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Abstract In the present paper the linear theory of viscoelasticity for Kelvin–Voigt materi-
als with voids is considered and some basic results of the classical theory of elasticity are
generalized. Indeed, the basic properties of plane harmonic waves are established. The ex-
plicit expression of fundamental solution of the system of equations of steady vibrations
is constructed by means of elementary functions. The Green’s formulas in the considered
theory are obtained. The uniqueness theorems of the internal and external basic boundary
value problems (BVPs) are proved. The representation of Galerkin type solution is obtained
and the completeness of this solution is established. The formulas of integral representa-
tions of Somigliana type of regular vector and regular (classical) solution are obtained. The
Sommerfeld-Kupradze type radiation conditions are established. The basic properties of
elastopotentials and singular integral operators are given. Finally, the existence theorems for
classical solutions of the internal and external basic BVPs of steady vibrations are proved by
using of the potential method (boundary integral method) and the theory of singular integral
equations.

Keywords Viscoelasticity · Kelvin–Voigt material with voids · Steady vibrations ·
Potential method · Uniqueness and existence theorems
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1 Introduction

The theories of viscoelasticity initiated by Maxwell, Meyer, Boltzmann, and studied by
Voigt, Kelvin, Zaremba, Volterra and others. These theories, which include the Maxwell
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model, the Kelvin–Voigt model, and the standard linear solid model, were used to predict
a material’s response under different loading conditions (see, Eringen [1], Truesdell and
Noll [2], Christensen [3], Amendola et al. [4]).

Viscoelastic materials play an important role in many branches of civil engineering,
geotechnical engineering, technology and, in recent years, biomechanics. Viscoelastic ma-
terials, such as amorphous polymers, semicrystalline polymers, and biopolymers, can be
modeled in order to determine their stress or strain interactions as well as their temporal
dependencies. Study of bone viscoelasticity is best placed in the context of strain levels and
frequency components associated with normal activities and with applications of diagnostic
tools (see, Lakes [5]). The investigations of the solutions of viscoelastic wave equations and
the attenuation of seismic wave in the viscoelastic media are very important for geophysical
prospecting technology. In addition, the behavior of viscoelastic porous materials can be
understood and predicted in great detail using nano-mechanics. The applications of these
materials are many. One of the applications may be to the NASA space program, such as the
prediction of soils behavior in the Moon and Mars (for details, see, Voyiadjis and Song [6],
Polarz and Smarsly [7], Chen et al. [8] and references therein).

A great attention has been paid to the theories taking into account the viscoelastic effects
(see, Amendola et al. [4], Fabrizio and Morro [9], Di Paola and Zingales [10, 11]). The
existence and the asymptotic stability of solutions in the linear theory of viscoelasticity for
solids is investigated by Fabrizio and Lazzari [12], and Appleby et al. [13]. The main results
on the free energy in the linear viscoelasticity are obtained in the series of papers [14–21].
A general way to provide existence of solutions of the initial and boundary value problems
for linear viscoelastic bodies is provided without the need of appealing to transient solutions
is presented by Fabrizio and Morro [9], Fabrizio and Lazzari [12], and Deseri et al. [14].

Material having small distributed voids may be called porous material or material with
voids. The intended application of the theory of elastic material with voids may be found in
geological materials like rocks and soils, in biological and manufactured porous materials
for which the theory of elasticity is inadequate. But seismology represents only one of the
many fields where the theories of elasticity and viscoelasticity of materials with voids is
applied. Medicine, various branches of biology, the oil exploration industry and nanotech-
nology are other important fields of application.

Various theories of viscoelastic materials with voids of integral type have been proposed
by Cowin [22], Ciarletta and Scalia [23], De Cicco and Nappa [24], and Martínez and Quin-
tanilla [25]. In the last decade there are been interest in formulation of the mechanical the-
ories of viscoelastic materials with voids of differential type. In this connection, Ieşan [26]
has developed a nonlinear theory for a viscoelastic composite as a mixture of a porous
elastic solid and a Kelvin–Voigt material. A linear variant of this theory was developed by
Quintanilla [27], and existence and exponential decay of solutions are proved. Ieşan and
Nappa [28] introduced a nonlinear theory of heat conducting mixtures where the individual
components are modelled as Kelvin–Voigt viscoelastic materials. Some exponential decay
estimates of solutions of equations of steady vibrations in the theory of viscoelastricity for
Kelvin–Voigt materials are obtained by Chiriţă et al. [29]. A theory of thermoviscoelastic
composites modelled as interacting Cosserat continua is presented by Ieşan [30].

In [31], Ieşan extends theory of elastic materials with voids (see, Nunziato and Cowin
[32, 33]), the basic equations of the nonlinear theory of thermoviscoelasticity for “virgin”,
namely in the absence pre-existing stresses (see, Fabrizio and Morro [9], Deseri et al. [13]),
Kelvin–Voigt materials with voids are established, the linearized version of this theory is
derived, a uniqueness result and the continuous dependence of solution upon the initial data
and supply terms are proved. Recently, the theory of thermoviscoelasticity for Kelvin–Voigt
microstretch composite materials is presented by Passarella et al. [34].
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For a review of the literature on elastic materials with voids the reader is referred to
[35–48] and the references therein. A new approach may be found in Amendola et al. [4],
Fabrizio and Morro [9], although this is not limited just to voids. An account of the historical
developments of the theory of porous media as well as references to various contributions
may be found in the books by de Boer [49] and Ieşan [50].

In this paper the linear theory of viscoelasticity for Kelvin–Voigt materials with voids
(see, Ieşan [31]) is considered and some basic results of the classical theory of elasticity are
generalized. Indeed, the basic BVPs of steady vibrations are investigated using the potential
method and the theory of singular integral equations.

The investigation of BVPs of mathematical physics by the classical potential method has
a hundred year history. The application of this method to the 3D basic BVPs of the theory
of elasticity reduces these problems to 2D singular integral equations (see, Kupradze et al.
[51]). Owing to the works of Mikhlin [52], Kupradze [53], and Burchuladze and Gegelia
[54], the theory of multidimensional singular integral equations has presently been worked
out with sufficient completeness. An extensive review of works on the potential method can
be found in Gegelia and Jentsch [55].

This work is articulated as follows. Section 2 is devoted to basic equations of steady vi-
brations of the linear theory of viscoelasticity for isotropic and homogeneous Kelvin–Voigt
materials with voids with experienced no past strain histories prior of the instant of obser-
vation of the evolution of the body (see Ieşan [31]). The basis for generalizing the present
analysis to pre-existing stresses may be found in [20, 21], where the state of the material is
characterized for viscoelastic media. In Sect. 3 the basic properties of plane harmonic waves
are established. In Sect. 4 the fundamental solution of the system of equations of steady
vibrations is constructed by means of elementary functions, and its some basic properties
are established. In Sect. 5 the Sommerfeld-Kupradze type radiation conditions are given and
basic BVPs are formulated. In Sect. 6 the uniqueness theorems of these BVPs are proved. In
Sect. 7 the Green’s formulas in the considered theory are obtained, the formulas of integral
representations of Somigliana type of regular vector and regular (classical) solution are pre-
sented, the representation of Galerkin type solution is obtained and the completeness of this
solution is established. In Sect. 8 the basic properties of the elastopotentials and the singular
integral operators are given. Finally, in Sect. 9 the existence theorems of the BVPs of steady
vibrations are proved.

On the basis of the potential method the uniqueness and existence theorems in the classi-
cal theories of viscoelasticity and thermoviscoelasticity for Kelvin–Voigt materials without
voids are proved by Svanadze [56].

2 Basic Equations

We consider an isotropic homogeneous viscoelastic Kelvin–Voigt material with voids that
occupies the region Ω of the Euclidean three-dimensional space R3. Let x = (x1, x2, x3) be
a point of R3, Dx = ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
), and let t denote the time variable.

In the absence of the body force and the extrinsic equilibrated body force, the system of
homogeneous equations of motion in the linear theory of viscoelasticity for Kelvin–Voigt
materials with voids has the following form (see, Ieşan [31])

μ�u′ + (λ + μ)grad div u′ + b gradϕ′ − ρü′

+ μ∗�u̇′ + (
λ∗ + μ∗)grad div u̇′ + b∗ grad ϕ̇′ = 0, (2.1)

(α� − ξ)ϕ′ − b div u′ − ρ0ϕ̈
′ + (

α∗� − ξ ∗)ϕ̇′ − ν∗ div u̇′ = 0,
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where u′ = (u′
1, u

′
2, u

′
3) is the displacement vector, ϕ′ is the volume fraction field, ρ is the

reference mass density (ρ > 0), ρ0 = ρκ, κ is the equilibrated inertia (κ > 0); λ,μ,b,α, ξ ,
λ∗,μ∗, b∗, α∗, ν∗, ξ ∗ are the constitutive coefficients, and a superposed dot denotes differ-
entiation with respect to t : u̇′ = ∂u′

∂t
, ü′ = ∂2u′

∂t2 .
The system (2.1) we can rewritten as

μ′
0�u′ + (λ0 + μ′

0)grad div u′ + b0 gradϕ′ − ρü′ = 0,

(α0� − ξ0)ϕ
′ − ν0 div u′ − ρ0ϕ̈

′ = 0,
(2.2)

where

λ0 = λ + λ∗ ∂

∂t
, μ′

0 = μ + μ∗ ∂

∂t
, b0 = b + b∗ ∂

∂t
,

α0 = α + α∗ ∂

∂t
, ν0 = b + ν∗ ∂

∂t
, ξ0 = ξ + ξ ∗ ∂

∂t
.

(2.3)

If the displacement vector u′ and the volume fraction function ϕ′ are postulated to have a
harmonic time variation, that is,

u′(x, t) = Re
[
u(x)e−iωt

]
, ϕ′(x, t) = Re

[
ϕ(x)e−iωt

]
,

then from system of equations of motion (2.2) we obtain the following system of homoge-
neous equations of steady vibrations

μ1�u + (λ1 + μ1)grad div u + b1 gradϕ + ρω2u = 0,

(α1� + ξ2)ϕ − ν1 div u = 0,
(2.4)

where ω is the oscillation frequency (ω > 0),

λ1 = λ − iωλ∗, μ1 = μ − iωμ∗, b1 = b − iωb∗, α1 = α − iωα∗,

ν1 = b − iων∗, ξ1 = ξ − iωξ ∗, ξ2 = ρ0ω
2 − ξ1.

(2.5)

Obviously, (2.4) is the system of partial differential equations with complex coefficients
in with are 14 real parameters: λ,λ∗,μ,μ∗, b, b∗, α,α∗, ξ, ξ ∗, ν∗,ω,ρ and ρ0.

We introduce the matrix differential operator

A(Dx) = (
Apq(Dx)

)
4×4

, Alj (Dx) = (
μ1� + ρω2

)
δlj + (λ1 + μ1)

∂2

∂xl∂xj

,

Al4(Dx) = b1
∂

∂xl

, A4l (Dx) = −ν1
∂

∂xl

, A44(Dx) = α1� + ξ2,

where δlj is the Kronecker delta, and l, j = 1,2,3. The system (2.4) can be written as

A(Dx)U(x) = 0, (2.6)

where U = (u, ϕ) and x ∈ Ω .
On the other hand the system of nonhomogeneous equations of steady vibrations in the

linear theory of viscoelastic materials with voids can be written as follows

μ1�u + (λ1 + μ1)grad div u + b1 gradϕ + ρω2u = −ρF′,

(α1� + ξ2)ϕ − ν1 div u = −ρs,
(2.7)



Potential Method in the Linear Theory of Viscoelastic Materials 105

where F′ and s are is the body force and the extrinsic equilibrated body force per unit mass,
respectively. The system (2.7) can be written as

A(Dx)U(x) = F, (2.8)

where F = (−ρF′,−ρs).
Throughout this article, we suggest that ξ2 �= 0 (the case ξ2 = 0 is to simple to be consid-

ered).

3 Plane Harmonic Waves

We introduce the notation

μ0 = λ + 2μ, μ∗
0 = λ∗ + 2μ∗, μ2 = μ0 − iωμ∗

0, ξ0 = ρ0ω
2 − ξ,

d∗ = 4μ∗
0ξ

∗ − (
b∗ + ν∗)2

, d = μ∗
0ξ

∗ − b∗ν∗ = 1

4

[
d∗ + (

b∗ − ξ ∗)2]
,

a1 = b2 + ω2d, a2 = b
(
b∗ + ν∗), a3 = ω2α∗μ∗

0, a4 = α∗a1 + ξ ∗a3.

(3.1)

In this section, it is assumed that

μ∗ > 0, μ∗
0 > 0, α∗ > 0, 4μ∗

0ξ
∗ >

(
b∗ + ν∗)2

. (3.2)

On the basis of (3.2) from (3.1) we get

μ∗
0 > 0, d∗ > 0, d > 0, a1 > 0, a3 > 0, a4 > 0. (3.3)

Suppose that plane harmonic waves corresponding to the wave number τ and angular fre-
quency ω are propagated in the x1-direction through the viscoelastic Kelvin–Voigt material
with voids. Then

u′(x, t) = B exp
{
i(τx1 − ωt)

}
, ϕ′(x, t) = B0 exp

{
i(τx1 − ωt)

}
, (3.4)

where B = (B1,B2,B3); B0,B1,B2 and B3 are constants.
Keeping in mind (2.3) and (3.4) from (2.2) it follows that

{[
μ1 + (λ1 + μ1)δ1l

]
τ 2 − ρω2

}
Bl − iτb1δ1lB0 = 0,

iτν1B1 + (
α1k

2 − ξ2

)
B0 = 0, l = 1,2,3.

(3.5)

From (3.5) for B0 and B1 we have

(
μ2τ

2 − ρω2
)
B1 − iτb1B0 = 0,

iτν1B1 + (
α1τ

2 − ξ2
)
B0 = 0.

(3.6)

For the system (3.6) to have a non-trivial solution for B0 and B1 we must set the determinant
of their coefficients equal to zero, thus

α1μ2τ
4 − (

ξ2μ2 + ρω2α1 + b1ν1
)
τ 2 + ρω2ξ2 = 0. (3.7)
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In the same way from (3.5) for B2 and B3 we have

(
μ1τ

2 − ρω2
)
Bl = 0, l = 2,3, (3.8)

and if τ is the solution of equation

μ1τ
2 − ρω2 = 0, (3.9)

then (3.8) have non-trivial solution.
The relations (3.7) and (3.9) will be called the dispersion equations of longitudinal and

transverse plane waves in the linear theory of viscoelasticity for Kelvin–Voigt materials
with voids, respectively. It is obvious that if τ > 0, then the corresponding plane wave has
the constant amplitude, and if τ is complex with Im τ > 0, then the plane wave is attenuated
as x1 → +∞.

Let τ 2
1 , τ 2

2 and τ 2
3 be roots of (3.7) and (3.9) with respect to τ 2, respectively. Obviously,

τ 2
3 = ρω2

μ1
.

One may easily verify that τ 2
3 is a complex number. Obviously, τ1, τ2 and τ3 are the wave

numbers of longitudinal and transverse plane harmonic waves, respectively.
We denote the longitudinal plane wave with wave number τj (j = 1,2) by Pj

(P -primary), and the transverse horizontal and vertical plane waves with wave number
τ3 by SH and SV , respectively (S-secondary, see Achenbach [57]).

Lemma 3.1 If the conditions (3.2) are satisfied, then (3.7) with respect to τ 2 has not a
positive root.

Proof Let η be a real root of the equation

α1μ2η
2 − (

ξ2μ2 + ρω2α1 + b1ν1

)
η + ρω2ξ2 = 0. (3.10)

Separating real and imaginary parts in (3.10), on the basis of (2.5), (3.1) and equalities

α1μ2 = αμ0 − a3 − iω
(
αμ∗

0 + α∗μ0

)
, ρω2ξ2 = ξ0ρω2 + iωξ ∗ρω2,

ξ2μ2 + ρω2α1 + b1ν1 = μ0ξ0 + αρω2 + a1 − iω
(
μ∗

0ξ0 − μ0ξ
∗ + α∗ρω2 + a2

)

we obtain the following system

(αμ0 − a3)η
2 − (

μ0ξ0 + αρω2 + a1

)
η + ξ0ρω2 = 0,

(
αμ∗

0 + α∗μ0
)
η2 − (

μ∗
0ξ0 − μ0ξ

∗ + α∗ρω2 + a2
)
η − ξ ∗ρω2 = 0.

(3.11)

As one may easily verify, the system (3.11) may be written in the form

η1η2 = η(a3η + a1), (3.12)
(
α∗η + ξ ∗)η1 = η

(
a2 − μ∗

0η2
)
, (3.13)
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where η1 = μ0η − ρω2, η2 = αη − ξ0. Obviously, by (3.12) and (3.13) we have ηη2 �= 0.
Taking into account (3.12) from (3.13) it follows that

(
α∗η + ξ ∗)(a3η + a1) = η2

(
a2 − μ∗

0η2

)
,

and hence,

α∗a3η(η − η0) + μ∗
0η

2
2 − a2η2 + a1ξ

∗ = 0, (3.14)

where

η0 = −ξ ∗a3 + α∗a1

α∗a3
< 0.

By virtue of conditions (3.2) and (3.3) we have

α∗a3 > 0, a2
2 − 4a1μ

∗
0ξ

∗ = −[
b2d∗ + 4μ∗

0dω2
]
< 0.

Therefore from (3.14) we obtain η(η − η0) < 0. Finally, we may write η ∈]η0;0[ and
Lemma 3.1 is thereby proved. �

We assume that Im τj > 0 (j = 1,2,3). Lemma 3.1 leads to the following result.

Theorem 3.1 If the conditions (3.2) are satisfied, then through a Kelvin–Voigt material with
voids 4 plane harmonic plane waves propagate: two longitudinal plane waves P1 and P2 with
wave numbers λ1, λ2 and two transverse plane waves SH and SV with wave number λ3; these
are attenuated waves as x1 → +∞.

Remark 3.1 It is obvious that if plane harmonic waves are propagated in an arbitrary direc-
tion through a Kelvin–Voigt material with voids, then we obtain the same result as given in
Theorem 3.1.

4 Fundamental Solution

In what follows we assume that τ 2
1 �= τ 2

2 �= τ 2
3 �= τ 2

1 . In the sequel we use the matrix differ-
ential operators:

(1)
L(Dx) = (

Lpq(Dx)
)

4×4
,

Llj (Dx) = 1

μ1

(
� + τ 2

1

)(
� + τ 2

2

)
δlj

− 1

α1μ1μ2

[
(λ1 + μ1)(α1� + ξ2) + b1ν1

] ∂2

∂xl∂xj

,

Ll4(Dx) = − b1

α1μ1

∂

∂xl

, L4l (Dx) = ν1

α1μ1μ2

(
μ1� + ρω2

) ∂

∂xl

,

L44(Dx) = 1

α1μ1

(
μ2� + ρω2

)
, l, j = 1,2,3.

(4.1)
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(2)
�(�) = (

Lpq(�)
)

4×4
, Λll(�) = (

� + τ 2
1

)(
� + τ 2

2

)(
� + τ 2

3

)
, l = 1,2,3,

Λ44(�) = (
� + τ 2

1

)(
� + τ 2

2

)
, Λpq(�) = 0, p, q = 1,2,3,4, p �= q.

(4.2)

We have the following result.

Lemma 4.1 If

α1μ1μ2 �= 0, (4.3)

then

A(Dx)L(Dx) = �(�). (4.4)

Lemma 4.1 is proved by direct calculation.
We introduce the notations

Y(x) = (
Ypq(x)

)
4×4

, Yll(x) =
3∑

j=1

c1j γj (x), l = 1,2,3,

Y44(x) =
2∑

j=1

c2j γj (x), Ypq(x) = 0, p, q = 1,2,3,4, p �= q,

where

γj (x) = − eiτj |x|

4π |x| , c1j =
3∏

l=1;l �=j

(
τ 2
l − τ 2

j

)−1
, c21 = −c22 = (

τ 2
2 − τ 2

1

)−1
, j = 1,2,3.

Obviously, Y is the fundamental matrix of operator �, that is,

�(�)Y(x) = δ(x)J, (4.5)

where δ(x) is the Dirac delta, J = (δpq)4×4 is the unit matrix, and x ∈ R3.
We define the matrix � = (Γpq)4×4 by

�(x) = L(Dx)Y(x). (4.6)

In view of (4.4)–(4.6) we get

A(Dx)�(x) = A(Dx)L(Dx)Y(x) = �(�)Y(x) = δ(x)J.

Hence, �(x) is the fundamental matrix of differential operator A(Dx). We have thereby
proved the following theorem.

Theorem 4.1 If condition (4.3) is satisfied, then the matrix �(x) defined by (4.6) is the
fundamental solution of system (2.4).

We are now in a position to establish basic properties of matrix �(x). Theorem 4.1 leads
to the following results.
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Corollary 4.1 If condition (4.3) is satisfied, then each column of the matrix �(x) is the
solution of the homogeneous equation (2.6) at every point x ∈ R3 except the origin.

Corollary 4.2 If condition (4.3) is satisfied, then the fundamental solution of the system

μ1�u(x) + (λ1 + μ1)grad div u(x) = 0, α1�ϕ(x) = 0,

is the matrix � = (Ψpq)4×4, where

Ψlj (x) =
(

1

μ1
�δlj − λ1 + μ1

μ1μ2

∂2

∂xl∂xj

)
γ4(x), Ψlj (x) = 1

α1
γ5(x),

Ψl4(x) = Ψ4j (x) = 0, γ4(x) = − |x|
8π

, γ5(x) = − 1

4π |x| , l, j = 1,2,3.

Clearly (see, Kupradze et al. [51]), the relations

Ψlj (x) = O
(|x|−1

)
, Ψ44(x) = O

(|x|−1
)
,

Ψl4(x) = Ψl4(x) = 0, l, j = 1,2,3

hold in a neighborhood of the origin.
On the basis of Theorem 4.1 and Corollary 4.2 we obtain the following result.

Theorem 4.2 If condition (4.3) is satisfied, then the relations

Ψpq(x) = O
(|x|−1

)
, Γpq(x) − Ψpq(x) = const + O

(|x|),
∂m

∂x
m1
1 ∂x

m2
2 ∂x

m3
3

[
Γpq(x) − Ψpq(x)

] = O
(|x|1−m

)

hold in a neighborhood of the origin, where m = m1 + m2 + m3,m ≥ 1,ml ≥ 0, l = 1,2,3
and p,q = 1,2,3,4.

Thus, �(x) is the singular part of the fundamental matrix �(x) in the neighborhood of
the origin.

5 Radiation Conditions. Basic Boundary Value Problems

Let S be the smooth closed surface surrounding the finite domain Ω+ in R3, Ω̄+ = Ω+ ∪S,

Ω− = R3\Ω̄+, Ω̄− = Ω− ∪ S. The scalar product of two vectors w = (w1,w2, . . . ,wl) and
v = (v1, v2, . . . , vl) is denoted by w · v = ∑l

j=1 wj v̄j , where v̄j is the complex conjugate
of vj .

Definition 5.1 A vector function U = (u, ϕ) = (U1,U2,U3,U4) is called regular in Ω−

(or Ω+) if

(1)
Ul ∈ C2

(
Ω−) ∩ C1

(
Ω̄−) (

or Ul ∈ C2
(
Ω+) ∩ C1

(
Ω̄+))

,
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(2)

U =
3∑

j=1

U(j), U(j) = (
U

(j)

1 ,U
(j)

2 , . . . ,U
(j)

4

)
,

U
(j)

l ∈ C2
(
Ω−) ∩ C1

(
Ω̄−)

, U
(3)

4 = 0,

(3) (
� + τ 2

j

)
U

(j)

l (x) = 0, (5.1)

and
(

∂

∂|x| − iτj

)
U

(j)

l (x) = eiτj |x|o
(|x|−1

)
for |x| � 1, (5.2)

where j = 1,2,3, l = 1,2,3,4.

Equalities in (5.2) are the Sommerfeld-Kupradze type radiation conditions in the linear
theory of viscoelasticity for materials with voids (see, Sommerfeld [58], Kupradze [59]).
We note that (5.1) and (5.2) imply (for details see, Vekua [60])

U
(j)

l (x) = eiλj |x|O
(|x|−1

)
for |x| � 1, j = 1,2,3, l = 1,2,3,4. (5.3)

It is easy to see that each column of the matrix �(x) is a regular vector in the domains
Ω+ and Ω−. Indeed, each element of the matrix �(x) satisfies the radiation conditions (5.2)
and (5.3).

In the sequel we use the matrix differential operators

(1)
B(Dx) = (

Blj (Dx)
)

3×3
, Blj (Dx) = Alj (Dx),

(2)
T(Dx,n) = (

Tlj (Dx,n)
)

3×3
,

Tlj (Dx,n) = μ1δlj

∂

∂n
+ μ1nj

∂

∂xl

+ λ1nl

∂

∂xj

,

(3)
P(Dx,n) = (

Ppq(Dx,n)
)

4×4
, Plj (Dx,n) = Tlj (Dx,n),

Pl4(Dx,n) = b1nl, P4j (Dx,n) = 0, P44(Dx,n) = α1
∂

∂n
,

where n = (n1, n2, n3) is the unit vector, ∂
∂n is the derivative along the vector n and

l, j = 1,2,3.

The basic internal and external BVPs of steady vibration in the theory of viscoelastic
materials with voids are formulated as follows.

Find a regular (classical) solution to system (2.8) for x ∈ Ω+ satisfying the boundary
condition

lim
Ω+�x→z∈S

U(x) ≡ {
U(z)

}+ = f(z) (5.4)

in the Problem (I )+
F,f,

{
P
(
Dz,n(z)

)
U(z)

}+ = f(z) (5.5)

in the Problem (II)+
F,f.
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Find a regular (classical) solution to system (2.8) for x ∈ Ω− satisfying the boundary
condition

lim
Ω−�x→z∈S

U(x) ≡ {
U(z)

}− = f(z) (5.6)

in the Problem (I )−
F,f, and

{
P
(
Dz,n(z)

)
U(z)

}− = f(z) (5.7)

in the Problem (II)−
F,f. Here F and f are the known four-component vector functions, supp F

is a finite domain in Ω−, and n(z) is the external (with respect to Ω+) unit normal vector to
S at z.

6 Uniqueness Theorems

In this section we prove uniqueness of regular solutions of BVPs (K)+
F,f and (K)−

F,f, where
K = I, II.

Theorem 6.1 If conditions

μ∗ > 0, 3λ∗ + 2μ∗ > 0, α∗ > 0,
(
3λ∗ + 2μ∗)ξ ∗ >

3

4

(
b∗ + ν∗)2

(6.1)

are satisfied, then the internal BVP (K)+
F,f admits at most one regular solution, where K =

I, II.

Proof Suppose that there are two regular solutions of problem (K)+
F,f. Then their difference

U corresponds to zero data (F = f = 0), i.e., U is a regular solution of problem (K)+
0,0.

On account of (2.4) from Green’s formulas (see, Kupradze et al. [51])

∫

Ω+

[
B(Dx)u · u + W(1)(u, λ1,μ1)

]
dx =

∫

S

Tu · udzS,

∫

Ω+

[
�ϕϕ̄ + |gradϕ|2]dx =

∫

S

∂ϕ

∂n
ϕ̄dzS

and identity

∫

Ω+
(gradϕ · u + ϕ div ū)dx =

∫

S

ϕn · udzS

it follows that
∫

Ω+

[
W(1)(u, λ1,μ1) − ρω2|u|2 + b1ϕ div ū

]
dx =

∫

S

(Tu + b1ϕn) · udzS,

∫

Ω+

[
α1|gradϕ|2 − ξ2|ϕ|2 + ν1 div uϕ̄

]
dx = α1

∫

S

∂ϕ

∂n
ϕ̄dzS,

(6.2)
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where

W(1)(u, λ1,μ1) = 1

3
(3λ1 + 2μ1)|div u|2 + μ1

[
1

2

3∑

l,j=1;l �=j

∣
∣∣
∣
∂uj

∂xl

+ ∂ul

∂xj

∣
∣∣
∣

2

+ 1

3

3∑

l,j=1

∣∣
∣∣
∂ul

∂xl

− ∂uj

∂xj

∣∣
∣∣

2
]

.

Clearly, W(1)(u, λ1,μ1) = W(1)(u, λ,μ) − iωW(1)(u, λ∗,μ∗). In view of (6.2) we get
∫

Ω+

[
W(1)(u, λ1,μ1) − ρω2|u|2 + α1|gradϕ|2 − ξ2|ϕ|2 + (b1ϕ div ū + ν1 div uϕ̄)

]
dx

=
∫

S

[
(Tu + b1ϕn) · u + α1

∂ϕ

∂n
ϕ̄

]
dzS. (6.3)

On the basis of homogeneous boundary condition and the identity

Im(b1ϕ div ū + ν1 div uϕ̄) = −ω
(
b∗ + ν∗)Re(ϕ div ū)

we obtain from (6.3)
∫

Ω+

[
W(1)

(
u, λ∗,μ∗) − (

b∗ + ν∗)Re(ϕ div ū) + ξ ∗|ϕ|2 + α∗|gradϕ|2]dx = 0. (6.4)

Obviously, with the help of (6.1) it follows that

1

3

(
3λ∗ + 2μ∗)|div u|2 − (

b∗ + ν∗)Re(ϕ div ū) + ξ ∗|ϕ|2 ≥ 0

and from (6.4) we have

W(1)
(
u, λ∗,μ∗) − (

b∗ + ν∗)Re(ϕ div ū) + ξ ∗|ϕ|2 + α∗|gradϕ|2 = 0.

It is easy to verify that the last equation leads to the following relations

ϕ(x) = 0, div u(x) = 0,
∂uj

∂xl

+ ∂ul

∂xj

= 0,
∂ul

∂xl

− ∂uj

∂xj

= 0, l, j = 1,2,3

(6.5)

for x ∈ Ω+. In view of (6.5) we get W(1)(u, λ,μ) = 0 and W(1)(u, λ∗,μ∗) = 0. Hence,
W(1)(u, λ1,μ1) = 0. Finally, from (6.3) we obtain u(x) = 0. Thus, U(x) = 0 for x ∈ Ω+. �

Lemma 6.1 If U = (u, ϕ) ∈ C2(Ω) is a solution of the system (2.4) for x ∈ Ω , then

u(x) =
3∑

j=1

u(j)(x), ϕ(x) =
2∑

l=1

ϕ(l)(x), (6.6)

where Ω is an arbitrary domain in R3, u(j) and ϕ(l) satisfy the following equations

(
� + τ 2

j

)
u(j)(x) = 0,

(
� + τ 2

l

)
ϕ(l)(x) = 0, l = 1,2, j = 1,2,3. (6.7)
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Proof Applying the operator div to the first equation of (2.4) we get
(
μ2� + ρω2

)
div u + b1�ϕ = 0,

(α1� + ξ2)ϕ − ν1 div u = 0.
(6.8)

Clearly, from system (6.8) we have
(
� + τ 2

1

)(
� + τ 2

2

)
div u = 0,

(
� + τ 2

1

)(
� + τ 2

2

)
ϕ = 0. (6.9)

Now, applying the operator (�+τ 2
1 )(�+τ 2

2 ) to the first equation of (2.4) and using (6.9)
we obtain

(
� + τ 2

1

)(
� + τ 2

2

)(
� + τ 2

3

)
u = 0. (6.10)

We introduce the notation

u(j) =
3∏

p=1;p �=j

(
τ 2
p − τ 2

j

)−1(
� + τ 2

p

)
u, j = 1,2,3,

ϕ(l) =
2∏

p=1;p �=l

(
τ 2
p − τ 2

l

)−1(
� + τ 2

p

)
ϕ, l = 1,2.

(6.11)

By virtue of (6.9) and (6.10) the relations (6.6) and (6.7) can be easily obtained from
(6.11). �

Now let us establish the uniqueness of a regular solution of external BVPs.

Theorem 6.2 If conditions (6.1) are satisfied, then the external BVP (K)−
F,f admits at most

one regular solution, where K = I, II.

Proof Suppose that there are two regular solutions of problem (K)−
F,f. Then their difference

U corresponds to zero data (F = f = 0), i.e., U is a regular solution of the problem (K)−
0,0.

Let Ωr be a sphere of sufficiently large radius r so that Ω̄+ ⊂ Ωr . By virtue of homoge-
neous boundary condition (f = 0), the formula (6.3) for the domain Ω−

r = Ω− ∩ Ωr can be
rewritten as

∫

Ω−
r

[
W(1)(u, λ1,μ1) − ρω2|u|2 + α1|gradϕ|2 − ξ2|ϕ|2 + (b1ϕ div ū + ν1 div uϕ̄)

]
dx

=
∫

Sr

[
(Tu + b1ϕn) · u + α1

∂ϕ

∂n
ϕ̄

]
dzS, (6.12)

where Sr is the boundary of the sphere Ωr . From (6.12) we have

N = lim
r→∞

∫

Sr

[
(Tu + b1ϕn) · u + α1

∂ϕ

∂n
ϕ̄

]
dzS, (6.13)

where

N =
∫

Ω−

[
W(1)

(
u, λ∗,μ∗) − (

b∗ + ν∗)Re(ϕ div ū) + ξ ∗|ϕ|2 + α∗|gradϕ|2]dx. (6.14)

Obviously, by condition (6.1) it follows from (6.14) that N ≥ 0.
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On the other hand, keeping in mind the radiation conditions (5.3) from (6.6) we obtain

U(x) = e−τ0|x|O
(|x|−1

)
for |x| � 1, (6.15)

where τ0 = min{Im τ1, Im τ2, Im τ3} > 0. On account of conditions (5.2), (5.3) and (6.15)
from (6.13) it follows that N = 0. Hence, from (6.14) we get

∫

Ω−

[
W(1)

(
u, λ∗,μ∗) − (

b∗ + ν∗)Re(ϕ div ū) + ξ ∗|ϕ|2 + α∗|gradϕ|2]dx = 0. (6.16)

Quite similarly as in Theorem 6.1 on the basis of (6.1) from (6.16) we obtain U(x) = 0
for x ∈ Ω−. �

7 Green’s Formulas. Representations of General Solutions

In this section, first, we establish the Green’s formulas in the linear theory of viscoelastic
materials with voids, then we obtain the integral representation of regular vector (represen-
tation of Somigliana-type) and the Galerkin-type solution of the system (2.8), and finally, we
establish the representation of the general solution of the system of homogeneous equations
(2.4) by solutions of Helmholtz equations (metaharmonic functions).

In the sequel we use the matrix differential operators Ã(Dx) and P̃(Dx,n), where

Ã(Dx) = A�(−Dx), P̃(Dx,n) = (
P̃pq(Dx,n)

)
4×4

, P̃pj (Dx,n) = Ppj (Dx,n),

P̃j4(Dx,n) = ν1nj , P̃44(Dx,n) = P44(Dx,n), j = 1,2,3, p = 1,2,3,4,

and the superscript � denotes transposition.
Obviously, the fundamental matrix �̃(x) of operator Ã(Dx) satisfies the following condi-

tion

�̃(x) = ��(−x). (7.1)

Let Ũj be the j -th column of the matrix Ũ = (Ũlj )4×4, j = 1,2,3,4. As in classical
theory of thermoelasticity (see, for details Kupradze et al. [49]) we can prove the following
result.

Theorem 7.1 If U and Ũj (j = 1,2,3,4) are regular vectors in Ω+, then
∫

Ω+

{[
Ã(Dy)Ũ(y)

]�
U(y) − [

Ũ(y)
]�

A(Dy)U(y)
}
dy

=
∫

S

{[
P̃(Dz,n)Ũ(z)

]�
U(z) − [

Ũ(z)
]�

P(Dz,n)Ũ(z)
}
dzS. (7.2)

On the basis of Theorem 7.1 and radiation conditions (5.2) we obtain the following result.

Theorem 7.2 If U and Ũj (j = 1,2,3,4) are regular vectors in Ω−, then
∫

Ω−

{[
Ã(Dy)Ũ(y)

]�
U(y) − [

Ũ(y)
]�

A(Dy)U(y)
}
dy

= −
∫

S

{[
P̃(Dz,n)Ũ(z)

]�
U(z) − [

Ũ(z)
]�

P(Dz,n)Ũ(z)
}
dzS. (7.3)
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The identities (7.2) and (7.3) are the Green’s formulas in the linear theory of viscoelastic
materials with voids for domains Ω+ and Ω−, respectively.

Keeping in mind (7.1) from (7.2) and (7.3) we obtain the formulas of integral represen-
tation of regular vector (representation of Somigliana-type) for the domains Ω+ and Ω−.

Theorem 7.3 If U is a regular vector in Ω+, then

U(x) =
∫

S

{[
P̃(Dz,n)��(x − z)

]�
U(z) − �(x − z)P(Dz,n)U(z)

}
dzS

+
∫

Ω+
�(x − y)A(Dy)U(y)dy. (7.4)

Theorem 7.4 If U is a regular vector in Ω−, then

U(x) = −
∫

S

{[
P̃(Dz,n)��(x − z)

]�
U(z) − �(x − z)P(Dz,n)U(z)

}
dzS

+
∫

Ω−
�(x − y)A(Dy)U(y)dy. (7.5)

The next two theorems provide a Galerkin-type solution to system (2.8).

Theorem 7.5 Let

u(x) = 1

μ1

(
� + τ 2

1

)(
� + τ 2

2

)
w(x) − 1

α1μ1μ2

[
(λ1 + μ1)(α1� + ξ2) + b1ν1

]
grad div w(x)

− b1

α1μ1
gradw0(x), (7.6)

ϕ(x) = ν1

α1μ1μ2

(
μ1� + ρω2

)
div w(x) + 1

α1μ1

(
μ2� + ρω2

)
w0(x),

where w = (w1,w2,w3) ∈ C6(Ω),w0 ∈ C4(Ω), and

(
� + τ 2

1

)(
� + τ 2

2

)(
� + τ 2

3

)
w(x) = −ρF′(x),

(
� + τ 2

1

)(
� + τ 2

2

)
w0(x) = −ρs(x).

(7.7)

Then, U = (u, ϕ) is a solution of system (2.8).

Proof By virtue of (4.1) and (4.2), (7.7) and (7.7) we can rewrite in the form

U(x) = L(Dx)W(x) (7.8)

and

�(�)W(x) = F(x), (7.9)

respectively, where W = (w,w0). Clearly, by (4.4), (7.8) and (7.9) the vector U is a solution
of the system (2.8). �
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Theorem 7.6 If U = (u, ϕ) is a solution of system (2.8) in Ω , then U is represented by (7.8),
where W = (w,w0) is a solution of (7.9) and Ω is a finite domain in R3.

Proof Let U be a solution of system (2.8). Obviously, if � ′(x) is the fundamental matrix of
the operator L(Dx), then the vector function

W(x) =
∫

Ω

�(x − y)U(y)dy

is a solution of (7.8).
On the other hand, by virtue of (2.8), (4.4) and (7.8) we have

F(x) = A(Dx)U(x) = A(Dx)L(Dx)W(x) = �(�)W(x).

Hence, W is a solution of (7.9). �

Remark 7.1 Quite similarly as in Theorem 4.1 we can construct the fundamental matrix
� ′(x) of the operator L(Dx) by elementary functions.

Thus, on the basis of Theorems 7.5 and 7.6 the completeness of Galerkin-type solution
of system (2.8) is proved.

Now we consider the system of homogeneous equations (2.4). We have the following
results.

Theorem 7.7 If metaharmonic function ϕj and metaharmonic vector function ψ =
(ψ1,ψ2,ψ3) are solutions of equations

(
� + τ 2

j

)
ϕj (x) = 0, j = 1,2 (7.10)

and

(
� + τ 2

3

)
ψ(x) = 0, divψ(x) = 0, (7.11)

respectively, then U = (u, ϕ) is a solution of the homogeneous equation (2.4), where

u(x) = grad
[
c1ϕ1(x) + c2ϕ2(x)

] + ψ(x),

ϕ(x) = ϕ1(x) + ϕ2(x)
(7.12)

for x ∈ Ω;Ω is an arbitrary domain in R3 and

cj = 1

ρω2ν1

[(
α1τ

2
j − ξ2

)
μ2 − b1ν1

]
, j = 1,2. (7.13)

Proof Keeping in mind the relations (7.10)–(7.13) and

(
μ2τ

2
j + ρω2

)
cj + b1 = 0, j = 1,2

we obtain by direct calculation

μ1�u + (λ1 + μ1)grad div u + b1 gradϕ + ρω2u
= −μ1 grad

(
c1τ

2
1 ϕ1 + c2τ

2
2 ϕ2

) − (λ1 + μ1)grad
(
c1τ

2
1 ϕ1 + c2τ

2
2 ϕ2

)
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+ b1 grad(ϕ1 + ϕ2) + ρω2 grad(c1ϕ1 + c2ϕ2) + μ1�ψ + ρω2ψ

= −[(
μ2τ

2
1 + ρω2

)
c1 + b1

]
gradϕ1 − [(

μ2τ
2
2 + ρω2

)
c2 + b1

]
gradϕ2 = 0.

Quite similarly, by virtue of (7.12), (7.13) and

ν1τ
2
j cj − α1τ

2
j + ξ2 = 0, j = 1,2

we have

(α1� + ξ2)ϕ − ν1 div u = −(
α1τ

2
1 − ξ2

)
ϕ1 − (

α1τ
2
2 − ξ2

)
ϕ2 + ν1

(
c1τ

2
1 ϕ1 + c2τ

2
2 ϕ2

)

= (
ν1τ

2
1 c1 − α1τ

2
1 + ξ2

)
ϕ1 + (

ν1τ
2
2 c2 − α1τ

2
1 + ξ2

)
ϕ2 = 0. �

Theorem 7.8 If U = (u, ϕ) is a solution of the homogeneous equation (2.4) in Ω , then U
is represented by (7.12), where ϕj and ψ = (ψ1,ψ2,ψ3) are solutions of (7.10) and (7.11),
respectively; Ω is an arbitrary domain in R3 and cj (j = 1,2) is given by (7.13).

Proof Applying the operator div to the first equation of (2.4), from system (2.4) we have

(
μ2� + ρω2

)
div u + b1�ϕ = 0,

(α1� + ξ2)ϕ − ν1 div u = 0.
(7.14)

Clearly, we obtain from (7.14)

(
� + τ 2

1

)(
� + τ 2

2

)
ϕ = 0. (7.15)

Now applying the operator curl to the first equation of (2.4) it follows that

(
� + τ 2

3

)
curl u = 0. (7.16)

We introduce the notation

ϕ1 = 1

τ 2
2 − τ 2

1

(
� + τ 2

2

)
ϕ, ϕ2 = 1

τ 2
1 − τ 2

2

(
� + τ 2

1

)
ϕ, ψ = μ1

ρω2
curl curl u. (7.17)

Taking into account (7.15)–(7.17), the function ϕj and vector function ψ are the solutions
of (7.10) and (7.11), respectively, and the function ϕ is represented by (7.12).

Now we prove the first relation of (7.12). Obviously, on the basis of (7.10) we may rewrite
the second equation of (7.14) in the form

div u = c3ϕ1 + c4ϕ2, (7.18)

where

cj = 1

ν1

(
ξ2 − α1τ

2
j−2

)
, j = 3,4.

Keeping in mind (7.17), (7.18) and identity

�u = grad div u − curl curl u,
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from (2.4) we obtain

u = − 1

ρω2
grad[μ2 div u + b1ϕ] + ψ

= − 1

ρω2
grad

[
(μ2c3 + b1)ϕ1 + (μ2c4 + b1)ϕ2

] + ψ . (7.19)

Finally, from (7.19) we get the first relation of (7.12). �

Hence, on the basis of Theorems 7.7 and 7.8 the completeness of solution of the homo-
geneous equation (2.4) is proved.

8 Basic Properties of Elastopotentials

On the basis of a Somigliana-type integral representation of a regular vector (see, (7.4)) we
introduce the following notations

Z(1)(x,g) =
∫

S

�(x − y)g(y)dyS,

Z(2)(x,g) =
∫

S

[
P̃
(
Dy,n(y)

)
��(x − y)

]�
g(y)dyS,

Z(3)
(
x,φ,Ω±) =

∫

Ω±
�(x − y)φ(y)dy,

where g and φ are four-component vectors.
As in the classical theory of elasticity (see, e.g., Kupradze et al. [51]), the vector func-

tions Z(1)(x,g), Z(2)(x,g) and Z(3)(x,φ,Ω±) are called a single-layer, a double-layer and
volume potentials in the linear theory of viscoelasticity for Kelvin–Voigt materials with
voids, respectively.

Obviously, on the basis of (7.4) and (7.5), the regular vector in Ω+ and Ω− is represented
by the sum of the elastopotentials as follows

U(x) = Z(2)
(
x, {U}+) − Z(1)

(
x, {PU}+) + Z(3)

(
x,AU,Ω+)

for x ∈ Ω+

and

U(x) = −Z(2)
(
x, {U}−) + Z(1)

(
x, {PU}−) + Z(3)

(
x,AU,Ω−)

for x ∈ Ω−,

respectively.
First we establish the basic properties of elastopotentials.

Theorem 8.1 If S ∈ Cm+1,p,g ∈ Cm,p′
(S),0 < p′ < p ≤ 1, and m is a non-negative integer,

then:

(a)
Z(1)(·,g) ∈ C0,p′(

R3
) ∩ Cm+1,p′(

Ω̄±) ∩ C∞(
Ω±)

,

(b)
A(Dx)Z(1)(x,g) = 0, x ∈ Ω±,
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(c) {
P
(
Dz,n(z)

)
Z(1)(z,g)

}± = ∓1

2
g(z) + P

(
Dz,n(z)

)
Z(1)(z,g), z ∈ S, (8.1)

(d)
P
(
Dz,n(z)

)
Z(1)(z,g)

is a singular integral, for z ∈ S.

Theorem 8.2 If S ∈ Cm+1,p,g ∈ Cm,p′
(S),0 < p′ < p ≤ 1, then:

(a)
Z(2)(·,g) ∈ Cm,p′(

Ω̄±) ∩ C∞(
Ω±)

,

(b)
A(Dx)Z(2)(x,g) = 0, x ∈ Ω±,

(c) {
Z(2)(z,g)

}± = ±1

2
g(z) + Z(2)(z,g), z ∈ S (8.2)

for the non-negative integer m,
(d)

Z(2)(z,g)

is a singular integral, for z ∈ S,
(e) {

P
(
Dz,n(z)

)
Z(2)(z,g)

}+ = {
P
(
Dz,n(z)

)
Z(2)(z,g)

}−
,

for the natural number m and z ∈ S.

Theorem 8.3 If S ∈ C1,p,φ ∈ C0,p′
(Ω+),0 < p′ < p ≤ 1, then:

(a)
Z(3)

(·,φ,Ω+) ∈ C1,p′(
R3

) ∩ C2
(
Ω+) ∩ C2,p′(

Ω̄+
0

)
,

(b)
A(Dx)Z(3)

(
x,φ,Ω+) = φ(x), x ∈ Ω+,

where Ω+
0 is a domain in R3 and Ω+

0 ⊂ Ω+.

Theorem 8.4 If S ∈ C1,p, suppφ = Ω ⊂ Ω−,φ ∈ C0,p′
(Ω−),0 < p′ < p ≤ 1, then:

(a)
Z(3)

(·,φ,Ω−) ∈ C1,p′(
R3

) ∩ C2
(
Ω−) ∩ C2,p′(

Ω̄−
0

)
,

(b)
A(Dx)Z(3)

(
x,φ,Ω−) = φ(x), x ∈ Ω−,

where Ω is a finite domain in R3 and Ω̄−
0 ⊂ Ω−.

Theorems 8.1 to 8.4 can be proved similarly to the corresponding theorems in the classi-
cal theory of thermoelasticity (for details, see, Kupradze et al. [51], Chap. X).
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We introduce the notation

K(1)g(z) ≡ 1

2
g(z) + Z(2)(z,g), K(2)g(z) ≡ −1

2
g(z) + P

(
Dz,n(z)

)
Z(1)(z,g),

K(3)g(z) ≡ −1

2
g(z) + Z(2)(z,g), K(4)g(z) ≡ 1

2
g(z) + P

(
Dz,n(z)

)
Z(1)(z,g),

Kζ g(z) ≡ −1

2
g(z) + ζZ(2)(z,g) for z ∈ S,

(8.3)

where ζ is a complex parameter. On the basis of Theorems 8.1 and 8.2, K(j) (j = 1,2,3,4)

and Kζ are singular integral operators (for the definition a singular integral operator see,
e.g., Mikhlin [52]).

In the sequel we need the following Lemmas.

Lemma 8.1 If conditions (6.1) are satisfied, then the singular integral operators K(j)

(j = 1,2,3,4) are of the normal type.

Proof Let σ (j) = (σ
(j)

lm )4×4 be the symbol of the singular integral operator K(j)

(j = 1,2,3.4) (see, e.g., Mikhlin [52]). Taking into account (8.3) we find (for details, see,
Kupradze et al. [51], Chap. IV)

detσ (j) =
(

−1

2

)4[
1 − μ2

1

(λ1 + 2μ1)2

]
= (λ1 + μ1)(λ1 + 3μ1)

16(λ1 + 2μ1)2
. (8.4)

Keeping in mind the relations (6.1), from (8.4) we have

detσ (j) �= 0. (8.5)

Hence, the operator K(j) is of the normal type, where j = 1,2,3,4. �

Lemma 8.2 If L is a continuous curve on the complex plane connecting the origin with the
point ζ0 and Kζ is a normal type operator for any ζ ∈ L, then the index of the operator Kζ0

vanishes, i.e.,

ind Kζ0 = 0.

Lemma 8.2 is proved in Kupradze et al. [51], Chap. IV.

Lemma 8.3 If conditions (6.1) are satisfied, then the Fredholm’s theorems are valid for the
singular integral operator K(j) (K(j) is Fredholmian), where j = 1,2,3,4.

Proof Let σ ζ and ind Kζ be the symbol and the index of the operator Kζ , respectively. It
may be easily shown that

detσ ζ = (λ1 + 2μ1)
2 − μ2

1ζ
2

16(λ1 + 2μ1)2

and detσ ζ vanishes only at two points ζ1 and ζ2 of the complex plane. By virtue of (8.5) and
detσ 1 = detσ (1) we get ζj �= 1 for j = 1,2. By Lemma 8.2 we obtain

ind K(1) = ind K1 = 0.
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Equation ind K(2) = 0 is proved in a quite similar manner. Obviously, the operators K(3)

and K(4) are the adjoint operators for K(2) and K(1), respectively. Evidently,

ind K(3) = − ind K(2) = 0, ind K(4) = − ind K(1) = 0.

Thus, the singular integral operator K(j) (j = 1,2,3,4) is of the normal type with an
index equal to zero. Consequently, the Fredholm’s theorems are valid for K(j) (for details,
see, e.g., Mikhlin [52]). �

Remark 8.1 The definitions of a normal type singular integral operator, the symbol and the
index of operator are given in Kupradze et al. [51] and Mikhlin [52].

9 Existence Theorems

Obviously, by Theorems 8.3 and 8.4 the volume potential Z(3)(x,F,Ω±) is a regular solu-
tion of (2.8), where F ∈ C0,p′

(Ω±),0 < p′ ≤ 1; supp F is a finite domain in Ω−. Therefore,
further we will consider problem (K)±

0,f for K = I, II. In addition, we assume that the con-
ditions (6.1) are satisfied.

Now we prove the existence theorems of a regular (classical) solution of problems (K)+
0,f

and (K)−
0,f for K = I, II.

Problem (I )+
0,f: We seek a regular solution to problem (I )+

0,f in the form

U(x) = Z(2)(x,g) for x ∈ Ω+, (9.1)

where g is the required four-component vector function.

By Theorem 8.2 the vector function U is a solution of (2.6) for x ∈ Ω+. Keeping in
mind the boundary condition (5.4) and using (8.2), from (9.1) we obtain, for determining
the unknown vector g, a singular integral equation

K(1)g(z) = f(z) for z ∈ S. (9.2)

By Lemma 8.3 the Fredholm’s theorems are valid for operator K(1). We prove that (9.2)
is always solvable for an arbitrary vector f. Let us consider the associate homogeneous
equation

K(4)h0(z) = 0 for z ∈ S, (9.3)

where h0 is the required four-component vector function. Now we prove that (9.3) has only
the trivial solution.

Indeed, let h0 be a solution of the homogeneous equation (9.3). On the basis of The-
orem 8.1 and (9.3) the vector function V(x) = Z(1)(x,h0) is a regular solution of prob-
lem (II)−

0,0. Using Theorem 6.2, the problem (II)−
0,0 has only the trivial solution, that is

V(x) = 0 for x ∈ Ω−. (9.4)

On other hand, by Theorem 8.1 and (9.4) we get

{
V(z)

}+ = {
V(z)

}− = 0 for z ∈ S,
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i.e., the vector V(x) is a regular solution of problem (I )+
0,0. Using Theorem 6.1, the prob-

lem (I )+
0,0 has only the trivial solution, that is,

V(x) = 0 for x ∈ Ω+. (9.5)

By virtue of (9.4), (9.5) and identity (8.1) we obtain

h0(z) = {
P(Dz,n)V(z)

}− − {
P(Dz,n)V(z)

}+ = 0 for z ∈ S.

Thus, the homogeneous equation (9.3) has only the trivial solution and therefore (9.2) is
always solvable for an arbitrary vector f.

We have thereby proved

Theorem 9.1 If S ∈ C2,p, f ∈ C1,p′
(S),0 < p′ < p ≤ 1, then a regular solution of prob-

lem (I )+
0,f exists, is unique and is represented by double-layer potential (9.1), where g is a

solution of the singular integral equation (9.2) which is always solvable for an arbitrary
vector f.

Problem (II)−
0,f: We seek a regular solution to problem (II)−

0,f in the form

U(x) = Z(1)(x,h) for x ∈ Ω−, (9.6)

where h is the required four-component vector function.

Obviously, by Theorem 8.1 the vector function U is a solution of (2.6) for x ∈ Ω−.
Keeping in mind the boundary condition (5.7) and using (8.1), from (9.6) we obtain, for
determining the unknown vector h, a singular integral equation

K(4)h(z) = f(z) for z ∈ S. (9.7)

It has been proved above that the corresponding homogeneous equation (9.3) has only the
trivial solution. Hence, it follows that (9.7) is always solvable.

We have thereby proved

Theorem 9.2 If S ∈ C2,p, f ∈ C0,p′
(S),0 < p′ < p ≤ 1, then a regular solution of prob-

lem (II)−
0,f exists, is unique and is represented by single-layer potential (9.6), where h is a

solution of the singular integral equation (9.7) which is always solvable for an arbitrary
vector f.

Problem (II)+
0,f: We seek a regular solution to problem (II)+

0,f in the form

U(x) = Z(1)(x,g) for x ∈ Ω+, (9.8)

where g is the required four-component vector function.

Obviously, by Theorem 8.1 the vector function U is a solution of (2.6) for x ∈ Ω+.
Keeping in mind the boundary condition (5.5) and using (8.1), from (9.8) we obtain, for
determining the unknown vector g, a singular integral equation

K(2)g(z) = f(z) for z ∈ S. (9.9)
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By Lemma 8.3 the Fredholm’s theorems are valid for operator K(2). We prove that (9.9) is
always solvable for an arbitrary vector f. Let us consider the corresponding homogeneous
equation

K(2)g0(z) = 0 for z ∈ S, (9.10)

where g0 is the required four-component vector function. Now we prove that (9.10) has only
the trivial solution.

Indeed, let g0 be a solution of the homogeneous equation (9.10). On the basis of The-
orem 8.1 and (9.10) the vector V(x) = Z(1)(x,g0) is a regular solution of problem (II)+

0,0.
Using Theorem 6.1, the problem (II)+

0,0 has only the trivial solution, that is

V(x) = 0 for x ∈ Ω+. (9.11)

On other hand, by Theorem 8.1 and (9.11) we get {V(z)}− = 0 for z ∈ S, i.e., the vector
V(x) is a regular solution of problem (I )−

0,0. On the basis of Theorem 6.2, the problem (I )−
0,0

has only the trivial solution, that is,

V(x) = 0 for x ∈ Ω−. (9.12)

By virtue of (9.11), (9.12) and identity (8.1) we obtain

g0(z) = {
P(Dz,n)V(z)

}− − {
P(Dz,n)V(z)

}+ = 0 for z ∈ S.

Thus, the homogeneous equation (9.10) has only a trivial solution and therefore (9.9) is
always solvable for an arbitrary vector f.

We have thereby proved

Theorem 9.3 If S ∈ C2,p, f ∈ C0,p′
(S),0 < p′ < p ≤ 1, then a regular solution of prob-

lem (II)+
0,f exists, is unique and is represented by single-layer potential (9.8), where g is a

solution of the singular integral equation (9.9) which is always solvable for an arbitrary
vector f.

Problem (I )−
0,f: We seek a regular solution to problem (I )−

0,f in the form

U(x) = Z(2)(x,h) for x ∈ Ω−, (9.13)

where h is the required four-component vector function.

Obviously, by Theorem 8.2 the vector function U is a solution of (2.6) for x ∈ Ω−.
Keeping in mind the boundary condition (5.6) and using (8.2), from (9.13) we obtain, for
determining the unknown vector h, a singular integral equation

K(3)h(z) = f(z) for z ∈ S. (9.14)

It has been proved above that the corresponding homogeneous equation (9.10) has only the
trivial solution. Hence, it follows that (9.14) is always solvable.

We have thereby proved

Theorem 9.4 If S ∈ C2,p, f ∈ C1,p′
(S),0 < p′ < p ≤ 1, then a regular solution of prob-

lem (I )−
0,f exists, is unique and is represented by double-layer potential (9.13), where h is a

solution of the singular integral equation (9.14) which is always solvable for an arbitrary
vector f.
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10 Concluding Remarks

1. In this paper the linear theory of viscoelasticity for Kelvin–Voigt materials with voids
(see, Ieşan [31]) is considered and some basic results of the classical theory of elas-
ticity are generalized. Indeed, the explicit expressions of fundamental solution of the
system of equations of steady vibrations is constructed by means of elementary func-
tions. The Green’s formulas in the considered theory are obtained. The representation
of a Galerkin type solution is presented and the completeness of this solution is estab-
lished. The formulas of integral representations of Somigliana type of regular vector
and regular (classical) solution are obtained. The Sommerfeld-Kupradze type radiation
conditions are established. The basic properties of elastopotentials and singular integral
operators are given. The uniqueness and existence theorems for classical solutions of the
basic BVPs of steady vibrations are proved by using of the potential method (boundary
integral method) and the theory of singular integral equations.

2. In the present paper the basic properties of plane harmonic waves in the linear theory
of viscoelasticity for Kelvin–Voigt materials with voids are established. There are two
(P1 and P2) longitudinal and two (SH and SV) transverse attenuated plane waves in the
Kelvin–Voigt material with voids.

3. It is possible to investigate the basic BVPs in the linear theory of thermoelasticity for
Kelvin–Voigt materials with voids (see, Ieşan [31]) by using potential method and the
theory of singular integral equations.

4. By virtue of Theorems 9.1 to 9.4 it is possible to obtain numerical solutions of the BVPs
of the linear theory of viscoelasticity for Kelvin–Voigt materials with voids by using of
the boundary element method.

Acknowledgements The author is grateful to the reviewers for useful comments and fruitful suggestions.
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