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Abstract 

Background: Incidence of endometrial cancer are rising both in the United States and worldwide. As endometrial 

cancer becomes more prominent, the need to develop and characterize biomarkers for early stage diagnosis and the 

treatment of endometrial cancer has become an important priority. Several biomarkers currently used to diagnose 

endometrial cancer are directly related to obesity. Although epigenetic and mutational biomarkers have been identi-

fied and have resulted in treatment options for patients with specific aberrations, many tumors do not harbor those 

specific aberrations. A promising alternative is to determine biomarkers based on differential gene expression, which 

can be used to estimate prognosis.

Methods: We evaluated 589 patients to determine differential expression between normal and malignant patient 

samples. We then supplemented these evaluations with immunohistochemistry staining of endometrial tumors 

and normal tissues. Additionally, we used the Library of Integrated Network-based Cellular Signatures to evaluate 

the effects of 1826 chemotherapy drugs on 26 cell lines to determine the effects of each drug on HPRT1 and AURKA 

expression.

Results: Expression of HPRT1, Jag2, AURKA, and PGK1 were elevated when compared to normal samples, and HPRT1 

and PGK1 showed a stepwise elevation in expression that was significantly related to cancer grade. To determine the 

prognostic potential of these genes, we evaluated patient outcome and found that levels of both HPRT1 and AURKA 

were significantly correlated with overall patient survival. When evaluating drugs that had the most significant effect 

on lowering the expression of HPRT1 and AURKA, we found that Topo I and MEK inhibitors were most effective at 

reducing HPRT1 expression. Meanwhile, drugs that were effective at reducing AURKA expression were more diverse 

(MEK, Topo I, MELK, HDAC, etc.). The effects of these drugs on the expression of HPRT1 and AURKA provides insight 

into their role within cellular maintenance.

Conclusions: Collectively, these data show that JAG2, AURKA, PGK1, and HRPT1 have the potential to be used 

independently as diagnostic, prognostic, or treatment biomarkers in endometrial cancer. Expression levels of these 

genes may provide physicians with insight into tumor aggressiveness and chemotherapy drugs that are well suited to 

individual patients.
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Background

Endometrial cancer is the fourth most common cancer 

in women with 12,990 new diagnoses and 4120 deaths in 

2016 in the United States [1]. Over 710,200 women are 

living with endometrial cancer in the United States, and 

approximately 2.8% of women will be diagnosed with the 

disease at some point during their lifetime. As the most 

significant risk factor for endometrial cancer is obesity, 

a majority of the biomarkers used to detect and monitor 

endometrial cancer development are related to metabolic 

and endocrine alterations [2]. Androgens, estrogens, pro-

lactin, thyroid stimulating hormone, leptin, and adiponec-

tin are a few of the biomarkers utilized to highlight risk of 

endometrial cancer development. While these biomarkers 

can be useful, they are oftentimes somewhat subjective as 

the levels of these hormones fluctuate naturally, are gener-

ally elevated with obesity, and are not necessarily unique to 

cancer development [2, 3]. In order to find new biomark-

ers that may act as diagnostic biomarkers for endometrial 

cancer, we evaluated Jagged2 (JAG2), Aurora Kinase A 

(AURKA), Phosphoglycerate Kinase 1 (PGK1), and Hypox-

anthine Guanine Phosphoribosyltransferase 1 (HPRT1) for 

their role in cellular proliferation and cancer development. 

We evaluated these genes because of their upregulation 

and diagnostic potential in other cancer types [4–9].

JAG2 is a notch transmembrane ligand. Notch signaling 

is a conserved signaling pathway linked to the develop-

ment of several cancers due to its role in cell fate, cellular 

proliferation regulation, and cell death [10]. �is is exem-

plified by the fact that Notch signaling regulates stem cell 

proliferation and differentiation [11]. Within cancer, Notch 

signaling mediates hypoxia, invasion, and chemoresistance 

[12], and JAG2 expression in primary tumors has been 

correlated with vascular development and angiogenesis 

[13]. In addition, elevated levels of JAG2 result in signifi-

cant chemoresistance, and when JAG2 is knocked down in 

mice, tumor cells become sensitive to chemotherapeutics 

(doxorubicin) [8]. Notch signaling has been identified as an 

important pathway for carcinogenesis of the endometrium 

[14]. Additionally, JAG2 has been shown to be a promis-

ing target in several cancer cell lines, as specific antibody–

drug conjugates have resulted in tumor reduction [15].

AURKA is a cell-cycle regulated kinase that functions in 

spindle formation and chromosome segregation during the 

M phase of the cell cycle. AURKA has been shown to be a 

downstream target of MAPK1, which is a major force in cel-

lular proliferation in several cancer cells [16]. �e protein 

is also elevated in a variety of cancers and has a significant 

association with disease recurrence [6, 7]. Because AURKA 

is upregulated in cancers, efforts have been made to target 

the protein to aid in tumor reduction. Upon AURKA sup-

pression, cancer cells become sensitive to chemotherapeu-

tics and overall tumor growth is suppressed in a variety 

of cancer cells (docetaxel and taxane) [17, 18]. �e role 

AURKA may play as a diagnostic biomarker in endometrial 

cancer has not been well studied, although it has shown 

promising results in other cancer types [6, 7, 19–21].

PGK1 is involved in the glycolysis pathway and func-

tions by transferring a phosphate group from 1,3-bis-

phosphoglycerate to ADP to form ATP [22, 23]. As an 

enzyme involved in generating valuable energy for the 

cell, especially in hypoxic conditions, PGK1 has been 

correlated with cancer development and progression in a 

variety of tumor types [9, 24, 25]. Its role in promoting 

tumor proliferation is linked to PGK1’s ability to promote 

tumor angiogenesis [26, 27], DNA replication and repair 

[28, 29], and cancer metastasis [25, 30]. While the protein 

is elevated internally in several cancers, it is also actively 

secreted from tumor cells, where it cleaves plasmino-

gen to create angiostatin [31]. PGK1 has been shown to 

be upregulated in several cancer types, but has not been 

evaluated for upregulation in endometrial cancer [25, 32].

HPRT1 is a nucleotide salvage enzyme involved in the 

cell cycle [33, 34]. �is enzyme is a transferase respon-

sible for producing guanine and inosine nucleotides by 

transferring a phosphoribose from PRPP to guanine and 

inosine bases, respectively, during cellular maintenance 

[35, 36]. As cells rapidly divide, the need for nucleotides 

increases, and subsequently HPRT1, has been shown to 

be elevated in several malignant settings [4, 37]. As the 

enzyme shows upregulation in malignant tissue while 

maintaining stable levels in normal tissue, it has the 

potential to be used as a biomarker for cancer develop-

ment in several cancer types.

Table 1 Protein expression within patient tissue

CAT  cancer adjacent tissue

Protein n General function Average gray value 
malignant

Average gray value CAT Average gray 
value normal

HPRT 68 Nucleotide salvage 157.206 186.176 223.207

PGK1 71 Glycolytic enzyme 107.273 154.437 171.748

AURKA 72 Cycle-regulated kinase 209.994 236.147 244.352

Jag2 72 Protein coding 143.635 194.297 186.269
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We decided to evaluate these enzymes in endometrial 

cancer because they have all shown promising diagnostic 

potential in other tissue types as biomarkers for disease 

development and progression but have not been evalu-

ated in endometrial cancer. As malignant endometrial 

biomarkers are less established, we hope to identify addi-

tional markers for malignancy to aid in the early diagno-

sis and possible treatment of endometrial cancer.

Materials and methods

Chemicals/reagents

DIVA Decloaker 10x, Background Sniper, Mach 4 HRP 

polymer, DAB Peroxidase, Hematoxylin, Hydrophobic 

pen, and Universal Negative antibodies were all obtained 

from Biocare Medical, Concord, CA. Anti-JAG2 (LifeS-

pan Biosciences, Inc. Seattle, USA), Anti-AURKA 

(Sigma-Aldrich, St. Louis, USA), and anti-PGK1 (Abcam, 

Fig. 1 Gene expression in patient samples. HPRT, PGK1, JAG2, and AURKA were analyzed for gene expression in both normal (red line) and 

malignant (blue histogram) samples. Relative protein expression is quantified on the X-axis (represented as transcripts per million), while the 

frequency of the expression is plotted on the Y-axis
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Fig. 2 Tissue evaluation of AURKA, JAG2, PGK1, and HPRT. Tissues were quantified on a gray scale with lower values indicating darker staining 

intensity. a AURKA expression and b JAG2 expression was significant between malignant and normal samples, but showed no significance between 

cancer grade. c PGK1 expression and d HPRT expression showed significance both between normal and malignant samples in addition to between 

cancer grade
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Cambridge, UK) were stored at −  20  °C. Anti-HPRT 

monoclonal antibody (Abcam, Cambridge, UK) was ali-

quoted and stored at −  20  °C. GAPDH polyclonal anti-

body (Cell signaling) was aliquoted and stored at − 20 °C. 

Tween20 (Fisher Reagents, Waltham MA) was stored at 

room temperature. Hydrogen Peroxide at 30% (Fisher 

Reagents, Waltham MA) was stored at 4 °C.

Tissue microarray samples

Tissue microarrays were obtained from Biomax and 

stained for GAPDH, HPRT, JAG2, AURKA, PGK1, and 

with an isotype control. Patients were all female and 

ranged in age from 21 to 63. Normal (n = 9), cancer 

adjacent (n = 9), and malignant tissue (n = 54) (grade 

1–3) were included in the analysis (Table 1).

Immunohistochemistry

Protein levels were assessed using protocols described 

by Townsend et al. with slight modifications [4]. Briefly, 

tissues were rehydrated, washed, and treated with DIVA 

Decloaker. Following a hydrogen peroxide wash, tissues 

were treated with a Background Sniper followed by a pri-

mary antibody (1:100 dilution). After a series of washes, 

the tissues were treated with DAB Peroxidase and hema-

toxylin and imaged using a standard light microscope.
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Fig. 3 Gene expression between normal and malignant patient samples. Tissues were quantified on a gray scale with lower values indicating 

darker staining intensity. Across malignant samples, patients exhibited a variety of expression of each of the genes evaluated that were all 

significant from each other with the exception of JAG2 and HPRT expression. In addition, normal samples also showed a variety of expression of the 

genes, with PGK1 showing the highest expression and AURKA showing the lowest expression
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Fig. 4 Individual patient expression of biomarkers. Each biomarker and their relative expression is plotted according to the patient. Relative 

expression is represented on the Y-axis, while the protein evaluated is represented on the X-axis. Individual patients did not show consistent 

biomarker elevation in any of the stages evaluated
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Tissue quanti�cation

ImageJ software was utilized to quantify staining inten-

sity [38]. An IHC toolbox plugin was selected with the 

“DAB (more brown)” option to remove staining that did 

not result from DAB. After this modification, the images 

were converted to a grayscale and a threshold was applied 

to eliminate areas of negative space that could potentially 

bias the results. Once a universal threshold was applied, 

the average gray intensity of the tissue was collected.

Tumor gene-expression analysis

We obtained RNA-sequencing and clinical outcomes 

data for Uterine Corpus Endometrial Carcinoma (UCEC) 

samples from �e Cancer Genome Atlas (TCGA) [39]. 

We used transcripts-per-million values, summarized at 

the gene level. �ese data were derived from tumor and 

normal samples.

Survival was calculated using a Cox proportional hazard 

model. In addition to gene expression (primary variable), 

covariates included gene expression and clinical factors 

such as age, race, and tumor purity. Kaplan–Meier curves 

were generated to compare survival of patients with the 

highest 20% of target gene expression against those with 

the lowest 20% of target gene expression. �e statistical 

analyses and curve generations were calculated utilizing 

the TIMER program developed by Li et al. [40].

Drug response analyses

We evaluated the effects of chemotherapy treatments on 

cell lines using two publicly available databases. First, we 

examined data from the Cancer Cell Line Encyclopedia 

(CCLE) [41]. We obtained treatment-response data for 24 

drugs that were available from the CCLE portal and used 
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Fig. 5 Survival of patients with elevated levels of JAG2, AURKA, PGK1, and HPRT1. We plotted the survival of patients with the highest 20% 

expression of each respective biomarker (red line) and compared them to the patients with the lowest 20% expression (blue line) over the course 

of 100 months. We found no statistically significant difference in survival with regards to high and low expression of PGK1 or JAG2, but found 

significant decreases in survival in patients with an elevation of AURKA (p-value < 0.0001) and HPRT1 (p-value = 0.041)
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Fig. 6 Cell lines ranked by their relative expression of JAG2, AURKA, PGK1, and HPRT1. Cell lines were ranked according to their gene expression 

level (transcripts per million) and the 10 highest expressing and 10 lowest expressing cell lines are shown

Fig. 7 Drug responses of cell lines with elevated JAG2. The 20 cell lines with the highest and lowest expression for each target gene from the 

previous analysis in Fig. 6 (X-axis) were evaluated via their Activity Area (ActArea) in response to drug treatments. Drug responses are represented 

by individual graphs with the mean ActArea plotted on the Y-axis. Drugs with a high ActArea indicate sensitivity, while drugs with a low ActArea 

indicate resistance. The mean ActArea is represented by a line within the figure to indicate the average increase or reduction between the high 

expressing and low expressing cell lines

(See figure on next page.)
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the area above the fitted dose–response curve (ActArea) 

as a metric of treatment response [42]. We obtained tran-

script-level expression levels for CCLE [43] and summed 

protein-coding transcript values to gene-level values 

using a custom Python script (https ://pytho n.org). For 

each of four genes (HPRT1, AURKA, JAG2, and PGK1), 

we identified cell lines for which drug-response and 

gene-expression data were available and then ranked the 

cell lines according to expression of the respective genes. 

Next, we selected the lowest- and highest-expressing cell 

lines for each gene and used a Mann–Whitney U test 

to evaluate differences in ActArea values between these 

cell-line groups. To perform these calculations, we used 

the R statistical software (version 3.4.3) [44].

Second, we evaluated data from the Library of Integrated 

Network-based Cellular Signatures, which contains gene-

expression profiles for cell lines after drug perturbations. 

We wrote a Python (version 3.6.5) script to extract HPRT1 

and AURKA expression values from the LINCS database 

for samples from 26 cell lines for which data were available. 

We used the Level 5 data, which were generated using the 

L1000 platform [45], normalized using a z-score methodol-

ogy within each plate, and averaged across replicates. Using 

the R (version 3.4.4) [44] statistical software and the readr 

package (version 1.1.1) [46], we parsed the metadata file to 

identify experiments where the cell lines had been treated 

with chemotherapeutic compounds (pert_type = “trt_cp”). 

�e summarized data values indicate relative gene-expres-

sion levels for cells treated with a given compound relative 

to control-treated cells. To perform this filtering and data 

transformation, we used the dplyr (version 0.7.4) [47] and 

reshape2 (version 1.4.3) packages [48]. Before plotting the 

data, we grouped the values for each cell line by compound 

name. We identified the median value for each group and 

sorted the values from lowest to highest. �en we used the 

superheat package (version 1.0.0) to create heatmaps with 

data from the 7 cell lines with the most treatment data [49]. 

�e code and data we used for this analysis can be found at 

https ://bitbu cket.org/alyss apark er99/lincs -heatm aps.

Statistical analysis

Staining intensities between tissue samples were analyzed 

using an ANOVA test with the multiple comparison 

method. Additionally, unpaired t tests were utilized in 

conjunction to confirm statistical significance. �ese 

statistical tests were performed in GraphPad Prism 7 

software. Differences were considered significant when 

the p value was < 0.05. Asterisks were used in figures to 

indicate levels of significance with ns = p > 0.5, *p ≤ 0.05, 

**p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001.

Results

JAG2, AURKA, PGK1, and HPRT1 had signi�cant 

upregulation in malignant samples when compared 

to normal

We evaluated gene-expression levels for AURKA, JAG2, 

HPRT1, and PGK1 in tumors and normal tissues from 

TCGA. Upon comparing malignant and normal sam-

ples, we observed a consistent elevation of each of the 

genes in malignant tissues (Fig. 1). JAG2 had the small-

est elevation overall (p-value = 4.6 × 10−3), while AURKA 

showed the largest increase (p-value = 1.2 × 10−21). �is 

upregulation indicates that these genes may be useful as 

diagnostic markers of endometrial cancer, as they have 

differential expression between normal and malignant 

samples.

When analyzing protein levels in tissue microarrays 

from a separate cohort, we again found that all four 

genes were significantly elevated within malignant sam-

ples (Fig. 2). �is confirmed the initial analysis with gene 

expression data. In addition, we found that PGK1 and 

HPRT1 both showed significant differences between 

grades as there was a stepwise elevation of protein 

expression corresponding to grade. �is indicates that 

HPRT1 and PGK1 may have a grade dependency, and 

could serve as biomarkers for tumor aggressiveness. All 

four genes showed a range of protein expression in both 

malignant and normal samples (Fig. 3). 

To determine whether elevated expression of these 

genes occurred in the same patients, we plotted expres-

sion values for each patient jointly for all four genes. �ere 

was no pattern of concordant elevation across PGK1, 

AURKA, JAG2, and HPRT1. For example, patients with 

elevated levels of AURKA did not share the same high 

levels of HPRT1 or of any of the other genes (Fig. 4). �is 

was observed in all cancer stages. For example, there were 

(See figure on previous page.)

Fig. 8 Drug responses of cell lines with elevated PGK1. The 20 cell lines from the previous analysis in Fig. 6 were evaluated via their ActArea in 

response to drug treatments. The mean ActArea is represented by a line within the figure to indicate the average increase or reduction between the 

high expressing and low expressing cell lines

Fig. 9 Drug responses of cell lines with elevated HPRT1. The 20 cell lines from the previous analysis in Fig. 6 were evaluated via their ActArea in 

response to drug treatments. The mean ActArea is represented by a line within the figure to indicate the average increase or reduction between the 

high expressing and low expressing cell lines

(See figure on next page.)

https://python.org
https://bitbucket.org/alyssaparker99/lincs-heatmaps
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cases where the patient with the lowest expression of 

AURKA (patient 7 in Stage 2) also had the highest expres-

sion of HPRT1. �is indicates that these biomarkers may 

be useful in identifying different patients and that each 

biomarker may be independently used to benefit further 

characterization of individual patient cancer types.

AURKA and HPRT1 elevation have a signi�cant impact 

on patient survival

We evaluated overall patient survival in patients with 

the highest 20% of biomarker expression and patients 

with the lowest 20% biomarker expression to determine 

whether the elevation of these genes had any impact 

on survival. Both PGK1 (p-value  =  0.589) and JAG2 

(p-value = 0.46) showed insignificant differences between 

survival over the course of 100 months between high and 

low expressors. While there may have been elevation of 

these genes within cancer, they did not seem to contrib-

ute to survival outcomes. Interestingly, both AURKA and 

HPRT1 showed significant differences between survival 

in high vs low expressing patients. Following 100 months, 

patients with the highest 20% of AURKA expression 

showed significant (p-value  <  0.0001) decreases in sur-

vival and AURKA elevation correlated with lower sur-

vival rates (Fig. 5). �is same pattern was also observed 

for patients with elevated HPRT1 expression, as patients 

with the highest 20% HPRT1 expression had significantly 

(p-value =  0.041) decreased survival compared to their 

lower expressing counterparts. �is shows that both 

AURKA and HPRT1 may have significance beyond diag-

nostic; they also may be useful, as prognostic biomarkers 

for uterine corpus endometrial cancer.

Drug treatments of cell lines with high and low target gene 

expression

To determine whether these genes could be utilized as bio-

markers for physicians when deciding treatment options, 

we analyzed the effects of 24 drugs on cell lines with rela-

tively high and low expression of AURKA, JAG2, PGK1, 

and HPRT1. Cell lines were ranked according to their 

expression of each gene and highest and lowest expressing 

cell lines were chosen for analysis (Fig. 6). Although there 

was no significance observed, there were some responses 

that appeared to have a larger impact than others. Drugs 

with the largest differences were PD-0325901 (MEK inhib-

itor), TAE684 (ALK inhibitor), AEW541 (IGF-1R inhibi-

tor), and Nilotinib (tyrosine kinase inhibitor) in JAG2, 

PGK1, HPRT1, and AURKA, respectively. Several of the 

drug responses were negligible as the mean ActArea was 

almost identical in a majority of the responses between the 

high and low expression cell lines (Figs. 7, 8, 9, 10).

Drugs with the largest impact on AURKA and HPRT1 

expression

As HPRT1 and AURKA elevation showed prognostic 

significance (Fig. 5), we analyzed data from the LINCS, a 

publicly available resource that contains gene-expression 

response signatures for 1826 chemotherapy drugs and 26 

cell lines. We searched for drug treatments that caused 

significant declines in HPRT1 and/or AURKA expression. 

�ese responses varied widely across drug treatments and 

cell lines with some drugs increasing the expression of the 

genes and, others decreasing expression. �e vast majority 

of drug treatments had no impact on HPRT1 or AURKA 

expression. We focused on seven cell lines for which data 

were most available (Fig. 11). For both genes, over 12,000 

drug-cell line interactions resulted in no effect. When 

evaluating AURKA expression, 78 interactions resulted 

in a severe reduction, 396 resulted in an intermediate 

reduction, while 14 resulted in a severe elevation and 141 

resulted in an intermediate elevation of the gene. When 

evaluating HPRT1 expression, 13 interactions resulted in 

a severe reduction, 233 resulted in an intermediate reduc-

tion, while 15 resulted in an intermediate elevation of the 

gene (Table 2). �is indicates that AURKA may be a bet-

ter prognostic biomarker than HPRT1 as there is a larger 

number of events where the protein was significantly 

decreased upon treatment. 

�e 10 drugs that produced the largest reduction in 

AURKA expression were Ro-4987655, Genz-644282, 

(See figure on previous page.)

Fig. 10 Drug responses of cell lines with elevated AURKA. The 20 cell lines from the previous analysis in Fig. 6 were evaluated via their ActArea in 

response to drug treatments. The mean ActArea is represented by a line within the figure to indicate the average increase or reduction between the 

high expressing and low expressing cell lines

Fig. 11 Drugs that lower the expression of JAG2, HPRT1, AURKA, and PGK1. Cell lines (x-axis) were evaluated for their expression of AURKA and 

HPRT1 pre and post treatment with drugs (y-axis). The relative changes in protein expression are indicated by the heat map legend and show the 

variety of responses to various drugs. The events and their effects on target gene expression are indicated by the bar graphs

(See figure on next page.)
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OTS-167, Vorinostat, Pralatrexate, Epirubicin, 

Ro-4987655, Pralatrexate, JNJ-26481585, and R-547. 

Each of these drugs has a different mechanism of action 

but most were involved in DNA synthesis and regula-

tion. Of note, when analyzing the drugs that resulted in 

an increase in AURKA expression, we found that 9 of 10 

drugs were directly involved in inhibiting microtubule 

function or inhibited PLK. �is was consistent through-

out our analysis and indicates AURKA may be connected 

in a regulatory fashion to these cellular mechanisms 

(Table 3).

Drugs that resulted in the highest reduction in HPRT1 

expression were AS-703026, OTS-167, BGT-226, genz-

644282, AS-703026, SN-38, SN-38, TAK-733, paclitaxel, 

and KX2-391. Of these, six were of either Topoisomer-

ase I (Topo I) or MEK. �is may indicate a relationship 

between HPRT1 regulation and regulation of Topo I or 

the MEK pathway (Table 4).

Discussion

We have determined that there is a significant eleva-

tion of JAG2, HPRT1, AURKA, and PGK1 expression 

in endometrial cancer. With elevated expression upon 

malignancy, these genes can be utilized as a companion 

diagnostic tool to both identify and characterize endo-

metrial cancer. As cancer specific biomarkers, these 

genes may serve as useful markers when analyzing endo-

metrial cancer development within patient tissue. Addi-

tionally, HPRT and PGK1 show additional promise as 

possible biomarkers for cancer grade as the levels of the 

proteins elevated in a stepwise manner with higher can-

cer grade. �ese biomarkers have already shown utility in 

other cancer types [4–6, 8, 9, 16] and we have shown that 

their use may also extend to endometrial cancer.

While there are several epigenetic biomarkers for 

endometrial cancer (p52, KRAS, VEGF. PTEN, etc.) 

Table 2 Impact of  drug treatment on  AURKA and  HPRT 

expression

PTEZ post-treatment expression z-score

Description PTEZ score range # samples

AURKA Severe reduction − 10 → − 6 78

Intermediate reduction − 6 → − 2 396

No effect − 2 → 2 14,174

Intermediate elevation 2 → 6 141

Severe elevation 6 → 10 14

HPRT1 Severe reduction − 10 → − 6 13

Intermediate reduction − 6 → − 2 233

No effect − 2 → 2 14,553

Intermediate elevation 2 → 6 15

Severe elevation 6 → 10 0

Table 3 E�ective drugs for the reduction of AURKA

PTEZ post-treatment expression z-score

Cell line Drug Inhibition target Target symbol PTEZ score

Drugs with significant reduction in AURKA expression post treatment

 A375 Ro-4987655 Mitogen-activated protein kinase MEK − 10

 A375 Genz-644282 Topoisomerase I Topo I − 10

 HUES3 OTS-167 Maternal embryonic leucine-zipper kinase MELK − 10

 HUES3 Vorinostat Histone deacetylase HDAC − 10

 A375 Pralatrexate DNA synthesis – − 9.838

 MCF7 Epirubicin Topoisomerase II Topo II − 9.471

 HT29 Ro-4987655 Mitogen-activated protein kinase MEK − 9.284

 MCF7 Pralatrexate Metabolic – − 9.259

 A375 JNJ-26481585 Histone deacetylase HDAC − 9.206

 HT29 R-547 Cyclin dependent kinase CDK − 8.938

Drugs with an increase in AURKA expression post treatment

 PC3 BIIB-021 Heat shock protein 90 HSP90 6.298

 HT29 NMS-1286937 Polo-like kinase 1 PLK 6.407

 HELA NMS-1286937 Polo-like kinase 1 PLK 6.426

 HT29 Docetaxel Microtubule function – 6.458

 HT29 Epothilone-b Microtubule function – 6.518

 HT29 Indibulin Microtubule function – 6.552

 HELA Dolastatin-10 Microtubule function – 6.666

 HELA Volasertib Polo-like kinase 1 PLK 6.732

 HT29 Epothilone-b Microtubule function – 6.898

 HELA Combretastatin-A-4 Microtubule function – 7.007
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[50, 51], there remains a need to find suitable protein 

biomarkers for not only endometrial diagnosis, but also 

as possible targets for future therapies. Future direc-

tions to this work include evaluating a larger cohort of 

patients to determine whether the expression of these 

biomarkers could have clinical application. Especially 

in the case of both HPRT1 and AURKA, it may be ben-

eficial to develop therapies to reduce their expression, 

thereby determining whether these genes play a critical 

role in cancer survival and proliferation as they show 

significant impact on overall patient survival.

In addition, the conserved pathways that HPRT1 and 

AURKA have in terms of drugs that inhibit or induce 

their expression, may indicate a regulatory relation-

ship between the inhibited pathway and the proteins 

that have not yet been identified. �e merit of this 

hypothesis is demonstrated as AURKA has a recipro-

cal regulation with PLK1 in mitotic entry and within 

spindle assembly [52]. �is corresponds to the data 

we have observed as the drugs with the largest impact 

on AURKA elevation with the highest consistency are 

inhibitors of PLK1 and microtubule formation. Yet, 

the consistent relationship between drugs that inhibit 

HPRT1 expression are both inhibitors of Topo I and 

the MEK pathway. �ere has not been any investigation 

into the relationship between HPRT1 and these pro-

teins/pathways and our initial data show that a possible 

link exists. With this in mind, this potential relation-

ship merits further examination and could potentially 

elucidate novel gene interactions specific to cancer.

Conclusions

We have determined genes with differential gene 

expression within endometrial cancer that also have 

a significant impact on overall patient survival. �ese 

biomarkers could be developed into a companion diag-

nostic tool in the identification and classification of 

endometrial cancer. In addition, they may aid in drug 

determination as certain drugs have a better response 

rate in patients with elevated levels of both AURKA 

and HPRT1.
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