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Abstract 

Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear 

these peptides appears to cause the development of Alzheimer’s disease (AD). In recent years, microRNAs have 

become established key regulators of biological processes that relate among others to the development and progres-

sion of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved 

in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clear-

ance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeu-

tic targets for the treatment of AD.
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Introduction
Alzheimer’s disease (AD)—the most common form of 

dementia—is a devastating diagnosis that accounts for 

93,541 deaths in the United States in 2014 [1]. Clinical 

manifestation of AD is often a loss of memory and cog-

nitive skills. AD comprises two types: early-onset AD 

(EOAD), the familial type of AD which is inherited in an 

autosomal dominant pattern, and sporadic late-onset AD 

(LOAD), the most prevalent form of AD which develops 

at a later age [2]. The main pathological characteristics in 

the brains of AD patients are extracellular senile plaques 

composed of Aβ peptides [3] and intracellular neurofi-

brillary tangles (NFTs) formed by the accumulation of 

hyperphosphorylated tau [4].

Aβ is cleaved from the amyloid precursor protein 

(APP) by β-secretase (BACE1) and γ-secretase in the 

amyloidogenic pathway [5], while in the non-pathological 

stage, APP is cleaved to non-toxic proteins by α-secretase 

[6]. Aβ has two major forms: Aβ40 and Aβ42, which are 

40 and 42 amino acid-long fragments, respectively. Since 

Aβ42 is more hydrophobic than Aβ40, it is more prone to 

aggregate and scaffold for oligomeric and fibrillar forms 

[7]. The microtubule-associated protein tau regulates the 

assembly of microtubules and maintains its structural 

stability. Thus, it plays an important role in microtubule 

dynamics. In AD, however, tau becomes abnormally 

hyperphosphorylated leading to its dissociation from 

microtubules. Then, the unbound tau molecules aggre-

gate as insoluble filaments, which accumulate and form 

neurofibrillary tangles (NFT) [8]. The accumulation of 

Aβ and NFTs in brain can trigger a cascade of events that 

may lead to AD.

According to the Aβ hypothesis, Aβ accumulation 

arises from a failure of clearance rather than over-pro-

duction [9]. Indeed, Bateman et  al. [10] demonstrated 

that the clearance rate of Aβ is impaired by approximately 

30% in the cerebrospinal fluid of patients with LOAD. 

Mawuenyega et  al. [11] found that the clearance rate of 

Aβ40 and Aβ42 is reduced by 25% and 30%, respectively 
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in AD patients. The study by Cirrito et  al. [12] showed 

the effect of age on the clearance rate of Aβ and found 

that the half-life of Aβ doubled within the interstitial 

fluid of older animal models of AD. These studies defi-

nitely established that defects in Aβ clearance have a 

fundamental role in AD pathology. Mechanisms that are 

involved in Aβ clearance include the ubiquitin–protea-

some system (UPS), autophagic processes, proteolytic 

enzymes, transportation across the blood brain barrier 

(BBB), cellular uptake and heat shock protein (HSP)-

mediated clearance, as illustrated in Fig.  1. The relative 

contributions of each of these procedures resulting in the 

overall clearance of Aβ are unknown.

MicroRNAs (miRNAs) have emerged as essential 

post-transcriptional regulators of gene expression. 

These small, non-coding RNAs regulate mRNA stabil-

ity and transcription by binding to the 3′-UTR region of 

their targets [13]. The dysregulation of miRNAs leads to 

an altered protein expression which in turn results in a 

pathogenic signaling network connected with the imbal-

ance between Aβ peptide synthesis and clearance causing 

AD. The involvement of miRNAs in these pathways may 

provide information about the molecular mechanism of 

AD. To survey and overcome the imbalance between syn-

thesis and clearing, the research field on miRNAs may be 

promising, and is eligible for establishing a continuous 

monitoring of disease progression and therapeutic inter-

ventions, not only for AD but also for other diseases.

To date, miRNAs described above document their 

usefulness as diagnostic and predictive markers for AD. 

For the assessment of miRNAs, real-time PCR, micro-

arrays or even sequencing could be applied in tissues 

and body fluids, such as plasma or serum. The develop-

ment of miRNA-based therapies anticipates restoring 

normal miRNA expression levels. In clinical settings, 

the levels of down-regulated tumor suppressor miRNAs 

could be normalized by their re-expression using syn-

thetic or viral vectors encoded for miRNA or synthetic 

double strand RNA molecules (mimics), whereas the 

up-regulated oncogenic miRNAs could be silenced by 

antisense-mediated inhibition, miRNA sponges and anti-

miRNA peptides. As delivery vehicles of miRNAs could 

serve polymer-based, lipid or viral vesicles or MSCs [14]. 

However, to reach their destination, miRNAs (mimics 

or antisense) have to cross the blood–brain barrier. To 

overcome this limitation, strategies, such as the use of 

conjugated nanoparticle or intracerebroventricular infu-

sion have been shown to improve the transport through 

the blood–brain barrier [15]. Further challenges for an 

efficient miRNA-based gene therapy are the potential 

degradation of miRNAs by cellular nucleases and poor 

cellular uptake. In particular, miRNAs elicit unspecific 

effects, toxicity and/or unfavorable immune response, 

since they only partially bind to their target mRNA. In 

addition, they participate in several signaling pathways 

and consequently, have different regulatory functions 

which require further research. For example, with respect 

to the treatment of cancer, in September 2016, the spon-

soring company (Mirna Therapeutic, Inc.) stopped the 

enrollment and dosing of miR-34 (MRX34) in a clinical 

study after numerous immune-related severe adverse 

effects in patients dosed with MRX34 [16]. Therefore, 

to realize their therapeutic application, it is essential to 

intensely investigate the biology and functions of miR-

NAs. As described above, numerous efforts have already 

made to identify miRNAs for introducing them into the 

clinical practice of AD. Most notably in animal models, 

these miRNAs appeared to be well tolerated with prom-

ising outcomes. For example, the intracerebroventricular 

infusion of anti-miR-33 inhibited the brain-specifically 

expressed miR-33 and in turn decreased Aβ levels in the 

cortex of mice [17].

On the other hand, a disruption of miRNA biogenesis 

is to avoid since it is assumed to cause neurodegenera-

tion. For example, the onset of a neurodegenerative dis-

ease may happen by the loss of Dicer, an enzyme which 

cleaves pre-miRNA into a double-stranded miRNA 

duplex [18]. Such investigations show that miRNAs play 

an important role in long-term brain integrity and high-

light their clinical relevance in AD. As up to 80% of all 

human genes are regulated by miRNAs [19] and their 

potential utility as AD biomarkers have been reported, 

we introduce potential miRNA-regulated targets in Aβ 

clearance pathways that will provide insights into the role 

of miRNAs in AD pathology.

Ubiquitin–proteasome system
The ubiquitin–proteasome system (UPS) is the main 

intracellular proteolytic pathway in eukaryotic cells. The 

pathway degrades more than 70–80% of intracellular pro-

teins, including damaged and misfolded proteins [20]. At 

first, in the tagging reaction of the UPS-mediated protein 

Fig. 1 Balanced Aβ clearance pathways. UPS ubiquitin–proteasome 

system, AβDPs Aβ degrading proteases, BBB blood brain barrier, HSP 

heat shock proteins
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degradation, a polyubiquitin chain is added to target pro-

teins through three steps: (1) in an ATP-dependent pro-

cess, an ubiquitin-activating enzyme (E1) activates an 

ubiquitin (Ub) monomer, a 76-amino acid peptide; (2) the 

activated Ub binds to an ubiquitin-conjugating enzyme 

(E2); and (3) ubiquitin ligase (E3) then transfers Ub to the 

target protein. In some cases, an additional ubiquitina-

tion enzyme, the chain elongation factor E4, is required 

to extend a polyubiquitin chain. Finally, the polyubiqui-

tinated proteins are recognized and degraded in the 26S 

proteasome, a system that is composed of a 20S catalytic 

core and two 19S regulatory subunits [21].

After the detection of Ub in senile plaques in 1987 [22] 

and the observation that Aβ can bind to proteasomes 

[23], it was suggested that UPS is involved in the clear-

ance of Aβ. Later studies substantiated this hypothesis. 

Lopez et al. [24] demonstrated that inhibition of the pro-

teolytic activity of the 26S proteasome in neurons and 

astrocytes led to a reduction in Aβ degradation. Chad-

wick et al. [25] showed that a mutant form of Ub capped 

by polyubiquitin chains inhibited 26S proteasome and 

interfered with Aβ clearance. Furthermore, proteolytic 

activities of the 26S proteasome can also be inhibited by 

Aβ [26].

MiRNAs and their targets in UPS

Usually, in neocortex and hippocampal regions of AD 

brain tissues, the E2 family member UBE2A is down-

regulated. In this regard, Zhao et  al. [27] showed that 

the over-expression of miR-7 led to UBE2A down-reg-

ulation in the brain tissues of AD patients. In addition, 

the E2 isoforms UBE2B, UBE2D3 and UBCH10 that were 

down-regulated by miR-455-5p [28], miR-21-5p [29] and 

miR-631 [30] respectively, were identified as AD-related 

genes in a study conducted by Libro et  al. [31]. Finally, 

the expression of UBC9 (UBE2I) was inversely correlated 

with miR-30a and miR-214 expression [32, 33] (Table 1).

There are several hundred E3 ligases in mammals, 

and this class shows the greatest diversity among the 

enzymes. E3 ligases are divided into two classes: E3 

ligases with homology to the E6-AP carboxyl terminus 

(HECT), and the new RING ligases [34]. Singh et  al. 

showed that the decreased levels of E3 ligase UBE3A 

caused by miR-375 over-expression [35], could influence 

the progression of AD [36]. Christie et al. showed that the 

levels of E3 ligase XIAP which were down-regulated by 

miR-497 and miR-7 [37, 38], were higher in AD patients 

than control cases [39]. Similarly, miR-24 over-expression 

decreased XIAP expression [40] (Table 1).

There are ~ 95 deubiquitinating enzymes (DUBs) in 

the human genome. DUBs are classified into five classes 

including: ubiquitin C-terminal hydrolase (UCH), ubiq-

uitin-specific protease (USP), Machado-Joseph disease 

protease (MJD), otubain protease (OTU) and JAB1/

MPN/Mov34 metalloenzyme (JAMM) [41]. Ubiquitin 

C-terminal hydrolase L1 (UCHL1) appears to be the only 

DUB playing a role in AD. It constitutes 1–5% of total 

neuronal protein, and stabilizes monoubiquitin by bind-

ing to it [42]. MiR-922 and miR-181b decreased UCHL1 

expression in kidney and neuroblastoma cells, respec-

tively [43, 44] (Table 1; Fig. 2).

Autophagy
Autophagy is a highly conserved catabolic process which 

has a key role in maintaining cell hemostasis through 

recycling nutrients and degrading aggregated proteins 

or damaged organelles [91]. Autophagy has distinct 

stages: formation of an isolation membrane (phagophore) 

and initiation of autophagy, vesicle nucleation, elonga-

tion and expansion of the autophagosome membrane, 

sequestration of aggregated proteins and cytoplasmic 

organelles into an autophagosome, and finally fusion of 

autophagosomes with endosomes or lysosomes for con-

tent degradation.

The first step in the autophagy process is the fusion of 

vesicles that originate from different membrane sources, 

such as the plasma membrane, endoplasmic reticulum 

(ER), Golgi apparatus and mitochondria [92]. Integration 

of these vesicles leads to the formation of an isolation 

membrane, called the phagophore. Autophagy initiation 

begins with the activation of a complex comprised of 

ULK1, ULK2, ATG13, ATG101 and the family interacting 

protein of 200 kD (FIP200) [93]. The mechanistic target 

of the rapamycin complex 1 (mTORC1) which is com-

prised of mTOR, RAPTOR, mLST8, and DEPTOR inhib-

its autophagy by phosphorylating ULK1 and ATG13 [94], 

while the adenosine monophosphate activated protein 

kinase (AMPK) activates autophagy by phosphorylating 

ULK1 at other sites [94].

The ULK1 complex controls vesicle nucleation 

through the class III phosphatidylinositol 3-kinase 

(PI3 K) complex. This complex is comprised of vacuolar 

protein sorting 34 (VPS34), VPS15, ATG14, and ultra-

violet irradiation resistance-associated gene (UVRAG), 

all of which are scaffolded by Beclin 1 [95]. There are 

two ubiquitin-like conjugation steps that are involved in 

autophagosome elongation: (1) formation of a complex 

between ATG5, ATG12 and ATG16L1 that requires 

the catalytic activities of ATG7 (E1-like enzyme) and 

ATG10 (E2-like enzyme), (2) processing of microtu-

bule-associated protein 1 light chain 3 (LC3). Initially, 

LC3 is cleaved by ATG4B, to form LC3-I which is then 

conjugated to phosphatidylethanolamine (PE) by ATG7 

(E1-like enzyme) and ATG3 (E2-like enzyme), to form 

LC3-II [96]. After the formation of autophagosomes, 

the ATG5-ATG12-ATG16L1 complex separates from 
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the outer membrane, while LC3-II remains attached 

with the completed autophagosomes, to facilitate their 

identification. Finally, double-membraned autophago-

somes fuse with lysosomes for content degradation.

Growing evidence indicates that autophagy plays a 

role in AD pathology. For example it has been reported 

that autophagic vacuoles are abundant in AD brains 

[97] and that their clearance is impaired in AD [98]. 

Furthermore, restoring autophagy reduced Aβ accu-

mulation in a TgCRND8 mouse model of AD and ame-

liorated memory deficits [99]. In their study, Wu et al. 

[100] validated miRNA-binding sequences for miR-20a 

and miR-106b in the 3′-UTR region of ULK1 and found 

that these two miRNAs negatively regulated autophagy 

through suppressing ULK1 expression in mouse myo-

blast cell lines. Korkmaz et  al. [101] found that miR-

376b attenuated the luciferase activity of the BECN1 

3′-UTR, and thus, decreased mRNA levels of BECN1 

in human breast and hepatocellular carcinoma cell lines 

leading to autophagy inhibition. A number of miRNAs 

that regulate the autophagy cascade are summarized in 

Table 2, Fig. 3.

Degrading enzymes
Aβ is degraded by various types of proteases collectively 

known as Aβ-degrading proteases (AβDPs), e.g., by 

neprilysin, myelin basic protein, matrix metallopeptidase, 

angiotensin converting enzyme and cathepsins.

Table 1 MiRNAs and their downregulated mRNA targets in UPS

MiRNAs Family Gene References

miR-199a-5p Ubiquitin-conjugating (E2) enzymes UBE2G1 [45]

miR-101 UBE2N [46]

miR-182, miR-145, miR-19a/b Ubiquitin E3 ligases CUL5 [47–49]

miR-195 CBX4 [50]

miR-221 HECTD2 [51]

miR-153 HECTD3 [52]

miR-542-5p HUWE1 [53]

miR-106b, miR-411 ITCH [54, 55]

miR-93 NEDD4L [56]

miR-137 PIAS2 [57]

miR-199a-5p, miR-301a-3p, miR-9718, miR-21, miR-18a PIAS3 [58–62]

miR-194 RBX1 [63]

miR-503, miR-542-5p, miR-497, miR-15b SMURF1 [64–67]

miR-486, miR-424, miR-322, miR-503, miR-15a/b, miR-16, miR-128 SMURF2 [68–71]

miR-542-3p UBE3C [72]

miR-584-5p, miR-21 WWP1 [73, 74]

miR-214 RNF8 [75]

miR-19b MYLIP [76]

miR-214 RFWD2 [77]

miR-31 Deubiquitinating enzymes BAP1 [78]

miR-17 USP2 [79]

miR-148a USP4 [80]

miR-205 USP7 [81]

miR-135b USP13 [82]

miR-320a USP14 [83]

miR-34b USP22 [84]

miR-200c USP25 [85]

miR-363-3p USP28 [86]

miR-204-5p USP47 [87]

miR-25 Ataxin-3 [88]

miR-125b-5p A20 [89]

miR-24 CSN5 [90]
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Fig. 2 The inhibitory effect of miRNAs on their target molecules in the UPS pathway. Ubiquitin is transferred to the E2 enzyme after activation by 

the E1 enzyme, and is then transferred to the substrate by E3 enzyme. E4 enzyme is required for the formation of the polyubiquitin chain. After 

the recognition process, substrates are degraded by the 26S proteasome or their polyubiquitin monomers are removed by DUB. Ub ubiquitin, E1 

ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, E3 ubiquitin ligase, DUB deubiquitinating enzyme, UBE2A ubiquitin conjugating 

enzyme E2 A, UBE2B ubiquitin conjugating enzyme E2 B, UBE2C ubiquitin conjugating enzyme E2 C, UBE2I ubiquitin conjugating enzyme E2 I, 

UBE3A E3 ubiquitin-protein ligase A, XIAP E3 ubiquitin-protein ligase XIAP, CBX4 E3 SUMO-protein ligase CBX4, ITCH E3 ubiquitin-protein ligase Itchy, 

SMURF1 E3 ubiquitin-protein ligase SMURF1, UCHL1 ubiquitin carboxyl-terminal hydrolase isozyme L1, BAP1 ubiquitin carboxyl-terminal hydrolase 

BAP1, USP2 ubiquitin specific peptidase 2, USP13 ubiquitin specific peptidase 13; CSN5 COP9 signalosome complex subunit 5

Table 2 MiRNAs and their downregulated mRNA targets in the autophagy cascade

MiRNA Function Gene References

miR-144, miR-99b-5p, miR-199a-3p Autophagy initiation mTOR [102–104]

miR-100 RAPTOR [105]

miR-181b mLST8 [106]

miR-375 DEPTOR [107]

miR-25 ULK1 [108]

miR-26b ULK2 [109]

miR-4459 ATG13 [110]

miR-224-3p FIP200 [111]

miR-17-5p, miR-30a Vesicle nucleation BECN1 [112, 113]

miR-195, miR-152 ATG14 [114, 115]

miR-33a, miR-183 UVRAG [116, 117]

miR-21 VPS34 [118]

miR-299-5p, miR-181a Autophagosome elongation ATG5 [119, 120]

miR-23b, miR-200b ATG12 [121, 122]

miR-142-3p, miR-410 ATG16L1 [123, 124]

miR-188-3p, miR-17 ATG7 [125, 126]

miR-4458, miR-4667-5p, miR-4668-5p ATG10 [127]

miR-34a ATG4B [128]

miR-155 ATG3 [129]

miR-204, miR-497 LC3-II [130, 131]
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Neprilysin

Neprilysin (NEP) is a zinc-dependent membrane metal-

loendopeptidase (MME) belonging to the M13 family 

of metallopeptidases. After the introduction of Nepri-

lysin as one of the major AβDPs [132], Iwata et al. [133] 

showed that in Neprilysin knockout-mice the vulner-

ability of the hippocampus was caused by Aβ accumula-

tion. In this regard, neprilysin was shown to degrade both 

monomeric and oligomeric forms of Aβ [134]. Moreover, 

a meta-analysis documented that mRNA and protein 

levels of Neprilysin, as well as the enzymatic activity of 

neprilysin are decreased in AD patients [135].

Myelin basic protein

Myelin basic protein (MBP), an 18.5  kD protein is the 

main protein component of myelin, and participates in 

Fig. 3 MiRNAs inhibit autophagy by down-regulating their target molecules. AMPK and mTORC1 are key modulators of autophagy and exert their 

effects by regulating ULK1 and ATG13. Activation of the ULK1 complex initiates autophagy and regulates vesicle nucleation through the class III 

phosphatidylinositol 3-kinase (PI3K) complex. The final step in the autophagosome formation requires the two ubiquitin-like conjugation systems. 

AMPK adenosine monophosphate activated protein kinase, mTOR mechanistic target of rapamycin, RAPTOR regulatory-associated protein of Mtor, 

mLST8 MTOR associated protein, LST8 homolog, DEPTOR DEP domain containing MTOR interacting protein, ULK1 unc-51 like autophagy activating 

kinase 1, ULK2 unc-51 like autophagy activating kinase 2, ATG  autophagy-related gene, FIP200 family interacting protein of 200 kD, UVRAG  UV 

radiation resistance-associated gene protein, LC3 microtubule-associated protein 1 light chain 3, PE phosphatidylethanolamine



Page 7 of 19Madadi et al. Cell Biosci            (2019) 9:91 

the formation and maintenance of the myelin sheath. 

MBP has serine protease activity and degrades Aβ40 and 

Aβ42 peptides [136]. Hoos et  al. [137] found that MBP 

inhibited fibrillar assembly of Aβ, and Liao et  al. [138] 

demonstrated that this was mediated by the N-terminal 

domain of MBP. Furthermore, Wang et al. [139] showed 

that miR-212 reduced the expression of MBP, and thus, 

promoted the assembly.

Matrix metallopeptidase

Matrix metalloproteinases (MMPs) that belong to the 

metzincin family have at least two domains: the pro-

domain which is ~ 80 amino acids long and the catalytic-

domain which contains a zinc ion in the active site. They 

degrade both soluble and fibrillar Aβ peptides [140]. 

Zhang et  al. [141] reported that miR-9 directly targeted 

the MMP-14 3′-UTR and decreased transcriptional and 

consequently, protein levels of MMP-14 in neuroblas-

toma cells reducing adhesion, migration, invasion and 

angiogenesis of these cells. Multiple MMPs are impli-

cated in Aβ degradation and their repression by miRNAs 

is shown in Table 3.

Angiotensin converting enzyme

Angiotensin-converting enzyme (ACE) is a zinc-depend-

ent dipeptidase that catalyzes the conversion of angio-

tensin I to angiotensin II. Hu et al. [155] found that ACE 

degraded Aβ40 by cleaving the peptide bond between 

Asp7 and Ser8 residues, and found that ACE prevented 

the accumulation of amyloid plaques by degrading Aβ 

in  vivo. Following studies indicated that the N-terminal 

domain of ACE was responsible for Aβ degradation [156] 

and pharmacological inhibition of ACE enhanced the 

accumulation of Aβ in APP expressing cells [157]. Several 

miRNAs are implicated in inhibiting ACE expression, as 

listed in Table 3.

Cathepsins

Cathepsin B, a major representative of cysteine pro-

teases, acts as either an exopeptidase or an endopepti-

dase. It is present in lysosomes from all cell types, and 

participates in lysosomal turnover of proteins. Sun et al. 

[158] indicated that Cathepsin B was able to induce Aβ 

degradation in vivo. Moreover, lysosomal Cathepsin B is 

essential in microglial clearance of Aβ [159] and its up-

regulation promotes Aβ42 degradation in AD monocytes 

[160]. By using homology modeling, Dhanavade et  al. 

[161] found that Cathepsin B cleaved Aβ peptide from 

the carboxylic end of Glu11. Cathepsin D, an aspartyl 

protease is present in lysosomes from most mammalian 

cells, and engages in the degradation of intracellular and 

endocytosed proteins. It cleaves Aβ peptide at Phe19-

Phe20 and Leu34-Met35 [162], and is down-regulated 

in monocytes of AD patients [163]. Overexpression of 

miR-128 down-regulated the expression of Cathepsin 

B and Cathepsin D. Consequently, miR-128 inhibition 

enhanced Aβ42 degradation in monocytes from AD 

patients [164].

Blood–brain barrier clearance of Aβ
The blood–brain barrier (BBB) is a physical barrier that 

separates peripheral circulation from the central nervous 

system (CNS). The BBB, which is formed by endothe-

lial cells connected by tight junctions, plays a significant 

role in controlling brain homeostasis by eliminating 

toxic metabolites from the brain into the blood, such as 

Aβ aggregates. It has two sides, the luminal side facing 

the blood circulation, and the abluminal side facing the 

brain parenchyma. Transporters and receptors which are 

expressed on the two sides are involved in the transpor-

tation and clearance of Aβ. Aβ efflux and influx through 

the BBB are regulated by several miRNAs, some of which 

are illustrated in Fig. 4 and listed in Table 4.

Receptor‑mediated Aβ influx

Receptor for advanced glycation end products

The receptor for advanced glycation end products 

(RAGE) belongs to the immunoglobulin family, and is 

expressed on the luminal surface of brain vessels. RAGE 

is a multi-ligand receptor that binds a range of ligands, 

including Aβ [165]. By using an in  vitro BBB model, 

Mackic et al. [166] showed that RAGE is involved in the 

internalization of soluble monomeric forms of Aβ40. 

Candela et  al. [167] reported that RAGE inhibitors 

Table 3 MiRNAs and their downregulated mRNA targets in the degradation cascade

MiRNA Family Gene References

miR-24, miR-181a-5p Matrix metalloproteinase MMP-14 [142, 143]

miR-132, miR-34a, miR-516b MMP-9 [144–146]

miR-148a, miR-100 MMP-7 [147, 148]

miR-29b, miR-34a, miR-516b, miR-93 MMP-2 [145, 146, 149, 150]

miR-22, miR-485-5p, miR-492 EMMPRIN [151–153]

miR-143/145 Angiotensin-converting enzyme ACE [154]
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mediated a significant decrease in Aβ40 and Aβ42 trans-

port through the brain endothelium. Similarly, Takuma 

et  al. [168] found that a genetic deletion of RAGE sup-

pressed Aβ uptake in neurons. Mice studies confirmed 

these findings and showed the influx of circulating Aβ 

into the brain as a receptor-mediated transport depend-

ing on RAGE [169]. Furthermore, the inhibition of the 

RAGE/Aβ interaction repressed Aβ accumulation in the 

Fig. 4 MiRNA-dependent regulation of Aβ clearance through the BBB. Aβ efflux and influx through the BBB. Aβ entrance to the brain is mediated 

by RAGE, but several transporters are expressed on both the luminal and abluminal sides of the BBB can eliminate Aβ from the brain. LRP1 is one of 

the major receptors for Aβ efflux through the BBB. Due to the sink hypothesis, it is also implicated in Aβ removal. Presence of Clusterin is essential 

for Aβ clearance by LRP2 receptor. ABCA1 indirectly facilitates Aβ clearance by lipidating ApoE. The drug pumps ABCB1 and ABCG2 are also involved 

in Aβ transport across the BBB. RAGE receptor for advanced glycation end products, LRP1 LDL receptor related protein 1, LRP2 LDL receptor related 

protein 2, ABCA1 ATP binding cassette subfamily A member 1, ABCB1 multidrug resistance protein, P-glycoprotein, ABCG2 breast cancer resistance 

protein, ABCG4 ATP binding cassette subfamily G member 4

Table 4 MiRNAs and their downregulated mRNA targets in the blood–brain barrier clearance of Aβ

MiRNA Family Gene References

miR-185, miR-328-5p Receptor for advanced glycation end products RAGE [220, 221]

miR-205 Low-density lipoprotein receptors LRP1 [222]

miR-148b LRP2 [223]

miR-26, miR-19b, miR-302a ATP-binding cassette transporters ABCA1 [224–226]

miR-200c, miR-873, miR-491-3p, miR-223 ABCB1 [227–230]

miR-328, miR-302, miR-3163, miR-181a ABCG2 [231–234]

miR-185-5p, miR-463-3p ABCG4 [235, 236]

miR-29b, miR-130b Glymphatic clearance AQP4 [237, 238]
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brain of PD-hAPP mice [170]. Also in line with these 

data, Ma et  al. showed that RAGE up-regulation con-

tributed to the accumulation of Aβ and cognitive impair-

ment in rats [171]. Finally, Choi et al. [172] reported the 

elevated RAGE expression in a mouse model of AD.

Receptor‑mediated Aβ efflux

Low‑density lipoprotein receptor (LDLR) family

The LDLR family are cell surface receptors and includes 

LDLR, VLDLR, LRP1, LRP1B, LRP2 (megalin), LRP3, 

LRP4, LRP5, LRP6 and LRP8. The main function of this 

receptor family is receptor-mediated endocytosis. In 

APP/PS1/LDLR transgenic mice, LDLR over-expression 

was reported to promote Aβ clearance [173].

Initial studies identified LRP1 as an abluminal recep-

tor that mediated Aβ transport across the BBB [174], 

and subsequent studies proved a role for LRP1 in brain-

to-blood Aβ clearance [175]. In a mouse model of AD, 

LRP1 deletion resulted in decreased Aβ levels in plasma 

and enhanced soluble Aβ in brain endothelial cells 

[176]. Moreover, LRP1 oligodeoxynucleotide antisense 

impaired recognition memory in mice by reducing BBB 

clearance of Aβ [177]. Several studies proved that ApoE 

had suppressive effects on LRP1-mediated BBB clearance 

of Aβ as preincubation with ApoE reduced Aβ40 clear-

ance [178]. Moreover, ApoE suppressed soluble Aβ (sAβ) 

clearance by competing with sAβ for interaction with 

LRP1 [179]. Further studies showed an isoform-specific 

effect for ApoE since ApoE4-Aβ complexes were not 

cleared by the rapid LRP1 receptor, and their clearance 

was mediated by VLDLR which has a significant slower 

rate of endocytosis compared to LRP1. However, both 

LRP1 and VLDLR are involved in the clearance of ApoE2- 

and ApoE3-Aβ complexes [180]. Wang et al. [181] found 

that miR-1908 reduced mRNA levels of ApoE by target-

ing its 3′-UTR, and thereby inhibited ApoE-mediated Aβ 

clearance in astrocytoma and human macrophage cell 

lines.

Based on the sink hypothesis, it is assumed that expres-

sion of LRP1 in peripheral tissues affects Aβ clearance 

through the BBB. According to this hypothesis, an equi-

librium exists between the levels of Aβ in the brain and 

peripheral tissues. Thus, Aβ elimination by peripheral 

tissues causes brain Aβ to move into the blood through 

the BBB in order to maintain this balance [175, 182]. 

By expressing LRP1, the liver is able to clear plasma Aβ 

[183], therefore, LRP1 suppression in the liver reduced 

the Aβ uptake as reported by Tamaki et al. [184]. Clear-

ance of plasma Aβ by the liver is saturable and age-related 

[184]. Investigations showed that soluble LRP1 which is 

produced from the cleavage of LRP1 by β-secretase [185], 

is the main peripheral Aβ-binding protein and reduced 

the load of Aβ in mice brain by acting as a peripheral sink 

[186].

LRP2 (megalin) is expressed on the abluminal side of 

the BBB, and also involved in the BBB clearance of Aβ 

[187]. Aβ does not directly bind to LRP2, and needs ApoJ 

for the interaction with LRP2 [188]. Only, ApoJ-bounded 

Aβ can be cleared from the brain by this receptor [189]. 

Interestingly, a recent study indicated that Clusterin 

administration reduced Aβ accumulation in a mouse 

model of AD by increasing LRP2 levels [190]. Zhang et al. 

[191] identified LRP2 mRNA 3′-UTR as a direct target 

of miR-146a and indicated that LRP2 protein levels were 

significantly inhibited by miR-146a in human neuroblas-

toma cell line. MiR-146a also elevated the rate of apop-

tosis in human neuroblastoma cells exposed to Aβ, and 

thus, may contribute to AD progression.

ATP‑binding cassette transporters (ABC transporters)

The ABC transporter, one of the most common trans-

membrane proteins exists in all living organisms and is 

divided into subfamilies A to G based on its sequence 

homology and functional similarity. ABC transporters 

use the energy generated by ATP hydrolysis to transport 

substrates across cell-membranes, playing an important 

role in many physiological processes. Recent evidence 

showed that ABC transporters are involved in Aβ clear-

ance, especially ABCA1, ABCB1 (multidrug resistance 

protein, MDR1 or P-glycoprotein), ABCG2 (breast can-

cer resistance protein, BCRP), and ABCG4.

ABCA1 is a transmembrane protein that is expressed 

on the abluminal side of the BBB. It transports cholesterol 

and phospholipids to ApoE in order to form high-density 

lipoproteins (HDL). Analyses showed that ABCA1 indi-

rectly facilitated Aβ clearance through ApoE lipidation 

in the brain as no significant differentiation was seen in 

Aβ elimination between ABCA1-deficient and wild-type 

mice [192]. Mouse studies indicated that ABCA1 defi-

ciency reduced ApoE levels and its lipidation state in 

the brain which were accompanied by Aβ accumulation 

[193, 194] and co-deposition of poorly lipidated ApoE 

with Aβ [195]. Thus, ABCA1-mediated ApoE lipidation 

reduced Aβ accumulation [196]. Similarly, Corona et  al. 

[197] revealed that ABCA1-mediated ApoE lipidation is 

essential in Aβ clearance. The role of ABCA1 and ApoE 

in Aβ clearance is not fully elucidated as Aβ clearance 

was reduced in APP/ABCA1+/− mice expressing ApoE4 

but not ApoE3 [198]. While ABCA1 expression was 

reduced in the brain of APP/PS1 mice [199], it was up-

regulated in 3xTg-AD mice [200]. Further studies showed 

that ABCA1-mediated cholesterol efflux was reduced in 

the CSF of AD patients [201]. Nordestgaard et  al. [202] 

found that a loss-of-function mutation in ABCA1 was 

associated with a higher risk of AD. In neuroblastoma 
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and liver cells, miR-106b prevented Aβ clearance by sup-

pressing ABCA1 expression [203], while inhibition of 

miR-33a increased lipidated ApoE levels, and reduced 

Aβ levels mediated by the re-expression of ABCA1 [17]. 

Liang et al. [204] found that miR-20a/b reduced mRNA 

and protein expression of ABCA1 in human and mouse 

macrophage-derived foam cells. MiR-20a/b over-expres-

sion decreased cholesterol efflux to ApoA-I, and thus, 

may interfere with Aβ clearance.

The ABCB1 transporter that is expressed on the lumi-

nal side of the BBB acts as an efflux pump of exogenous 

molecules, and is involved in Aβ clearance, as shown in 

ABCB1-knockout mice [205]. Other in vitro and in vivo 

studies also proved that P-glycoprotein had efflux activity 

since ABCB1 up-regulation enhanced the efflux of Aβ40 

from cells [206] and led to a reduction in parenchymal 

Aβ40 and Aβ42 levels [207]. Moreover, previous stud-

ies showed that peripherally-injected Aβ accumulated in 

the brain of ABCB1-knockout mice [208], and ABCB1 

deficiency increased Aβ burden in a mouse model of AD 

[209]. Consistent with these results, Aβ accumulation 

was inversely correlated with ABCB1 expression in AD 

patients [210]. Notably, Aβ42 down-regulated the expres-

sion of P-glycoprotein [211].

ABCG2 is also expressed at the luminal side of the BBB, 

and is also involved in Aβ efflux from brain to blood cir-

culation [212] since Aβ levels were reported to be higher 

in the brain of ABCG2 knock-out mice than in the brain 

of wild type mice [208]. Shen et al. [213] also proved that 

ABCG2 had efflux activity, since ABCG2 deficiency led 

to Aβ accumulation in mice brain. Moreover, ABCG2 

levels were age-dependently increased in a mice model of 

AD [200], and Xiong et al. [214] reported its up-regula-

tion in AD brains.

The ABCG4 transporter participates in the cholesterol 

and desmosterol efflux. Do et al. [200] identified ABCG4 

as a receptor that controls Aβ efflux through the BBB. 

Other in vivo studies proved its role in Aβ clearance by 

disclosing that ABCG4 contributes to Aβ40 elimina-

tion across the mouse BBB [212], and that Aβ efflux 

was decreased in ABCG4-knockout mice [215]. Finally, 

a mouse model showed that ABCG4 is expressed in the 

cerebral cortex and medulla regions of the brain [216], 

while a human study demonstrated that ABCG4 was up-

regulated in the microglia-surrounded senile plaques in 

AD brains [217].

Glymphatic clearance

Aquaporin-4 (AQP4), a water-channel protein is 

expressed in astrocytes, and plays a key role in Aβ 

clearance by regulating the glymphatic pathway. AQP4 

is involved in the clearance of soluble Aβ from the 

brain [218]. Yang et  al. [219] revealed that AQP4 was 

up-regulated in areas of senile plaques, predominantly at 

later stages of plaque formation. In AQP4 knockout mice, 

glymphatic clearance of Aβ was reduced compared with 

wild-type mice [218].

Receptor‑mediated Aβ phagocytosis
Phagocytosis is an evolutionarily conserved process, crit-

ical for innate immunity. It has been shown that impaired 

immune response in AD negatively affects Aβ elimina-

tion [239]. Similarly, macrophage-dependent phagocy-

tosis of Aβ is impaired in AD [240]. In this section we 

introduce receptors that are expressed on the surface of 

phagocytic cells, and involved in Aβ phagocytosis. These 

surface receptors are regulated by several miRNAs, some 

of which are shown in Fig. 5 and Table 5.

Toll‑like receptors

Toll-like receptors (TLRs) are a family of pattern recog-

nition receptors (PRRs), and involved in innate immune 

recognition. There are at least ten TLRs in mammals, 

and though they have a high degree of structural simi-

larity, their functions are distinct. TLRs are involved in 

the clearance of diffuse and fibrillar forms of Aβ through 

microglial activation [241]. Song et al. [242] showed that 

TLR2 deletion increased Aβ levels in the brain of APP 

transgenic mice which was accompanied with memory 

deficits. Consistent with these results, TLR4 mutation 

caused Aβ deposition and cognitive deficits in a mouse 

model of AD [243]. Frank et al. [244] detected increased 

mRNA levels of TLR2, TLR4, and TLR9 in a transgenic 

mouse model. Zhang et  al. [245] found that miR-181c 

suppressed the activity of the luciferase reporter plas-

mid containing TLR4 3′-UTR by reducing TLR4 mRNA 

and protein expression in microglial cells. Consequently, 

miR-181c inhibited the downstream production of pro-

inflammatory mediators. Table 5 listed the miRNAs that 

inhibit the expression of TLR2 and TLR4.

Triggering receptor expressed on myeloid cells 2

Triggering receptor expressed on myeloid cells 2 

(TREM2) is expressed on microglial cells and belongs 

to the immunoglobulin superfamily. This surface recep-

tor has several ligands, including low density lipopro-

teins (LDL), ApoJ and ApoE. Yeh et  al. [246] showed 

that microglial cells are capable of uptaking LDL-Aβ 

complexes in a TREM2-dependent manner. In a mouse 

model of AD, TREM2 enhanced Aβ42 phagocytosis in 

the primary microglia [247]. Thus Aβ levels were higher 

in TREM2-deficient mice [248]. Kober et al. [249] found 

that the ligand affinity of LDL-Aβ complex was reduced 

in the R47H and R62H variants of TREM2, leading to 

phagocytosis impairment and Aβ accumulation [246]. 

Jay et al. [250] detected that TREM2 was up-regulated on 
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microglial cells that were clustered around Aβ deposits 

in a mouse model of AD and human AD tissues. Alex-

androv et  al. [251] showed that miR-34a down-regu-

lated TREM2 expression leading to Aβ accumulation by 

impairing phagocytosis.

Scavenger receptors

Scavenger receptors (SRs) are cell surface receptors that 

participate in the uptake of various polyanionic ligands. 

Based on their protein sequence, SRs are classified into 

10 families (A-J). It has been shown that scavenger recep-

tor class A (SR-A) and class B type 1 (SR-B1), as well 

as CD36 participate in Aβ clearance [252–254]. SR-A 

which is expressed on microglial cells and macrophages 

is implicated in Aβ phagocytosis [255]. Therefore SR-A 

deficiency reduced phagocytic activity of microglia and 

macrophages [256, 257], accelerated Aβ accumulation 

and consequently led to increased mortality in a mouse 

model of AD [258]. SR-B1 is expressed on microglial cells 

and astrocytes, mediates the binding of Aβ to microglia 

[259] and is implicated in the astrocyte-mediated clear-

ance of Aβ [260]. In  vivo studies indicated that SR-B1 

deficiency promoted Aβ deposition [261]. CD36 which 

is found in a variety of cell types mediates macrophage 

and microglial response to Aβ [262]. In  vitro studies 

demonstrated that CD36 deficiency decreased Aβ phago-

cytosis [263], while PPARγ-induced CD36 up-regulation 

enhanced Aβ phagocytosis in microglia [264]. Kouadir 

et  al. [265] reported the increases in SR-B1 and CD36 

expression by Aβ42, while Giunta et  al. [266] reported 

the downregulation of CD36 in AD patients. Li et  al. 

[267] showed that miR-758-5p significantly reduced 

mRNA and protein levels of CD36, and therefore attenu-

ated cellular uptake of cholesterol.

Heat shock proteins
Heat shock proteins (HSPs), a group of molecular chaper-

ones repress molecular denaturation under stressful con-

ditions. HSPs also prevent protein aggregation by binding 

to newly synthesized or misfolded proteins, thereby help-

ing maintain protein homeostasis. According to their 

size and function, HSPs can be divided into two different 

families: classic HSPs with a molecular weight of 60 kD 

or more that possess an ATP-binding site, e.g., HSP90 

and HSP70, and small HSPs with a molecular weight of 

Fig. 5 Receptor-mediated Aβ phagocytosis. The immune microglial cells and astrocytes reduce the load of Aβ in the brain by phagocytosis 

mediated by surface receptors. Aβ is directly phagocytosed by toll-like receptors and scavenger receptors, while the presence of LDL is crucial for 

TREM2-dependent phagocytosis. TLR2 toll like receptor 2, TLR4 toll like receptor 4, TLR9 toll like receptor 9, TREM2 triggering receptor expressed on 

myeloid cells 2, LDL low density lipoprotein, SR-A scavenger receptor class A, SR-B1 scavenger receptor class B type 1

Table 5 MiRNAs and  their downregulated mRNA targets 

in the receptor‑mediated Aβ phagocytosis

MiRNA Family Gene References

miR-203, miR-27a Toll-like receptors TLR4 [268, 269]

miR-143, miR-19, miR-146a TLR2 [270–272]

miR-155 Scavenger receptors SR-A [273]

miR-185, miR-96, miR-223 SR-BI [274]

miR-590 CD36 [275]
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40 kD or less that are ATP-independent, e.g., HSP27. Ini-

tial studies showed that HSPs regulated microglial inter-

actions with Aβ, substantiating the role of HSP90 and 

HSP70 in phagocytosis-dependent Aβ clearance [276]. 

Subsequent in  vivo studies showed similar data, and 

demonstrated that microglial clearance of Aβ was facili-

tated by HSP90 in a rat brain [277], and that HSP70 over-

expression decreased Aβ levels in a mouse model of AD 

[278]. Furthermore, Evans et al. [279] demonstrated that 

HSP90 and HSP70 could induce structural changes in Aβ 

oligomers that suppressed self-assembly. Similarly, Rivera 

et  al. [280] found that HSP70 prevented Aβ oligomeri-

zation and consequently reduced Aβ-induced toxicity 

in cultured neurons. HSP27 was also able to bind Aβ40, 

reducing its formation into mature fibrils [281]. There-

fore, HSP27 protects neurons against Aβ [282]. On the 

other hand, Aβ could enhance the expression of HSP27 

and HSP70 in neuronal cultures [283, 284]. Table 6 speci-

fied the miRNAs that inhibit HSPs expression.

Conclusion
Emerging evidences indicate that impaired Aβ clear-

ance plays a crucial role in both EOAD and LOAD. 

Thus, understanding how Aβ is cleared from the brain 

might be of clinical relevance. Aβ removal from the brain 

occurs via various pathways: UPS, autophagy, proteo-

lytic enzymes, transportation across the BBB and cellu-

lar uptake. Any disturbance of these pathways may lead 

to Aβ accumulation, resulting in the pathological pro-

cess driving AD. Our present review shows that numer-

ous miRNAs inhibit the translation of key molecules in 

these pathways, promoting the Aβ accumulation. This 

ability of miRNAs to target multiple mRNAs in the net-

work of Aβ clearance make them to valuable therapeu-

tic target molecules in AD. In particular, those miRNAs 

should be selected as target molecules that are involved 

in several pathways. As shown above, miR-34a and 

miR-29b may be attractive candidates for AD treatment 

because they inhibit at least three pathways leading to 

Aβ clearance. In the adult mammalian brain, miR-34a is 

highly expressed, and has been implicated in a range of 

neurodevelopmental and neuropathological processes. 

MiR-34a was reported to regulate neural stem/progenitor 

cell differentiation. High levels of this miRNA have been 

detected during epileptic seizures and ischemic stroke 

contributing to neuronal injury and death [290]. MiR-

29b has been identified as a putative regulator of immu-

nity. Moreover, ectopic expression of miR-29b promoted 

neuronal cell death, whereas its repression decreased 

cell death [291]. In summary, the research field on miR-

NAs is promising for therapeutic applications, not only 

for the treatment of AD but also for regenerative medi-

cine. However, several obstacles prevent their utility in 

the clinic, of which the accurate determination of their 

expression levels might be a critical point [292]. Indeed, 

due to the lack of consensus on the reference controls, 

the appropriate normalization approach should be vali-

dated in each experimental study [293, 294].
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