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Abstract 

 The fast and untraceable virus mutations take lives of thousands of people before the immune system 

can produce the inhibitory antibody. Recent outbreak of novel coronavirus infected and killed 

thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can 

inhibit the viral epitopes of COVID-19 will save the life of thousands. In this paper, we devised a 

machine learning (ML) model to predict the possible inhibitory synthetic antibodies for Corona virus. 

We collected 1933 virus-antibody sequences and their clinical patient neutralization response and 

trained an ML model to predict the antibody response. Using graph featurization with variety of ML 

methods, we screened thousands of hypothetical antibody sequences and found 8 stable antibodies 

that potentially inhibit COVID-19. We combined bioinformatics, structural biology, and Molecular 

Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit the 

Corona virus.  

 
1 Corresponding Author, e-mail: barati@cmu.edu, Website: www.baratilab.com 
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Introduction 

 

 The biomolecular process for recognition and neutralization of viral particles is through the process 

of viral antigen presentation and recruitment of appropriate B cells to synthesize the neutralizing 

antibodies.1 Theoretically, this process allows the immune system to stop any viral invasion, but this 

response is slow and often requires days, even weeks before adequate immune response can be 

achieved.2,3 This poses a challenging question: Can the process of antibody discovery be accelerated 

to counter highly infective viral diseases? 

With the rapid expansion of available biological data, such as DNA/protein sequences and structures4, 

it is now possible to model and predict the complex biological phenomena through machine learning 

(ML) approaches. Given sufficient training data, ML can be used to learn a mapping between the 

viral epitope and effectiveness of its complementary antibody.5 Once such mapping is learnt, it can 

be used to predict potentially neutralizing antibody for a given viral sequence6. 

ML can essentially learn the complex antigen-antibody interactions faster than human immune 

system, leading to the generation of synthetic inhibitory antibodies acting as a bridge, which can 

overcome the latency between viral infection and human immune system response. This bridge can 

potentially save the life of many especially during an outbreak and pandemic. One such instance is 

the spread of coronavirus disease (COVID-19)7. 

With incredibly high infectivity and mortality rate, COVID-19 has become a global scare.8,9 To 

compound the problem, there are no proven therapeutics to aid the suffering patients2,8,10–14. Only 

viable treatment at the moment is symptomatic and there is a desperate need for developing 

therapeutics to counter COVID-19. Recently, the proteomics sequences of ‘WH-Human 1’ 

coronavirus became available through Metagenomic RNA sequencing of a patient in Wuhan.4,15 WH-
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Human 1 is 89.1% similar to a group of SARS-like coronaviruses.4 With this sequence available, it 

is possible to find potential inhibitory antibodies by scanning thousands of antibody sequences and 

discovering the neutralizing ones16–18. However, this requires very expensive and time-consuming 

experimentation to discover the inhibitory responses to Corona virus in a timely manner. In addition, 

computational and physics-based models require the bound crystal structure of antibody-antigen 

complex, however; only a few of these structures have become available.19,20,21,22 In the case of 

COVID-19, the bound antigen-antibody crystal structure is not available to-date23,24. Given this 

challenge and the fact that ML models require a large amount of data, the ML approach should rely 

on the sequences of the antibody-antigen rather than the crystal structures25.  

In this paper, we have collected a dataset comprised of antibody-antigen sequences of variety of 

viruses including HIV, Influenza, Dengue, SARS, Ebola, Hepatitis, etc. with their patient 

clinical/biochemical IC50 data. Using this dataset (we call it VirusNet), we trained and benchmarked 

different shallow and deep ML models and selected the best performing model. Based on SARS 2006 

neutralizing antibody scaffold26, we created thousands of potential antibody candidates by mutation 

and screened them with our best performing ML model. Finally, molecular dynamics (MD) 

simulations were performed on the neutralizing candidates to check their structural stability. We 

predict 8 structures that were stable over the course of simulation and are potential neutralizing 

antibodies for COVID-19. 

In addition, we interpreted the ML method to understand what alterations in the sequence of binding 

region of the antibody would most effectively counter the viral mutation(s) and restore the ability of 

the antibody to bind to the virus27. This information is critical in terms of antibody design and 

engineering and reducing the dimension of combinatoric mutations needed to find a neutralizing 

antibody. 
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Methods  

1. Dataset  

The majority of the data in the training set is composed of HIV antibody-antigen complex (1887 

samples).  Most of the samples for the HIV training set were obtained from the Compile, Analyze 

and Tally NAb panels (CATNAP) database from the Los Alamos National Laboratory (LANL) 

28,29. From CATNAP, data was collected for monoclonal antibodies, 2F5, 4E10 and 10E8, which 

bind with GP4130–32. Using CATNAP’s functionality for identifying epitope alignment, we selected 

FASTA sequence of the antigen corresponding to the site of alignment, in the antibody. We 

generated a dataset with 1831 training examples comprising of antibodies – antigen sequences and 

their corresponding IC50 values. The CATNAP output is comprised of site of antigen sequence 

alignment for each of the antibodies with respect to 2F5, 4E10 and 10E8. Using the co-crystalized 

structure of (2F5-ELDKWAS) in (PDB:1TJG)30 as template, the antibody fragment that comes in 

contact with the antigen was found by considering amino acids within 7Å of the antigen in the co-

crystallized structure.  

To make the dataset more diverse and train a more robust ML model, we included more available 

antibody-antigen sequences and their neutralization potential. To do this, we compiled the sequences 

of Influenza, Dengue, Ebola, SARS, Hepatitis, etc.26,33–86  by searching the keywords of “virus, 

antibody” on RCSB server87 and selected the neutralizing complex by reading their corresponding 

publications. Furthermore, for each neutralizing complex, the contact residues at the interface of 

antibody and antigen were selected. To select the antigen contact sequences, all amino acids within 

5Å of corresponding antibody were chosen. (Supporting Information) To select the antibody contact 

sequences, all amino acids within 5Å of the antigen were chosen.  In total, 102 sequences of 

antibody-antigen complexes were mined and added to the 1831 samples, resulting in total number 

of 1933 training samples.  
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2. Graph Featurization and Machine Learning  

For effective representation of molecular structure of amino acids, the individual atoms of amino 

acids of antibody and antigen were treated as undirected graph, where the atoms are nodes and bonds 

are edges88. It has been shown that graph representation is better in transferring the chemistry and 

topology of molecular structure compared to Extended Connectivity Fingerprints (ECFP)88,89. We 

construct these molecular graphs using RDkit90. Embeddings are generated to encode relevant 

features about the molecular graph91,92. These embeddings encode information like the type of atom, 

valency of an atom, hybridization state, aromaticity etc. First, each antibody and antigen were 

encoded into separate embeddings and then concatenated into a single embedding for the entire 

antibody-antigen complex. We then apply mean pooling over the features for this concatenated 

embedding to ensure dimensional consistency across the training data. The pooled information is 

then passed to classifier algorithms like XGBoost93, Random Forest94, Multilayer perceptron, 

Support Vector Machine (SVM)95 and Logistic Regression which then predict whether the antibody 

is capable of neutralizing the virus.   

 

3. Hypothetical Antibody Library Generation 

In order to find potential antibody candidates for COVID-19, 2589 different mutant strains of 

antibody sequences were generated based on the sequence of SARS neutralizing antibodies. The 

reason we selected these antibodies as initial scaffolds is that the genome of COVID-19 4 is 79.8% 

identical to “Tor2” isolate of SARS (Accession number: AY274119)96.  Using 4 different antibody 

variants of SARS (PDB: 2GHW, 3BGF, 6NB6, 2DD8)26,76,81,86, point mutations were applied to all 
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the amino acids in the binding region of antibody. (see Supporting Information for COVID-19 

antigen and antibody interactions) To find out the binding region of these antibodies for sequence 

generation, all amino acids within 5Å of their respective antigen were chosen. To assess the 

biological feasibility of these mutant sequences, we scored each mutation by using the BLOSUM62 

matrix97.  

 

4. Molecular Dynamics Simulations 

To assess the stability of proposed antibody structures, we performed molecular dynamics (MD) 

simulations of each of antibody structure in a solvated environment98. The simulation of solvated 

antibody was carried out using GROMACS-5.1.499–101, and topologies for each antibody were 

generated according the GROMOS 54a7102 forcefield. The protein was centered in a box, extending 

1 nanometer from surface of the protein. This box was the solvated by the SPC216 model water 

atoms, pre-equilibrated at 300K. The antibody system in general carried a net positive charge and it 

was neutralized by the counter ions. Energy minimization was carried out using steepest descent 

algorithm, while restraining the peptide backbone to remove the steric clashes in atoms and 

subsequently optimize solvent molecule geometry. The cut-off distance criteria for this minimization 

were forces less than 100.0 kJ/mol/nm or number of steps exceeding 50,000. This minimized structure 

was the sent to two rounds of equilibration at 300K. First, an NVT ensemble for 50 picoseconds and 

a 2-femtosecond time step. Leapfrog dynamics integrator was used with Verlet scheme, neighbor-list 

was updated every 10 steps. All the ensembles were under Periodic Boundary Conditions and 

harmonic constraints were applied by the LINCS algorithm103; under this scheme the long-range 

electrostatic interactions were computed by Particle Mesh Ewald (PME) algorithm104. Berendsen 

thermostat was used for temperature coupling and pressure coupling was done using the Parrinello-
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Rahman barostat105,106. The last round of NPT simulation ensures that the simulated system is at 

physiological temperature and pressure.  The system volume was free to change in the NPT ensemble 

but in fact did not change significantly during the course of the simulation. Following the rounds of 

equilibration, production run for the system was carried out in NPT and no constraints for a total of 

15 nanoseconds, under identical simulation parameters. 

 

Results and Discussions 

The flowchart of COVID-19 antibody discovery using ML has four major steps (Figure 1): 1. 

Collecting data and curating the dataset for training set. 2. Featurization, embedding and 

benchmarking ML models and selecting the best performing one. 3. Hypothetical antibody library 

generation and ML screening for neutralization and 4. Checking the stability of proposed antibodies. 

This workflow enables the rapid screening of large space of potential antibodies to neutralize COVID-

19. In general, this workflow can be used for high throughput screening of antibodies for any type of 

virus by only knowing the sequences of antigen epitopes.  

To better understand the diversity and similarity of the sequences that were used in the training set, 

t-Distributed Stochastic Neighbor Embedding (t-SNE) of all different viruses were computed (Figure 

2a). t-SNE axes shows the directions of the maximum variance in the dataset, therefore, the 

dimensionality of the data can be reduced to lower dimensions (here two). HIV antigen shows the 

most variations on t-SNE components where viruses such as Influenza, Dengue and H1N1 are very 

close to each other. The neutralizing antibodies were also projected using t-SNE to show the 

variations in the available neutralizing sequences. (Figure 2b) Unlike antigen variations, antibody 

sequences are much closer to the center of t-SNE with a few scattered ones. The comparison of Figure 

2a and Figure 2b shows that the neutralizing antibodies are not sequence-diverse compared to virus 

antigens. This difference demonstrates that a large space of potential antibodies can be screened and 
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used for finding novel antibodies. The labels in the dataset are comprised of the neutralization panel 

data, IC50 values for monoclonal antibodies and pseudo-typed viruses. (Figure 2c) The IC50 labels 

were collected from 49 published neutralization studies and were collected from Los Alamos HIV 

Database (for 1831 samples in our training set).  For some cases in CATNAP, personal 

communication with the authors were made to resolve sequence name ambiguities between different 

laboratories. For 102 samples of various viruses collected from RCSB server, all of them neutralize 

their antigen based on biochemical assays. These samples were labeled by setting their IC50 to zero. 

Since classification is performed on the training dataset, IC50 ≤10 are set to neutralizing and IC50>10 

to non-neutralizing (Figure 2c). To visualize the diversity of the virus types used in the dataset other 

than HIV, the distribution of 13 more viruses were presented in Figure 2d. Influenza, Dengue, SARS, 

Ebola and then Hepatitis have relatively larger samples in the dataset. 

 

To benchmark the performance of different ML models on the VirusNet dataset and select the best 

performing one, XGBoost, Random Forest (RF), Multilayer perceptron (MLP), Support Vector 

Machines (SVM), and Logistic Regression (LR) were used (Figure 3a). The five-fold cross validation 

on 80%-20% split, train, and test resulted in best accuracy for XG-Boost model. The performance 

and ranking of models follow the order of XGBoost (90.57%)> RF (89.18%)>LR (81.17%)> MLP 

(78.23)> SVM (75.49%). Since the training data is sparse in the case of VirusNet (See Figure 2a and 

Figure 2b), XGBoost selects the sparse features input by pruning and learning the underlying sparsity 

patterns. To test the robustness of the XGBoost on completely unseen virus types, for each left-out 

virus type, the model was trained on all the sequences in the VirusNet except for the left-out. For 

example, for Influenza, all the sequences and labels of Influenza were removed from the training set 

and the trained model on the remaining dataset were tested on all the Influenzas’s sequences and 

consequently the classification accuracy were reported (Figure 3b). The accuracies for the out of class 
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test is as follows: Influenza (84.61%), Dengue (100%), Ebola (75%), Hepatitis (75%), SARS (100%). 

The out of class results demonstrate that our model is capable of generalizing the prediction to a 

completely novel virus epitope. Since COVID-19 is completely a new virus, we can conclude that 

our model prediction performance will be accurate. The fact that our model prediction is 100% for 

SARS out of class test demonstrate its capability of effectively predicting the antibodies for COVID-

19 which is from SARS family. 

Next, using the best performing model (XGBoost), all the hypothetical candidates in the library were 

evaluated for neutralization. Out of all the candidates, some of them are invalid mutations screened 

using BLOSUM62 matrix97 (Figure 3c). 18 final candidates are both valid mutations and can 

neutralize COVID-19 with high confidence probability of 0.9895 (shown with green color in Figure 

3c).  

Interpretability of the ML models is very important in both explaining the underlying biological and 

chemical understanding of neutralization and providing design guidelines for antibody engineering. 

One of the significant advantages of ensemble methods such as XGBoost is their interpretability. By 

taking advantage of this property, the important features that are giving rise to neutralization were 

ranked and scored (Figure 3d). The input features to the model contains atomic level attributes such 

as atom type, valency, hybridization, etc. To collectively translate the important atomic features into 

important amino acid features, the scores of amino acids with unique atomic features were summed 

up and ranked (Figure 3d). Some of the atomic features were common among all the amino acids 

(e.g. Carbon, implicit valency, Oxygen, etc.) therefore; we ignored them. However, some of the other 

features like aromaticity or having Sulfur are unique and we considered those in amino acid features.  

Based on the unique features appeared in ranking, Methionine (M) is the most important one. (Figure 

3d) 
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The predicted sequences from the ML model were then used to model the novel structure of 

potentially neutralizing antibodies. The predicted sequences were projected onto their progenitor 

antibody and the changes in amino acid sequence were modelled as follows: Simple point mutations 

were introduced by modifying the target amino acid using Coot 107,108(Crystallographic Object-

Oriented Toolkit). Coot environment allowed us to predict the stereochemical effect of each point 

mutation and appropriately compensate for it. Using such an approach, we were able to accurately 

model the putative structures of the antibodies. The modelled structures were then passed to MD 

simulations for stability check. 

To check the stability of predicted structures energetically, 20 MD simulations (18 point mutations+2 

wildtype (WT)) in total were performed (Figure 4a). Structures with low Root Mean Square Deviation  

(RMSD) and low contact distance are in a stable conformation, whereas structures with high RMSD 

and high contact distances are in an unstable conformation. RMSD and contact distance for WT 

structures have lower values, demonstrating stability, therefore; the contact distances versus RMSD 

is a good indicator of the stability of a protein over the course of a simulation (Figure 4b).  

Once mutation introduced in the crystallographic structure, it will cause it to deviate from WT 

structure’s RMSD and contact distance. We performed simulations for all the 18 point-mutant 

structures and their mean contact distance versus RMSD109,110 were computed for their respective 

trajectories (Figure 4b) (see Supporting Information). Based on the two WT structures mean RMSD 

and contact distances, we selected the mutations which have mean contact distance and RMSD values 

less than 0.488 nm and 0.35 nm, respectively. (the shaded triangle region in Figure 4b). Candidates 

with higher values of mean RMSD and contact distances are unstable and will potentially fail to 

neutralize the COVID-19. 

In order to be more comprehensive, we created co-mutations out of 5 stable point mutations (C3, C7, 

C14, C17, C18, see Table S1 in Supporting Information for the list of all 18 candidates). This resulted 
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in 5 new structures (Co1, Co2, Co3, Co4, Co5 in Table S2) that were screened using XGBoost for 

neutralization. Among all 5 co-mutations, Co5 did not neutralize. To check the stability of these 4 

neutralizing co-mutations, MD simulations were performed and Co1, Co2 and Co4 were found to be 

stable (Figure 4b). The list of the final 8 stable mutations and co-mutations are tabulated in Table 1 

and the PDB structures are available as Supporting Information.  

 

Conclusion 

We have developed a machine learning model for high throughput screening of synthetic antibodies 

to discover antibodies that potentially inhibit the COVID-19. Our approach can be widely applied to 

other viruses where only the sequences of viral coat protein-antibody pairs can be obtained. The ML 

models were trained on 14 different virus types and achieved over 90% fivefold test accuracy. The 

out of class prediction is 100% for SARS and 84.61% for Influenza, demonstrating the power of our 

model for neutralization prediction of antibodies for novel viruses like COVID-19. Using this model, 

the neutralization of thousands of hypothetical antibodies was predicted, and 18 antibodies were 

found to be highly efficient in neutralizing COVID-19. Using MD simulations, the stability of 

predicted antibodies were checked and 8 stable antibodies were found that can neutralize COVID-19. 

In addition, the interpretation of ML model revealed that mutating to Methionine and Tyrosine is 

highly efficient in enhancing the affinity of antibodies to COVID-19. 
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Figure 1. Designing antibodies or peptide sequences that can inhibit the COVID-19 virus requires 
high throughput experimentation of vastly mutated sequences of potential inhibitors. The screening 
of thousands of available strains of antibodies are prohibitively expensive, and not feasible due to 
lack of available structures. However, machine learning models can enable the rapid and inexpensive 
exploration of vast sequence space on the computer in a fraction of seconds. We collected 1933 virus-
antibody sequences with clinical patient IC50 data. Graph featurization of antibody-antigen sequences 
creates a unique molecular representation. Using graph representation, we benchmarked and used a 
variety of shallow and deep learning models and selected XGBoost because of its superior 
performance and interpretability. We trained our model using a dataset including 1,933 diverse virus 
epitope and the antibodies. To generate the hypothetical antibody library, we mutated the SARS 
scaffold antibody of 2006 (PDB:2GHW) and generated thousands of possible candidates. Using the 
ML model, we classified these sequences and selected the top 18 sequences that will neutralize 
COVID-19 with high confidence. We used MD simulations to check the stability of the 18 sequences 
and rank them based on their stability. 
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Figure 2. a) t-Distributed Stochastic Neighbor Embedding (t-SNE) of all the viruses epitopes used 
in the training dataset, revealing biological similarity and diversity of the sequences used in the 
dataset. b) t-SNE of all the therapeutics antibody sequences used in the training set for variety of 
different virus types. The majority of the broadly neutralizing antibodies such as 2F5 is clustered at 
the center of this plot. c) Patient clinical IC50 data obtained from various sources and the distribution 
of the neutralizing (IC50<10) and Non- neutralizing (IC50>10) samples. d) The number of samples for 
each virus class except HIV. For HIV, we collected 1883 samples. Influenza and Dengue has 10+ 
samples   

a b 
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Figure 3. a) The test accuracy with five-fold cross validation for XG-Boost, Random Forrest (RF), 
Logistic Regression (LR), Support Vector Machine (SVM) and Deep Learning (Multilayer 
Perceptron. XGBoost has the highest performance with (90.75%). b) Out of training class test 
accuracy for influenza, Dengue, Ebola, Hepatitis, and SARS. To perform this test, for example for 
influenza, all the influenza virus-antibody sequences were removed from the training set and the 
obtained model were tested on all samples of Influenza and the accuracy is reported here. c) Blossum 
validated mutations, non-neutralizing and neutralizing antibody sequences. To achieve more 
confidence, we set the threshold of prediction probability to 0.9895 in XGBoost and found 18 
neutralizing antibody sequences (the green points). d) Interpretability of ML model: to understand 
what mutations are playing the key roles in neutralization, XGBoost feature importance used with 
ranked atomic level features. Through connecting the atomic features with each of 20 amino acids, 
M was found to be the most important amino acids in neutralization followed by F, Y, W. 
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Figure 4. a) The snapshot of MD simulation of mutated proteins. Each protein is solvated in a box 
of water and simulated to collect the statistical data on the stability of mutants and co-mutants. b) 
Mean Root Mean Square Deviation (RMSD) versus Mean contact distances for each candidate 
averaged over the whole trajectory. 

 

Structure Mutation 

C3 2GHW–I51M 

C7 2GHW–R150H 

C14 2GHW–T204N 

C17 6NB6–R56H 

C18 6NB6–K58S 

Co1 2GHW-I51M, R150H, T204N 

Co2 2GHW-I51M, R150H 

Co4 6NB6-R56H, K58S 

 
 

Table 1: The final neutralizing candidates obtained through screening with ML model, MD simulation 
for stability and Bioinformatics. The detailed list of sequences is available in the Supporting 
Information. 
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