and right SPL), posterior to

C3 and C4 (left and right postcentral gyrus), center at T5 and T6

(left and right LOC), anterior to P4, and anterior to C3,

respectively. The mPFC, bilateral dlPFC, precuneus, and right
SMGwere found to be brain surface regions negatively correlated

with ASD ROIs (see Supplementary Material Figure S6 for

negative statistical maps of pipeline 3). The 10-20 system

coordinates corresponding to the centers of these regions were

located approximately at Fz, posterior to F3 and F4 (left and right

dlPFC), posterior to Cz, and anterior to P4.

DISCUSSION

In this study, we combined resting-state functional connectivity

and meta-analysis to identify potential NIBS targets for ASD. We

found the brain regions overlapping between the meta-analysis

and seed-based analysis to be potential targets, including the

mPFC, bilateral AG, dlPFC, IFG, MTG/STS, LOC, left SPL,

postcentral gyrus, precentral gyrus, and SMA. Stimulation
locations on the scalp corresponding to these brain targets

were also provided based on the EEG 10-20 system.

Consistent with the general consensus on cortical stimulation

sites for ASD (10, 12), we identified the bilateral dlPFC, IFG, and

AG as potential NIBS targets. The effectiveness of stimulating

these three regions for ASD has been tested in previous studies

(7, 30, 31).
Several neuropsychology studies have revealed impaired

executive function in patients with pervasive developmental

disorders such as ASD (32). Executive function encompasses a set

of mental processes involved in planning, working memory,

attention, problem solving, verbal reasoning, and mental flexibility

(33), all of which are highly associated with activation of the dlPFC
(34). As the most preferable target region, stimulation of the dlPFC

may induce reduction in comorbid depression (35) and social-

related impairments (36, 37) and yield improvement in attention

(36) in individuals with ASD (38, 39). Sokhadze and colleagues

reported improved executive functioning in individuals with ASD as

evidence of normalization of event-related potential responses and
behavioral accuracy after 1 Hz rTMS to the dlPFC (6). Thus, the

dlPFC may be a potential target to treat symptoms associated with

executive function and depression.

The IFG has been extensively associated with functions such

as language processing, response inhibition, and social cognition

and may be directly involved in the pathophysiology of ASD (40–

46). For instance, Grace and her colleagues reported that
activation in the left IFG was reduced in individuals with ASD

compared to typically developing controls during speech

TABLE 3 | Potential locations for NIBS in ASD identified from the three pipelines.

Pipeline number Identified brain regions 10-20 system

locations

Pipeline 1 mPFC

AG_bilateral

dlPFC_bilateral

IFG_bilateral

Precentral_bilateral

MTG/STS_bilateral

LOC_bilateral

SMA/FEF_L

SPL_L

Postcentral Gyrus_L

Fz

P3 (P4)

Posterior to F3 (F4)

Posterior to F7 (F8)

Anterior to C3 (C4)

T3 (T4)

T5 (T6)

Posterior to Fz

Anterior to P3

Posterior to C3

Pipeline 2 Positive SPL_bilateral

SMA/paracentral gyrus

dlPFC_R

AG_R

Postcentral_R

Anterior to P3 (P4)

Posterior to Cz

Posterior to F4

P4

Posterior to C4

Negative None None

Pipeline 3 Positive mPFC

Precuneus_bilateral

TPO/MTG/STS_bilateral

AG_bilateral

dlPFC_bilateral

IFG_bilateral

SPL_bilateral

Postcentral_bilateral

LOC_bilateral

Precentral_L

SMG_R

Fz

Posterior to Cz

T3 (T4)

P3 (P4)

Posterior to F3 (F4)

Posterior to F7 (F8)

Anterior to P3 (P4)

Posterior to C3 (C4)

T5 (T6)

Anterior to C3

Anterior to P4

Negative mPFC

dlPFC_bilateral

Precuneus_bilateral

SMG_R

Fz

Posterior to F3 (F4)

Posterior to Cz

Inferior to P4

positive: brain surface regions positively correlated with the ASD ROIs; negative: brain

surface regions negatively correlated with the ASD ROIs.

L, left; R, right; mPFC, medial prefrontal cortex; AG, angular gyrus; IFG, inferior frontal

gyrus; LOC, lateral occipital cortex; dlPFC, dorsal lateral prefrontal cortex; STS, superior

temporal sulcus; TPO, temporal pole; MTG, middle temporal gyrus; SMA, supplementary

motor area; FEF, frontal eye field; SPL, superior parietal lobule; ITG, inferior temporal

gyrus; SMG, supramarginal gyrus.
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stimulation (47). Moreover, Leehe et al. showed that anodal

tDCS targeting the right IFG (rIFG) can modulate participants'

emotional ratings to social touch.

As part of the TPJ, the AG integrates multi-sensory and

cognitive processes that are implicated in the theory of mind and

the attention network (48, 49). A recent study found that tDCS
on the TPJ can influence social-cognitive performance as

assessed by the Autism Spectrum Quotient (AQ) score (50).

These studies demonstrate the functional alterations of the IFG

and AG in ASD and provide support for using these regions as

treatment targets, particularly in language and attention-

related symptoms.

The motor system is another commonly used target for ASD
(5). We found the left precentral gyrus and SMA in both the

meta-analysis and seed-based analysis pipelines. A recent

systematic review (11) on TMS neurophysiology revealed

motor cortex excitatory and inhibitory imbalances in ASD,

thereby providing a basis for targeting these regions. Thus, we

speculate that the region may be associated with repetitive
behavior and other motor-related symptoms.

In addition, our results suggest that the mPFC, bilateral

MTG/STS, LOC, left SPL, and postcentral gyrus as other

overlapping results of the meta-analysis and seed-based

analysis should also be considered as potential targets for ASD

treatment. Numerous functional imaging studies have

demonstrated the important role of the prefrontal cortex in
social cognition (51, 52), and the mPFC is particularly

highlighted in the pathophysiology of ASD in both functional

imaging and gene expression studies (53). Indeed, Enticott et al.

found that deep rTMS to the bilateral mPFC can reduce social-

related impairment and social-related anxiety in ASD patients

(37), indicating that the mPFC may be a target region for

these symptoms.

An extensive body of literature has shown the STS to be an

established node of a “social network” (54) involved in language
processing and social perception (55, 56), and it is a key region of

numerous functional differences between ASD and typically

developing individuals (57, 58). Beauchamp et al. reported that

applying single-pulse TMS to the STS could significantly disrupt

the McGurk effect (59), a perceptual phenomenon integrating

hearing and vision in speech perception. Moreover, Daniel et al.

found that theta burst TMS to the STS could produce a
significant change in resting-state functional connectivity

across the face-processing network (60). As findings have

indicated that individuals with ASD may suffer from a weak

McGurk effect and impaired face processing in daily settings (61,

62), these studies provide an interesting basis and guide for

future stimulation of the STS in ASD treatment. Adjacent to the
STG, the MTG is a brain area that is unique to humans (63).

Previous studies have demonstrated the function of the MTG in

language processing (64), and Acheson et al. reported a

modulation effect on the language network when applying

rTMS to the posterior MTG (64–67). These findings suggest

that the STG and MTGmay be potential targets for treating ASD

symptoms related to language processing and social perception.
The SPL plays an important role in many cognitive,

perceptive, and motor-related processes (68). In particular,

event-related fMRI studies have shown that the SPL is critical

FIGURE 2 | Potential locations for noninvasive brain stimulation (NIBS) in autism spectrum disorder (ASD) identified from the three pipelines. IFG, inferior frontal

gyrus; AG, angular gyrus; LOC, lateral occipital cortex; mPFC, medial prefrontal cortex; STS, anterior superior temporal sulcus; MTG, middle temporal gyrus; dlPFC,

dorsolateral prefrontal cortex; SMG, supramarginal gyrus; SPL, superior parietal lobule.
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for sensorimotor integration (69, 70), highlighting its potential

role in the pathophysiology of repetitive and restrictive behaviors

identified as additional core traits of ASD. Travers and colleagues

reported that individuals with ASD had reduced fMRI activation

in the SPL compared to typically developing individuals during

motor-linked implicit learning, and they found that the more
severe the traits of repetitive and restrictive behaviors, the greater

the decrease in activation in the SPL (71). Furthermore,

transcranial magnetic stimulation to the SPL was found to

affect the planning of reaching movements (72). The SPL may

therefore be considered a potential target for repetitive and

restrictive behaviors.
As part of the lateral occipital-temporal complex (73), the

LOC is an important region involved in object recognition (74)

and multiple sensory integration. Studies have indicated that

individuals with ASD may have difficulties integrating verbal and

nonverbal cues during social interactions (75). Our previous

study also found that reduced structural connectivity and
resting-state brain activity in the LOC is associated with social

communication deficits in boys with ASD (18).

Activation of the postcentral gyrus has been widely reported

in previous studies when subjects were observing another person

being touched (76, 77), suggesting the role of the postcentral

gyrus in empathetic sharing of somatosensations. These findings

suggest that this region may be used to relieve sensory-related
symptoms in children with ASD (76, 77).

Finally, it is worth noting that identifying these locations may

not necessarily be limited to NIBS, but may also be applied in other

interventions such as scalp acupuncture (stimulating the area of

scalp corresponding to brain regions believed to be involved in

disorder pathology using acupuncture needles) and transcutaneous
electrical nerve stimulation. Thus, results obtained from this study

may facilitate the development of acupuncture and other

therapeutic methods for the treatment of ASD.

There are several limitations to our study. First, the excitatory

and inhibitory natures of these identified regions are indefinable

usingmethods in this study. For someNIBS techniques like TMS, it

is important to know the direction of the stimulation. How to apply
andoptimize different treatmentmodalities to target the brain areas

identified in our study is beyond the scope of this manuscript.

Investigators should consider the characteristics of different tools

when attempting to stimulate these areas. Second, we do not know

which pipeline is optimal for identifying potential NIBS targets for

ASD. Regions identified frompipeline 1 are directly associatedwith
ASD pathophysiology, regions identified from pipeline 2 have the

strongest correlation with the ASD network, and regions identified

from pipeline 3 correlate with the largest number of ASD ROIs.

Understanding the derivative of these locations may help

researchers choose target regions during clinical practice. Third,

the meta-analysis conducted by Neurosynth is not flawless.

Potential errors may occur during automatic extraction and
synthesis of fMRI activation coordinates. However, several

supporting analyses have been conducted to confirm the validity

and sensitivity of Neurosynth-based meta-analysis and may

provide evidence for the feasibility of this method. Finally, we

applied peak z-scores to create spherical ROIs within these clusters.

As a result, eachROI shouldhave a similar size (voxelnumber), thus

avoiding the potential influence of cluster size. Nevertheless, using

original clusters as ROIs is also a reasonable method. One potential

limitation of using the cluster derived from Neurosynth is that the

cluster size may vary when different thresholds are applied.

In conclusion, we identified several potential NIBS targets and
their corresponding stimulation locations on the scalp for the

treatment of ASD. As ASD displays significant clinical

heterogeneity with respect to stimulation sites, a clear link

between neurobiological targets and clinical outcome

measurements may be a future step toward optimizing NIBS

for ASD treatment. Although further testing of these identified
targets is needed, these results may help clinicians optimize the

application of NIBS therapy in individuals with ASD.
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