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Potential neutralizing antibodies 
discovered for novel corona virus 
using machine learning
Rishikesh Magar1, Prakarsh Yadav2 & Amir Barati Farimani1,2,3*

The fast and untraceable virus mutations take lives of thousands of people before the immune system 
can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of 
people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral 
epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-
CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to 
predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody 
sequences and their clinical patient neutralization response and trained an ML model to predict the 
antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random 
Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened 
thousands of hypothetical antibody sequences and found nine stable antibodies that potentially 
inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) 
simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.

�e biomolecular process for recognition and neutralization of viral particles is through the process of viral anti-
gen presentation and recruitment of appropriate B cells to synthesize the neutralizing  antibodies1. �eoretically, 
this process allows the immune system to stop any viral invasion, but this response is slow and o�en requires 
days, even weeks before adequate immune response can be  achieved2,3. �is poses a challenging question: can 
the process of antibody discovery be computationally accelerated to counter highly infective viral diseases?

�e general paradigm of computational antibody design revolves around doing complex Molecular dynamics 
(MD) simulations that are computationally expensive. �e computational expense of MD simulations makes 
them inaccessible in scenarios like global pandemic when rapid solutions are needed that can be reliable and 
accurate. �us, it is imperative to design and develop techniques that can aid the computational antibody dis-
covery process. With the rapid expansion of available biological data, such as DNA/protein sequences and 
 structures4, machine learning (ML) approaches have been increasing used in modelling and predicting biological 
 phenomenon5,6. Given su�cient training data, ML can be used to learn a mapping between the viral epitope and 
e�ectiveness of its complementary antibody. Once such mapping is learnt, it can be used to predict potentially 
neutralizing antibody for a given viral sequence enabling us to design novel  antibodies7. �us, enabling ML 
models to be used for high throughput screening of antibody sequences which is faster than traditional methods 
of computational protein design using MD simulations.

ML can learn the complex antigen–antibody interactions much faster than human immune system. �is 
allows rapid generation of a library of synthetic inhibitory antibodies bridge, which can overcome the latency 
between viral infection and human immune system response. �is bridge can potentially save the life of many 
people during the outbreak of novel viruses for which we lack treatment. One such instance is the spread of 
coronavirus disease (COVID-19)8.

With incredibly high infectivity and mortality rate, COVID-19 has become a global  scare9,10. Although the 
vaccines against COVID-19 are now available but there are no proven therapeutics, such as antibody serum, to 
aid the su�ering  patients2,9,11–18. Vaccines are a preventive measure to stop the spread of COVID-19, but do not 
have a therapeutic e�ect if a patient has been infected by SARS-CoV-2. Antibody serum based therapies can 
help patients a�er they have been infected by the SARS-CoV-2. Only viable treatment at the moment is sympto-
matic and there is a desperate need for developing therapeutics to counter COVID-19. Recently, the proteomics 
sequences of ‘WH-Human 1’ coronavirus became available through Metagenomic RNA sequencing of a patient 
in  Wuhan4,19. WH-Human 1 is 89.1% similar to a group of SARS-like  coronaviruses4. With the availability of 
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this sequence, it is possible to �nd potential inhibitory antibodies by scanning thousands of antibody sequences 
and discovering the neutralizing  ones20–22. However, this requires very expensive and time-consuming experi-
mentation to discover the inhibitory responses to SARS-CoV-2 in a timely manner. In addition, computational 
and physics-based models require the bound crystal structure of antibody-antigen complex, however; only a few 
of these structures have become  available23–26. Moreover, in case of SARS-CoV-2, the complex of viral antigen 
and neutralizing antibody is not available to-date27,28. Due to the lack of availability of structural data we aimed 
to develop an ML model which leverages the information in the antibody-antigen sequences rather than the 
structures to predict the potential neutralizing  antibodies29.

In this paper, we have collected a dataset comprised of antibody-antigen sequences of variety of viruses 
including HIV, In�uenza, Dengue, SARS, Ebola, Hepatitis, etc. with their patient clinical/biochemical  IC50 data. 
Using this dataset (we call it VirusNet), we trained and benchmarked di�erent shallow and deep ML models 
and selected the best performing model, to predict a set of potentially neutralizing antibodies. Based on SARS 
2006 neutralizing antibody  sca�old30, we created thousands of antibody candidates by mutation and screened 
them with our best performing ML model to �nd the potentially neutralizing antibodies. Finally, molecular 
dynamics (MD) simulations were performed on the neutralizing candidates to check their structural stability. We 
predict nine structures that were stable over the course of simulation and are potential neutralizing antibodies 
for SARS-CoV-2. In addition, we interpreted the ML method to understand what alterations in the sequence of 
binding region of the antibody would most e�ectively counter the viral mutation(s) and restore the ability of the 
antibody to bind to the  virus31. �is information is critical in terms of antibody design and engineering in order 
to reduce the dimension of combinatoric mutations needed to �nd a neutralizing antibody.

�is work highlights the merits of leveraging an ML based method for high-throughput discovery of neu-
tralizing antibodies for viruses where only the sequences of viral coat protein-antibody pairs can be obtained. 
Moreover, this work also proposes a recipe for computational antibody design using ML approaches to work con-
currently with the traditional molecular dynamics simulations-based approaches in order to augment each other. 
�rough our computational approach we are able to leverage ML techniques to computationally design antibod-
ies and also take advantage of accepted paradigm of molecular dynamics to validate our ML based approach.

Methods
Dataset. �e VirusNet dataset consists of 1933 samples spanning over 15 di�erent types of viruses. Majority 
of the data in the training set is composed of HIV antibody-antigen complex as it widely studied and readily 
available. Most of the samples for the HIV training set were obtained from the Compile, Analyze and Tally NAb 
panels (CATNAP) database from the Los Alamos National Laboratory (LANL)32,33. From CATNAP, data was 
collected for monoclonal antibodies, 2F5, 4E10 and 10E8, which bind with  GP4134–36. Using CATNAP’s func-
tionality for identifying epitope alignment, we selected FASTA sequence of the antigen corresponding to the 
site of alignment, in the antibody. We generated a dataset with 1831 training examples comprising of antibod-
ies—antigen sequences and their corresponding  IC50 values. �e CATNAP output is comprised of site of antigen 
sequence alignment for each of the antibodies with respect to 2F5, 4E10 and 10E8. Using the co-crystalized 
structure of (2F5-ELDKWAS) in (PDB:1TJG)34 as template, the antibody fragment that comes in contact with 
the antigen was found by considering amino acids within 7 Å of the antigen in the co-crystallized structure.

To make the dataset more diverse and train a more robust ML model, we included more available antibody-
antigen sequences and their neutralization potential. To do this, we compiled the sequences of In�uenza, Dengue, 
Ebola, SARS, Hepatitis, etc.30,37–90 by searching the keywords of “virus, antibody” on RCSB  server91 and selected 
the neutralizing complex by reading their corresponding publications. Furthermore, for each neutralizing com-
plex, the contact residues at the interface of antibody and antigen were selected (Fig. S3). To select the antigen 
contact sequences, all amino acids within 5 Å of corresponding antibody were chosen (Figs. S4, S5). To select 
the antibody contact sequences, all amino acids within 5 Å of the antigen were chosen. In total, 102 sequences 
of antibody-antigen complexes were mined, comprising of structures from X-ray di�raction of crystal structure 
and Cryo-EM experiments, and added to the 1831 samples collected from CATNAP, resulting in total number 
of 1933 training samples.

Graph featurization and machine learning. For e�ective representation of molecular structure of 
amino acids, the individual atoms of amino acids of antibody and antigen were treated as undirected graph, 
where the atoms are nodes and bonds are  edges92. In this work, we generate the representations of molecules 
from their respective molecular graphs. We construct these molecular graphs using  RDkit93. Embeddings are 
generated to encode relevant features about the molecular  graph94,95. �ese embeddings encode information like 
the type of atom, valency of an atom, hybridization state, aromaticity etc. (Table S3). First, each antibody and 
antigen were encoded into separate embeddings and then concatenated into a single embedding for the entire 
antibody-antigen complex. We then apply mean pooling over the features for this concatenated embedding to 
ensure dimensional consistency across the training data. �e pooled information is then passed to classi�er algo-
rithms like  XGBoost96, Random  Forest97, Multilayer perceptron, Support Vector Machine (SVM)98 and Logistic 
Regression which then predict whether the antibody is capable of neutralizing the virus. XGBoost is a gradient 
boosting framework which uses the second order derivative to approximate gradient to learn the  features96. 
Random forest is an ensemble machine learning method as it uses multiple decision tress and selects the mode 
of these decision tress as the  output97. Multilayer perceptron is a feedforward arti�cial neural network (ANN) 
which is composed of fully connected layers of perceptrons with an activation function. SVM is a machine learn-
ing algorithm which tries to learn the maximum-margin hyperplane to classify the  data98. Logistic regression is 
the estimation of the parameters of a logistic model which is used to model the probability of di�erent classes.
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Hypothetical antibody library generation. In order to �nd potential antibody candidates for SARS-
CoV-2, 2589 di�erent mutant strains of antibody sequences were generated based on the sequence of SARS 
neutralizing antibodies. �e reason we selected these antibodies as initial sca�olds is that the genome of SARS-
CoV-24 is 79.8% identical to “Tor2” isolate of SARS (Accession number: AY274119)99. Exhaustive search of 
the RCSB PDB server concluded that 4 structures SARS (PDB: 2GHW, 3BGF, 6NB6, 2DD8) were the only 
SARS antigen and antibody complexes which have been reported till date. Using 4 di�erent antibody variants 
of  SARS30,80,85,90, point mutations were applied to all the amino acids in the binding region of antibody. (See 
“Supporting Information” for SARS-CoV-2 antigen and antibody interactions.) To �nd out the binding region 
of these antibodies for sequence generation, all amino acids within 5 Å of their respective antigen were chosen. 
To assess the biological feasibility of these mutant sequences, we scored each mutation by using the BLOSUM62 
 matrix100.

Molecular dynamics simulations. To assess the stability of proposed antibody structures, we performed 
molecular dynamics (MD) simulations of each of antibody structure in a solvated  environment101. �e simula-
tion of solvated antibody was carried out using GROMACS-5.1.4102–104, and topologies for each antibody were 
generated according the GROMOS  54a7105 force�eld. �e protein was centered in a box, extending 1 nm from 
surface of the protein. �is box was the solvated by the SPC216 model water atoms, pre-equilibrated at 300 K. �e 
antibody system in general carried a net positive charge and it was neutralized by the counter ions. Energy mini-
mization was carried out using steepest descent algorithm, while restraining the peptide backbone to remove the 
steric clashes in atoms and subsequently optimize solvent molecule geometry. �e cut-o� distance criteria for 
this minimization were forces less than 100.0 kJ/mol/nm or number of steps exceeding 50,000. �is minimized 
structure was the sent to two rounds of equilibration at 300 K. First, an NVT ensemble for 50 picoseconds and a 
2-femtosecond time step. Leapfrog dynamics integrator was used with Verlet scheme, neighbor-list was updated 
every ten steps. All the ensembles were under Periodic Boundary Conditions and harmonic constraints were 
applied by the LINCS  algorithm106; under this scheme the long-range electrostatic interactions were computed 
by Particle Mesh Ewald (PME)  algorithm107. Berendsen thermostat was used for temperature coupling and pres-
sure coupling was done using the Parrinello-Rahman  barostat108,109. �e last round of NPT simulation ensures 
that the simulated system is at physiological temperature and pressure. �e system volume was free to change 
in the NPT ensemble but in fact did not change signi�cantly during the course of the simulation. Following the 
rounds of equilibration, production run for the system was carried out in NPT and no constraints for a total of 
150 ns, under identical simulation parameters.

Results and discussions
�e �owchart of SARS-CoV-2 antibody discovery using ML has four major steps (Fig. 1): (1) collecting data and 
curating the dataset for training set. (2) Featurization, embedding and benchmarking ML models and selecting 
the best performing one. (3) Hypothetical antibody library generation and ML screening for neutralization and 
(4) checking the stability of proposed antibodies. �is work�ow enables the rapid screening of large space of 
potential antibodies to neutralize COVID-19. In general, this work�ow can be used for high throughput screen-
ing of antibodies for any type of virus by only knowing the sequences of antigen epitopes.

To better understand the diversity and similarity of the sequences that were used in the training set, we pro-
ject the graph embeddings encoding the �ngerprints of the molecules in the t-Distributed Stochastic Neighbor 
Embedding (t-SNE) space (Fig. 2a). t-SNE axes shows the directions of the maximum variance in the feature 
space of the dataset, therefore, the dimensionality of the data can be reduced to lower dimensions (here two). HIV 
antigen shows the most variations on t-SNE components where viruses such as In�uenza, Dengue and H1N1 are 
very close to each other. �e neutralizing antibodies were also projected using t-SNE to show the variations in 
the available neutralizing sequences (Fig. 2b). Unlike antigen variations, antibody sequences are much closer to 
the center of t-SNE with a few scattered ones. �e comparison of Fig. 2a,b shows that the neutralizing antibodies 
are not sequence-diverse compared to virus antigens. �is di�erence demonstrates that a large space of potential 
antibodies can be screened and used for �nding novel antibodies. �e labels in the dataset are comprised of the 
neutralization panel data,  IC50 values for monoclonal antibodies and pseudo-typed viruses (Fig. 2c). �e  IC50 
labels were collected from 49 published neutralization studies and were collected from CATNAP Database (for 
1831 samples in our training set). For some cases in CATNAP, personal communication with the authors were 
made to resolve sequence name ambiguities between di�erent laboratories. For 102 samples of various viruses 
collected from RCSB server, all of them neutralize their antigen based on biochemical assays. �ese samples 
were labeled by setting their  IC50 to zero. Since classi�cation is performed on the training dataset,  IC50 ≤ 10 are 
set to neutralizing and  IC50 > 10 to non-neutralizing (Fig. 2c). To visualize the diversity of the virus types used 
in the dataset other than HIV, the distribution of 13 more viruses were presented in Fig. 2d. In�uenza, Dengue, 
SARS, Ebola and then Hepatitis have relatively larger samples in the dataset.

To benchmark the performance of di�erent ML models on the VirusNet dataset and select the best perform-
ing one, XGBoost, Random Forest (RF), Multilayer perceptron (MLP), Support Vector Machines (SVM), and 
Logistic Regression (LR) were used (Fig. 3a). �e �ve-fold cross validation on 80–20% split, train, and test was 
implemented and best accuracy was observed for XG-Boost model. �e performance and ranking of models 
follow the order of XGBoost (90.57%) > RF (89.18%) > LR (81.17%) > MLP (78.23) > SVM (75.49%). Since the fea-
turized training data is sparse in the case of VirusNet (see Fig. 2a,b), XGBoost selects the sparse features input by 
pruning and learning the underlying sparsity patterns. In order to augment the accuracy as a performance metric 
we have also added ROC-AUC score as a performance metric in the “Supporting Information” (See Fig. S6). To 
test the robustness of the XGBoost on completely unseen virus types, for each le�-out virus type, the model was 
trained on all the sequences in the VirusNet except for the le�-out. For example, for In�uenza, all the sequences 



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5261  | https://doi.org/10.1038/s41598-021-84637-4

www.nature.com/scientificreports/

and labels of In�uenza were removed from the training set and the trained model on the remaining dataset were 
tested on all the In�uenzas’s sequences and consequently the classi�cation accuracy were reported (Fig. 3b). 
�e accuracies for the out of class test is as follows: In�uenza (84.61%), Dengue (100%), Ebola (75%), Hepatitis 
(75%), SARS (100%). From these results, we can conclude that our model performance will be reliable based on 
the accuracies for out-of-class prediction. �e fact that our model prediction is highly accurate for various out 
of class tests, demonstrate its capability of e�ectively predicting the antibodies for novel SARS-CoV-2.

Next, using the best performing model (XGBoost), all the hypothetical candidates in the library were evalu-
ated for neutralization. Out of all the candidates, some of them are invalid mutations screened using BLOSUM62 
 matrix100 (Fig. 3c). 18 �nal candidates are both valid mutations and can neutralize SARS-CoV-2 with high 
con�dence probability of 0.9895 as per the ML model are then selected for MD screening (shown with green 
color in Fig. 3c).

A recent study reports that antibodies which e�ectively neutralized the previous SARS strains are not able to 
neutralize WH-Human  1110. However, the study also reports that there is “presence of a conserved immunogenic 
epitope among di�erent Corona viruses”. �erefore, we had generated mutant and co-mutant sequences to cre-
ate a diverse set of antibodies which we could screen through the ML model. �e ML model we have developed 
uses the antigen–antibody interactions and tries to learn the structure-based mapping between the amino acids 
involved at interaction surface. �is was the rationale behind including viruses from various other species as well 
in the dataset used to train the ML model. �e dataset is su�ciently diverse so that the ML model can learn the 
structurally important features from variety of viruses, Fig. 2A, in addition to the sequence dependent informa-
tion. �is antigen diversity allowed us to overcome the constraint of dissimilarity in WH-Human 1 and SARS 
ACE2 receptor and yet make accurate predictions.

Interpretability of the ML models is very important in both explaining the underlying biological and chemi-
cal understanding of neutralization and providing design guidelines for antibody engineering. One of the sig-
ni�cant advantages of ensemble methods such as XGBoost is their interpretability. By taking advantage of this 
property, the important features that are giving rise to neutralization were ranked and scored (Fig. 3d). �e 
input features to the model contains atomic level attributes such as atom type, valency, hybridization, etc. To 
collectively translate the important atomic features into important amino acid features, the scores of amino acids 
with unique atomic features were summed up and ranked (Fig. 3d). Some of the atomic features were common 
among all the amino acids (e.g. Carbon, implicit valency, Oxygen, etc.) therefore; we ignored them. However, 
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Figure 1.  Designing antibodies or peptide sequences that can inhibit the SARS-CoV-2 virus requires high 
throughput experimentation of vastly mutated sequences of potential inhibitors. �e screening of thousands 
of available strains of antibodies are prohibitively expensive, and not feasible due to lack of available structures. 
However, machine learning models can enable the rapid and inexpensive exploration of vast sequence space 
on the computer in a fraction of seconds. We collected 1933 virus-antibody sequences with clinical patient  IC50 
data. Graph featurization of antibody-antigen sequences creates a unique molecular representation. Using graph 
representation, we benchmarked and used a variety of shallow and deep learning models and selected XGBoost 
because of its superior performance and interpretability. We trained our model using a dataset including 1933 
diverse virus epitope and the antibodies. To generate the hypothetical antibody library, we mutated the SARS 
sca�old antibody of 2006 (PDB:2GHW) and generated thousands of possible candidates. Using the ML model, 
we classi�ed these sequences and selected the top 18 sequences that will neutralize SARS-CoV-2 with high 
con�dence. We used MD simulations to check the stability of the 18 sequences and rank them based on their 
stability.
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some of the other features like aromaticity or having Sulfur are unique and we considered those in amino acid 
features. �rough this criteria some of the important mutations that we obtain include Cysteine, Methionine, 
Tyrosine, Phenylalanine and Tryptophan. Mutations to cysteine we concluded to not be viable as introduction 
of additional cysteine to the antibody structure, which heavily relies on disul�de bridges, would be detrimental 
as it can cause misfolding of the antibody structure. Further validation of this was done by the BLOSUM62 
matrix, which put very heavy penalties on mutations which convert amino acids to cysteine. �ese observations 
cumulatively led us to the conclusion that Methionine is an important amino acid for antibody interface whereas 
cysteine is not. Methionine is known to be playing a crucial role in antigen recognition by antibody and further 
protein–protein  interaction111,112. In addition, oxidative damage to Methionine is reported to have negatively 
impact the pharmacokinetic properties of  antibodies113. �is information validated the features learnt by the 
ML model, allowing us to de�nitively conclude that Methionine is indeed one of the important amino acids in 
antigen recognition by antibodies (Fig. 3d).

To validate the biological feasibility of the ML model predicted antibodies, we assessed the stability of the 
predicted antibody by Molecular Dynamics (MD) simulations. We assessed the antibodies based on two criteria’s 
Root Mean Square Deviation (RMSD) and Mean Contact  Distance26. RMSD is a measure of the deviation in the 
structure of the protein over the course of the simulation, a higher RMSD indicates that the structure is chang-
ing with respect to the initial structure for simulation. Contact Distance is the distance between the interacting 
amino acids of the protein, a higher Mean Contact Distance is indicative of an unstable protein as the amino 
acids are moving further apart. �e combination of these features from simulation data of potentially neutralizing 

Figure 2.  (a) t-Distributed Stochastic Neighbor Embedding (t-SNE) of all the viruses epitopes used in the 
training dataset, revealing biological similarity and diversity of the sequences used in the dataset. (b) t-SNE of 
all the therapeutics antibody sequences used in the training set for variety of di�erent virus types. �e majority 
of the broadly neutralizing antibodies such as 2F5 is clustered at the center of this plot. (c) Patient clinical IC50 
data obtained from various sources and the distribution of the neutralizing  (IC50 < 10) and Non-neutralizing 
 (IC50 > 10) samples. (d) �e number of samples for each virus class except HIV. For HIV, we collected 1883 
samples. In�uenza and Dengue has 10+ samples.
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antibodies allowed us to validate their stability and select most stable candidates. �e predicted sequences from 
the ML model were then used to model the novel structure of potentially neutralizing antibodies. �e predicted 
sequences were projected onto their progenitor antibody and the changes in amino acid sequence were mod-
elled as follows: simple point mutations were introduced by modifying the target amino acid using  Coot114,115 
(Crystallographic Object-Oriented Toolkit). Coot environment allowed us to predict the stereochemical e�ect 
of each point mutation and appropriately compensate for it. Using such an approach, we were able to accurately 
model the putative structures of the antibodies. �e modelled structures were then passed to MD simulations 
for stability check.

To check the stability of predicted structures energetically, 20 MD simulations (18 point mutations + 2 
wildtype (WT)) in total were performed (Fig. 4a). Structures with low Root Mean Square Deviation (RMSD) 
and low contact distance are in a stable conformation, whereas structures with high RMSD and high contact 

Figure 3.  (a) �e test accuracy with �ve-fold cross validation for XG-Boost, Random Forrest (RF), Logistic 
Regression (LR), Support Vector Machine (SVM) and Deep Learning (Multilayer Perceptron. XGBoost has 
the highest performance with (90.75%). (b) Out of training class test accuracy for in�uenza, Dengue, Ebola, 
Hepatitis, and SARS. To perform this test, for example for in�uenza, all the in�uenza virus-antibody sequences 
were removed from the training set and the obtained model were tested on all samples of In�uenza and 
the accuracy is reported here. (c) Blosum validated mutations, non-neutralizing and neutralizing antibody 
sequences. To achieve more con�dence, we set the threshold of prediction probability to 0.9895 in XGBoost and 
found 18 neutralizing antibody sequences (the green points). (d) Interpretability of ML model: to understand 
what mutations are playing the key roles in neutralization, XGBoost feature importance used with ranked 
atomic level features. �rough connecting the atomic features with each of 20 amino acids, M was found to be 
the most important amino acids in neutralization followed by F, Y, W. �e ML model predicted the presence of 
hydrophobicity and Sulfur as an important feature in antibody-antigen interaction. We concluded that M was 
the most important amino acid as it has both the characteristics of hydrophobicity and the presence of Sulfur.
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distances are in an unstable conformation. RMSD (Fig. S2) and contact distance (Fig. S3) for WT structures 
have lower values, demonstrating stability, therefore; the contact distances versus RMSD is a good indicator of 
the stability of a protein over the course of a simulation (Fig. 4b).

Once mutation introduced in the crystallographic structure, it will cause it to deviate from WT structure’s 
RMSD and contact distance. We performed simulations for all the 18 point-mutant structures (Table S1) and 
their mean contact distance versus  RMSD116,117 were computed for their respective trajectories (Fig. 4b) (see 
“Supporting Information”). Based on the two WT structures mean RMSD and contact distances, we selected the 
mutations which have mean contact distance and RMSD values less than 0.488 nm and 0.25 nm, respectively 
(the shaded triangle region in Fig. 4b). Candidates with higher values of mean RMSD and contact distances are 
unstable and will potentially fail to neutralize the SARS-CoV-2.

In order to be more comprehensive and take into account the e�ect of co-mutation, we created 5 co-mutations 
that are listed in Table S2 (Co1, Co2, Co3, Co4, Co5). �ese �ve co-mutations were screened using XGBoost for 
neutralization. Among all �ve co-mutations, Co5 did not neutralize. To check the stability of these four neutral-
izing co-mutations, MD simulations were performed and Co1 was found to be stable (Fig. 4b). �e list of the 
�nal nine stable mutations and co-mutations are tabulated in Table 1 and the PDB structures are available in 
PDB format as “Supporting Information”.

Conclusion
We have developed a machine learning model for high throughput screening of synthetic antibodies to discover 
antibodies that potentially inhibit SARS-CoV-2. Our approach can be widely applied to other viruses where 
only the sequences of viral coat protein-antibody pairs can be obtained. �e ML models were trained on 14 
di�erent virus types and achieved over 90% �vefold test accuracy. �e out of class prediction is 100% for SARS 
and 84.61% for In�uenza, demonstrating the power of our model for neutralization prediction of antibodies 
for novel viruses like COVID-19. Using this model, the neutralization of thousands of hypothetical antibod-
ies was predicted, and 18 antibodies were found to be highly e�cient in neutralizing SARS-CoV-2. Using MD 
simulations, the stability of predicted antibodies were checked and nine stable antibodies were found that can 

Figure 4.  (a) �e snapshot of MD simulation of mutated proteins. Each protein is solvated in a box of water 
and simulated to collect the statistical data on the stability of mutants and co-mutants. (b) Mean Root Mean 
Square Deviation (RMSD) versus Mean contact distances for each candidate averaged over the whole trajectory.

Table 1.  �e �nal neutralizing candidates obtained through screening with ML model, MD simulation for 
stability and bioinformatics. �e detailed list of sequences is available in the “Supporting Information”.

Structure Mutation

C1 2GHW-A33C

C6 2GHW-R100H

C9 2GHW-R162H

C11 2GHW-T285N

C12 2GHW-R286H

C13 6NB6-F203M

C14 2GHW-T204N

C15 2GHW-T206N

Co1 6NB6-I51M, R150H, T204N
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neutralize SARS-CoV-2. In addition, the interpretation of ML model revealed that mutating to Methionine and 
Tyrosine is highly e�cient in enhancing the a�nity of antibodies to SARS-CoV-2. Further validation of the 
predicted antibodies can be carried out by future work involving in vitro experiments to assess the e�cacy of 
the predicted antibodies at neutralizing the SARS-CoV-2 virus. In our work we assume only point mutations in 
the antibody sequence of SARS-CoV-1 when generating the potential antibody candidates for SARS-CoV-2, it 
is possible that the sequences have multiple point mutations and many di�erent combinatorics. We would like 
to investigate such excluded combinations in the future and create a comprehensive dataset and a more robust 
protocol for discovering neutralizing antibodies.
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