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The diagnosis and management of pain is an everyday occurrence in dentistry, and its 

effective control is essential to ensure the wellbeing of patients. Most tooth-associated 

pain originates from the dental pulp, a highly vascularized and innervated tissue, which 

is encased within mineralized dentin. It plays a crucial role in the sensing of stimuli from 

the local environment, such as infections (i.e. dental caries) and traumatic injury, leading 

to a local inflammatory response and subsequently to an increase in intra-pulp pressure, 

activating nerve endings. However, thermal, chemical, and mechanical stimuli also have 

the ability to generate dental pulp pain, which presents mechanisms highly specific 

to this tissue and which have to be considered in pain management. Traditionally, the 

management of dental pulp pain has mostly been pharmacological, using non-steroidal 

anti-inflammatory drugs (NSAIDs) and opioids, or restorative (i.e. removal of dental caries), 

or a combination of both. Both research areas continuously present novel and creative 

approaches. This includes the modulation of thermo-sensitive transient receptor potential 

cation channels (TRP) by newly designed drugs in pharmacological research, as well as 

the use of novel biomaterials, stem cells, exosomes and physical stimulation to obtain pulp 

regeneration in regenerative medicine. Therefore, the aim of this review is to present an 

up-to-date account of causes underlying dental pain, novel treatments involving the control 

of pain and inflammation and the induction of pulp regeneration, as well as insights in pain 

in dentistry from the physiological, pharmacological, regenerative and clinical perspectives.

Keywords: dentistry, pain, dentin, dental caries, regenerative medicine, pharmacology, collagen, endodontics

INTRODUCTION

Despite many advances in the fields of diagnosis, material sciences and therapeutics, oral diseases 
continue to burden millions of people worldwide, causing a significant impact on both health costs 
and patient quality of life (Hall-Stoodley et al., 2004; Logan and Brett, 2013; Römling et al., 2014). 
According to the Global Burden of Disease Study 2016, it is estimated that more than 3.5 billion 
people worldwide suffer from oral diseases, with 2.4 billion of those cases being dental caries (Vos 
et al., 2017). Furthermore, it is also estimated that 743 million people are affected by periodontal 
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disease, a chronic progressive weakening of the supporting 
structures of the tooth that leads to tooth loss and dysfunction 
(Tonetti et al., 2017). Despite the fact that these oral diseases 
display a wide variety of symptoms, many patients seek dental 
advice due to the presence of pain in the mouth and/or facial 
region. Therefore, the diagnosis and management of orofacial 
pain is an essential need for dentists to ensure the wellbeing of 
patients, as well as to determine the most appropriate treatment 
plan for each clinical situation.

In general terms, pain can be defined as an “unpleasant 
sensory and emotional experience that is associated with actual 
or potential tissue damage or described in such terms” (Gebhart, 
2000). Thus, it is a subjective appreciation that varies between 
individuals, which can make its clinical diagnosis challenging. In 
dentistry, pain is a multifactorial experience that also includes 
strong emotional and previous-experience components (Sessle, 
1986). There are many origins of pain in the orofacial region; 
however, the most frequent pain is the one initiating from within 
the tooth and dental pulp (Estrela et al., 2011), which can be 
triggered by a wide and diverse range of stimuli including hot and 
cold temperatures, air puffs, sugar consumption, and mechanical 
pressure. Orofacial pain originating from structures surrounding 
the tooth (such as periodontal tissue, oral mucosa and alveolar 
bone) will not be covered in this review.

Tooth Anatomy and Its Relevance in 
Dental Pain Perception
Teeth are highly complex organs located within the oral cavity. 
They are constituted by three mineralized tissues known as 
enamel, dentin, and cement, which surround the un-mineralized 
tissue known as dental pulp (Figure 1A). Mineralized tissues of 
the tooth are mostly comprised of hydroxyapatite crystals with 
varying amounts of organic content (e.g. type-I collagen, other 
proteins), and their main functions are to provide structural 
integrity to the tooth and to protect the pulp from environmental 
injury (Shahmoradi et al., 2014). Enamel is the most mineralized 

tissue in the body; therefore, it plays a central role in mastication 
and in protecting dentin and pulp from environmental injury. 
Cement, on the other hand, is present on the surface of the root, 
and is involved in the anchoring of the tooth to the alveolar bone 
by means of the periodontal ligament.

Dentin is a mineralized dental tissue contained within 
enamel and cementum, constituted by hydroxyapatite (70% 
weight), organic material (20% weight) and water (10% weight) 
(Goldberg, 2011). The organic material is mostly comprised of 
a matrix of type-I collagen, and its presence is crucial for the 
structural stability as well as the elasticity of the tooth (Butler 
and Ritchie, 1995; Bertinetti et al., 2015). Dentin is maintained 
by the cellular prolongations of odontoblasts, which are nested 
within dentinal tubules- channels extending from the dental pulp 
until the enamel-dentin junction (Arana-Chavez and Massa, 
2004) (Figure 1B). These tubules are flooded with dentinal 
(interstitial) fluid; thus, dentin receives nutrients by direct 
perfusion from the dental pulp. Most importantly, as dentin is 
strongly interconnected with the dental pulp and its innervation, 
it is crucial in the process of dental pain perception.

Interestingly, the initial portion of the dentinal tubules 
contains pulp nerve endings and thus dentin exposed to the 
oral cavity (i.e. by caries or trauma) can actively respond to 
environmental stimuli and trigger nociception (Figure 1B). 
Stimulatory sources that can directly or indirectly affect the 
dental pulp include chemical irritation, dental caries, infiltration 
of bonding materials, trauma and orthodontic movements, 
among others (Tikhonova et al., 2018). This phenomenon is 
also known as dentinal hypersensitivity, as seemingly innocuous 
stimuli can generate an exaggerated pain response in patients 
(Miglani et al., 2010). Nerve endings located in the initial portion 
of dentinal tubules and dental pulp are mainly constituted of 
A-delta and C fibers—afferent endings of the trigeminal nerve—
that can be triggered by both mechanical and thermal stimuli 
(Jain et al., 2013).

There are three main hypotheses regarding the mechanisms 
behind dentinal hypersensitivity. The first hypothesis, also 

FIGURE 1 | Tooth and dental pulp anatomy. (A) Diagrammatic representation of a tooth cross-section illustrating the organization of enamel, dentin, cement and 

dental pulp within the tooth structure. The dental pulp is vascularized and innervated through the root apex, which provides nociception via afferent trigeminal 

nerves. (B) The odontoblast layer is located in the interphase between dentin and dental pulp, with prolongations extending into dentin via dentinal tubules. Sensory 

nerve fibers penetrate the odontoblast layer and enter the initial portion of dentinal tubules, thus permeability or alterations in dentin can trigger nociception.
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known as the neural theory, states that nerve endings within 
dentinal tubules are directly able to respond to external stimuli. 
Nociceptive temperature-sensitive receptors such as TRPV1 and 
TRPA1 are believed to be involved in pain transduction from 
hot and cold thermal stimuli (Chung et al., 2013). The second 
hypothesis or hydrodynamic theory proposes that thermal and 
mechanical stimuli, such as air spraying, can exert pressure 
changes that cause fluid movement within the dentinal tubules 
(Andrew and Matthews, 2000; Shibukawa et al., 2015). This 
movement is believed to trigger A-delta and C fibers, although 
the presence of specialized mechanoreceptors in these fibers 
is still debatable. Finally, the odontoblast transducer theory 
states that odontoblast cells themselves are responsible for pain 
perception. Expression of TRPV channels in odontoblasts as well 
as their direct excitability support this theory (Won et al., 2018).

Additional to dentinal hypersensitivity, dental pain can also 
be a consequence of localized inflammation within the dental 
pulp. This response is at times exacerbated due to the lack of 
compliance given by the surrounding mineralized tissues, and 
therefore minor inflammatory changes can result in exaggerated 
pain perception. Known pro-inflammatory mediators involved 
in pulpal pain include substance P, calcitonin gene-related 
peptide, histamine, and cytokines (Caviedes-Bucheli et al., 2008, 
Caviedes-Bucheli et al., 2011; Sessle, 2011). These molecules are 
responsible for sensitizing nerve endings as well as increasing 
intra-pulp pressure by virtue of increasing vascular supply to the 
dental pulp (Rechenberg et al., 2016). Furthermore, inflammatory 
mediators released as part of the response system act in the 
production of vascularized alterations mediated by different 
receptors such as those from toll-like receptor (TLR) variants 2 
and 4 (Nakanishi et al., 2011). It is believed that TLR-2 positive 
cells are present in the early phases of regulation (including the 
first 3 h after stimulus), which recognize different pathogen-
derived molecules such as triacyl lipopeptides from bacteria 
and mycobacteria, peptidoglycan, and lipoteichoic acid of gram-
positive bacteria and zymosan from fungi (Park et al., 2015; 
Rechenberg et al., 2016). On the other hand, TLR4 has a central 
role in the response to co-stimulatory molecules originating 
from gram-negative bacteria, such as lipopolysaccharides (LPS) 
(Nakanishi et al., 2011; Park et al., 2015). Considering TLR and 
the release of pro-inflammatory cytokines like IL-8, IL-6 and 
chemokines, the succession of stimulatory events can lead to a 
painful and hyperalgesic process within the dental pulp (ElSalhy 
et al., 2013). The wide range of factors and stimuli involved 
leads many to describe the dental pulp as an innervated tissue 
associated with pain transduction mechanisms that have yet to 
be fully explained (Mutoh et al., 2007).

Dental Caries and Its Relevance in Dental 
Pain
There are several known causes responsible for the onset of 
dental pain including infection, trauma, dental treatment and 
chemical injury (Alonso-Ezpeleta et al., 2012; Jain et al., 2013; 
Khan et al., 2019). These situations share the common factor of 
either exposing dentin or dental pulp to the environment and/
or generating an inflammatory process within the dental pulp, 

initiating dentinal hypersensitivity, and/or inflammatory pain. 
Nevertheless, in the clinical setting, the most common source of 
dental pain is due to dental caries.

Dental caries (also known as tooth decay) affects the vast 
majority of the population and is one of the main causes of tooth 
loss in patients of all ages (Petersen et al., 2005; Kassebaum et 
al., 2014; Dye et al., 2015). Worldwide, recent data shows that 
most adults have been affected by dental caries, and therefore this 
pathology represents a large economic burden to individuals and 
healthcare providers. The Global Burden of Disease Study 2013, 
reporting data on 301 diseases and injuries, concluded that tooth 
pain resulting from caries affected over 200 million worldwide, 
and was the fifth commonest acute condition observed overall 
(Global Burden of Disease Study, 2013; Rice et al., 2016).

Caries is a biofilm-mediated multifactorial infectious disease 
characterized by the loss of mineral from the tooth surface due 
to bacterial colonization, which can affect all mineralized tissues 
in teeth (Pitts et al., 2017). Although caries pathogenesis is highly 
complex and multifactorial, it is believed to be initiated by species 
such as Streptococcus mutans and lactobacilli, which induce 
surface demineralization by the production of extracellular 
acids that destroy the mineralized matrix of the tooth (Beighton 
et al., 2010; Krzyściak et al., 2014; Wassel and Khattab, 2017). 
The process of caries formation starts on the surface of the 
outer layers of the tooth, and if not treated it progresses into the 
underlying dentin layer (Pitts et al., 2017). Caries can also affect 
the root portion of teeth once this area becomes exposed to the 
oral environment. This is common in elderly people suffering 
from gingival recession, and thus these patients are at higher 
risk of developing root caries lesions (Wierichs and Meyer-
Lueckel, 2015). Therefore, dental caries can trigger dental pain in 
a two-fold manner: by exposing dentin to the environment with 
subsequent onset of dentinal hypersensitivity, and by generating 
a localized pulp inflammation in response to bacterial invasion 
and bacterial molecules (such as bacterial peptides and LPS).

Pain as a consequence of dental caries is a known occurrence 
in the clinics, which is also supported by many investigations 
demonstrating the association between caries and pain in 
children and adults (Reid et al., 2003; Nomura et al., 2005; Bastos 
et al., 2006). In children, pain generated by caries has also been 
associated to reduced child weight, growth, and quality of life 
(Sheiham, 2006). Several studies have provided insight into the 
mechanisms behind how caries can trigger dental pain within the 
dental pulp. Firstly, the progressive demineralization generated 
by caries dissolves the outer layers of the tooth and exposes 
dental pulp nerve endings to environmental stimuli, triggering 
dentinal hypersensitivity. However, there is also evidence 
suggesting bacterial toxins are able to permeate into the dental 
pulp via dentinal tubules and initiate an inflammatory response 
within odontoblasts and the surrounding tissue (Farges et al., 
2015). Durand et al. (2006) showed that lipoteichoic acid (LTA), 
an important bacterial wall molecule, increased the expression of 
chemokines in odontoblasts via upregulation of TLR 2. Similarly, 
Farges et al. (2011) observed increase in pro-inflammatory IL-6 
production in odontoblasts upon LTA stimulation. Furthermore, 
cyclooxygenase (COX) has been shown to be associated to 
tissue inflammation on several levels. In inflamed tissues there 
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is an increase in the biosynthesis of prostaglandins, which 
are generated by COX isoenzimes metabolizing arachidonic 
acid (Ricciotti and FitzGerald, 2011). Also, while COX-1 is 
constitutively expressed in many tissues, COX-2 is promoted by 
inflammatory stimuli and is directly involved with inflammatory 
pain generation (Dubois et al., 1998). Within this context, 
Petrini et al. (2012) demonstrated an increase of prostaglandin 
E2 in teeth with reversible dental pulp inflammation compared 
to normal controls. In addition, the penetration of bacterial 
cells into the dental pulp may also be an important stimulus for 
nociception, as Chiu et al. (2013) demonstrated that bacteria 
can directly activate nociceptors in a mice model. Therefore, 
it is necessary to remove all caries-infected dental tissue as a 
previous step before beginning tooth restoration, in order to 
completely resolve inflammation in the dental pulp. However, in 
cases of extreme pulpal inflammation or when the caries lesion 
enters into the pulp chamber, dental pulp necrosis may occur. 
In these cases, the dental pulp must be completely removed by 
means of a root canal procedure (pulpectomy) and replaced by 
thermoplastic material.

Furthermore, Rodd and Boissonade (2000) demonstrated 
an increase of substance P in carious teeth compared to healthy 
samples, and its expression was further increased in painful 
samples compared to asymptomatic teeth. The levels of another 
neuropeptide, neuropeptide Y, was also found to be elevated in 
teeth affected by caries compared to controls (El Karim et al., 
2006) TRPV-1 expression was also increased in carious teeth 
compared to controls, and vascular expression of TRPV-1 
within the dental pulp was associated to increased dental pain 
(Morgan et al., 2005). Recently, Hall et al. (2016) demonstrated 
an upregulation of TNF-α in patients with caries, which was even 
more pronounced in patients with dental pain.

CURRENT PHARMACOLOGICAL 
APPROACHES FOR DENTAL PAIN 
TREATMENT

The therapeutic management of sensitive and painful regions is 
one of the most relevant aspects in the dental practice due to its 
direct influence on patient quality of life (Murray et al., 1996). 
Current management of pain deriving from inflammation utilizes 
several approaches including local intervention and adjuvant 
pharmacological treatments (Ward, 1974; Dal Secco et al., 2006). 
Local interventions, particularly dental restorations, aim to 
isolate the dental pulp and dentin from environmental stimuli 
triggering hypersensitivity as well as remove caries lesions to 
resolve underlying pulpal inflammatory process. On the other 
hand, pharmacological treatment contributes to the promotion 
of analgesia, with frequently used drugs being nonsteroidal 
anti-inflammatories (NSAIDs), opioids and NMDA receptor 
blockers (Chou and Huffman, 2007). Considering that the origin 
of pulpal pain can occur at different points during treatment 
(i.e. preoperative, perioperative, and postoperative), the drug 
strategy must be chosen according to the individual conditions 
of each clinical case (Primosch et al., 1993; Vanegas et al., 
2010). For example, analgesic drug treatment can begin before 

intervention (known as pre-emptive analgesia) with the aim of 
inhibiting the inflammatory process prior to dental restoration in 
asymptomatic patients (Ong et al., 2005). As several investigations 
have discussed conventional pharmacological management of 
dental pain in the past (Hargreaves and Abbott, 2005; Becker, 
2010; Moore and Hersh, 2014; Berlin et al., 2018), this review 
will only provide a brief summary of current treatment options 
utilized in clinics.

Currently, the first line of drugs for the treatment of dental-
derived pain are acetaminophen and NSAIDs (Moore et al., 
2018). Both have been shown to be essential in the management 
of minor to moderate post-operative pain in dentistry (Bailey 
et  al., 2013) and proven to be safe and effective, having them 
as the most favored options among treatments available in the 
market (Ong et al., 2005). NSAIDs have been demonstrated to 
inhibit the action of COX-1 and COX 2, thus are important in 
controlling inflammatory pain in a wide range of tissues (Brune 
and Patrignani, 2015). On the other hand, the exact mechanism of 
action for acetaminophen in humans remains unclear, although 
some authors believe it has an effect on a splice variant of COX-1 
(previously believed to be the COX-3 isoenzyme) (Graham and 
Scott, 2005; Bertolini et al., 2006; Sharma and Mehta, 2013). In 
conjunction with opioids, acetaminophen and NSAIDs such 
as ibuprofen have been demonstrated to alleviate moderate to 
severe postoperative pain (Ashley et al., 2016) as well as acute 
dental pain (Chang et al., 2001; Bailey et al., 2013). Pain treatment 
of vulnerable patient groups such as elderly or patients with 
gastrointestinal issues is challenging, however there is supportive 
evidence for the use of acetaminophen alone or in combination 
with codeine (Ong et al., 2007; Ganzberg, 2018). Studies show 
that associating NSAIDs with opioids may have the additional 
benefit of controlling post-operative pain (Table 1), however, 
selective COX-2 inhibitors have been proven to be more effective 
(Chang et al., 2001; Korn et al., 2004). Additionally, special 
considerations should be taken to reduce opioid overprescribing 
and abuse, especially with young patients and patients that can be 
managed solely with NSAIDs (Noble et al., 2010).

Multimodal drug therapy is achieved by combining drugs 
with complementary mechanisms of action with the aim of 
reducing postoperative pain (Brooks et al., 2017; Matute Crespo 
and Montero Matamala, 2017). When treating moderate to 
severe pain, combination pharmacotherapy may be an effective 
alternative to treat pain and improve patient recovery times 
(Ganda, 2008). Originally, multimodal analgesia was advocated 
for use in ambulatory anesthesia combining NSAIDs and opioid 
analgesics, with or without anesthetic infiltration (Devin and 
McGirt, 2015). Combining oral or IV acetaminophen with 
selective or non-selective cyclooxygenase-2 inhibitors (COXIBs) 
has also demonstrated to be a safe option for pain treatment 
(Ong et al., 2007). These drugs can be administered via different 
routes, however special considerations must be taken into 
account when treating high-risk patient groups such as the 
elderly (Becker, 2010), as there are still conflicting reports in the 
literature regarding their safety and tolerability in these patients 
(Ganda, 2008). Overall, dental practitioners should make 
clinical decisions based on optimal described dosages, with non-
opioid drugs as the primary treatment option (Becker,  2010). 
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TABLE 1 | Pharmacological treatment possibilities to control post-operative pain in dentistry with opioids alone and in different combinations.

Authors* Study design Sample 

size

Pharmacological 

treatment groups

Outcome 

instrument

Postoperative 

measurement

Postoperative 

assessment 

of pain

Study conclusions

Opioid alone Tramadol (Mehrvarzfar 

et al., 2012)

Randomized 

clinical trial,

double-blind and 

placebo-controlled 

100 Placebo

Tramadol 100 mg

Acetaminophen 325 

mg +Ibuprofen 200 

mg+ Caffeine 40 mg 

(Novafen)

Naproxen 500 mg 

 10-point VAS Placebo 3.2 (2.6–3.9)

Tramadol 2.2 (1.2–3.1)

Novafen 0.4 (0.1–0.8)

Naproxen 0.7 (0.3–1.1)

24 h A single oral dose of Naproxen, 

Novafen and Tramadol taken 

immediately after dental 

treatment reduced postoperative 

pain following pulpectomy. 

Codeine (Sunshine 

et al., 1983)

Randomized 

clinical trial,

double-blind and 

placebo-controlled 

120 Placebo

Propiram Fumarate 

50 mg

Codeine Sulfate 

60 mg

4-point rate scale

none = 0; mild = 

1; moderate = 2, 

severe = 3

Placebo 1.27 (0.25)

Propiram Fumarate 

2.11 (0.22)

Codeine 1.72 (0.23)

6 h Propiram fumarate 50 mg is an 

effective oral analgesic similar to 

codeine sulfate 60 mg, with the 

possibility of a longer effect.

Opioid 

combination

Tramadol/

Acetaminophen

(Edwards 

et al., 2002)

Systematic- review 

with meta-analysis

1376 Acetaminophen 

650 mg

Ibuprofen 400 mg

Tramadol 75 mg

Tramadol 75mg/

acetaminophen 

650 mg

NNT (95% CI) 

PGE**

4.5 (3.6–6.1)

2.7 (2.3–3.3)

11 (6.9–26)

3.0 (2.5–3.7)

8 h Overall, this meta-analysis 

demonstrated analgesic 

superiority of the combination 

drug over its components, 

without additional toxicity. 

Codeine/

Acetaminophen

(Chang 

et al., 2001)

Randomized 

clinical trial,

double-blind and 

placebo-active 

controlled

393 Placebo (1:6:6, 

respectively)

Rofecoxib 50 mg

Codeine 60 mg/

Acetaminophen 

600 mg

TOPAR6*** Placebo 3.4 (1.0–5.8)

Rofecoxib 12.4 

(11.3–13.4)

Codeine/

Acetaminophen 7.0 

(5.9/8.0)

6 h In this study of moderate to 

severe postoperative dental 

pain, the analgesic efficacy 

of Rofecoxib 50 mg was 

greater than that of codeine/

acetaminophen, with a lower 

incidence of adverse events and 

nausea.

Oxycodone/

Acetaminophen

(Korn et al., 

2004)

Randomized 

clinical trial,

double-blind and 

placebo-active 

controlled

212 Placebo (1:3:3, 

respectively)

Rofecoxib 50 mg

Oxycodone 5mg/

Acetaminophen 

325 mg

GLOBAL24# Placebo 0.3 (0.2)

Rofecoxib 2.1 (0.2)

Oxycodone/

Acetaminophen 1.3 

(0.2)

24 h The superior efficacy of 

Rofecoxib 50 mg compared to 

oxycodone/acetaminophen

5/325 mg support the use of 

Rofecoxib for the treatment of 

acute post-surgical pain.

*All studies included in this summarized tables were checked for GRADE criteria; **PGE- Patient Global Evidence; ***TOPAR6- pain relief over 6 h; #GLOBAL24 - Global assessment of treatment at 24 h.
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Nevertheless, in the case of persistent acute pain, short-acting 
opioid drugs may be an interesting alternative for treating this 
group of patients (Becker and Phero, 2005).

Despite the widespread use of acetaminophen, NSAIDs 
and opioids, and the benefits they provide for dental pain 
management, it is important to address several limitations 
of these drugs. Drug selection criteria is directly related to 
patient treatment needs and potential risk factors (such as 
cardiovascular disease), as there is a high number of potential 
interactions between commonly used NSAIDs and other 
medications (Ganzberg, 2018). As a general recommendation, 
patients must be evaluated for safety and possible adverse effects 
before taking NSAID treatment into consideration, especially 
in high-risk groups such as medically compromised patients 
(Wongrakpanich et al., 2018). A number of side effects for 
NSAIDs and opioids have been reported, such as gastrointestinal 
problems, nausea, and constipation (Benyamin et al., 2008; Nagi 
et al., 2015; Ganzberg, 2018). Furthermore, dependence to some 
of these drugs is currently a critical issue for public health in the 
US and worldwide, particularly opioid addiction due to misuse 
and excessive prescription (Nack et al., 2017; Jones et al., 2018). 
Therefore, several innovative approaches are currently being 
pursued as alternatives to conventional pharmacological pain 
management therapy in dentistry, including novel drug targets 
and regenerative and non-invasive medical approaches.

FUTURE TRENDS AND NOVEL INSIGHTS 
INTO THE PHARMACOLOGICAL 
TREATMENT OF PAIN IN DENTISTRY: 
UNVEILING TRPV1 AS A DRUG TARGET

As previously stated, dental pulp pain has its origin in the 
stimulation of the nerve fibers acting as a complex defense 
mechanism against external factors (Magloire et al., 2010; Solé-
Magdalena et al., 2018). When dental pulp suffers an injury, the 
nociceptive neurons initiate and increase a process known as 
neurogenic inflammation (Chung et al., 2013; Mizumura and 
Murase, 2015). Within this context, transient receptor potential 
(TRP) proteins are known to play an important role in dental 
nociception. TRP proteins are a large family of cation-permeable 
ion channels (Latorre et al., 2007; Nilius and Owsianik, 2010) 
sensitive to electrical, chemical, mechanical, and thermal stimuli, 
and many of them act as cell receptors involved in environmental 
detection (Morales-Lázaro et al., 2013). Current research links 
TRP proteins to hereditary neuropathies, neuronal disorders, and 
other TRP channel-associated channelopathies (Rosenbaum and 
Simon, 2007). The group of temperature-activated TRP channels 
(thermoTRPs) is composed of different sub-families (i.e. vanilloid, 
melastatin, ankiryn, and canonical) which are important for the 
detection and integration of peripheral sensory input (Caterina, 
2007). Therefore, the understanding of how certain ligands 
modulate close-open configurations of thermoTRP channels 
could significantly facilitate the pharmaceutical design and 
elaboration of TRP drug modulators (Rosenbaum and Simon, 
2007; Steinberg et al., 2014; Yang and Zheng, 2017).

The discovery of TRPV1 channels and their role in the 
signaling process and temperature-mediated nociception has 
enabled progress in strategies for managing and treating pain 
(Caterina et al., 1997; Rosenbaum and Simon, 2007; Julius, 2013). 
TRPV 1-4 thermal detectors are expressed in sensory nerves, 
transducing both proprioceptive and nociceptive information 
and providing information about environmental as well as 
body temperature to the central nervous system (Baez et al., 
2014). Agonist-induced activation of TRPV1 channels has been 
critical to their identification and functional description (Matta 
and Ahern, 2007; Gao et al., 2016). At the molecular level, the 
canonical agonist capsaicin binds to the channel with high affinity 
(< 0.7 interaction score) and enables discrimination of TRPV1 
from other vanilloid subtype channels (Yang and Zheng, 2017). 
Several vanilloid-related compounds are also able to induce 
transition to the open state with high affinity; interestingly, most 
of them are compounds of natural origin or minor derivatives 
of the natural chemical structure (Norman et al., 2007; Cui et 
al., 2016). Moreover, the gating mechanism in TRP channels 
as well as traffic to the plasma membrane is strongly regulated 
by phosphoinositides and their sub-products [diacylglycerol 
(DAG), inositol triphosphate (IP3)], polyunsaturated fatty acids 
(PUFAs) as well as metabolites generated by COX, LOX and 
CYP enzymes (Rosenbaum and Simon, 2007). To date, many 
compounds capable of inhibiting TRPV1 have been discovered 
such as resiniferatoxin (agonist), GRC6211 (antagonist), and 
QX-314 (TRPV1 permeable Na+ channel blocker); however, 
none of them is available yet for clinical therapeutics (Meotti 
et al., 2014). As allosteric control by lipid binding adds 
pharmacological properties to TRPV1, here the intention is to 
discuss the modulation of TRPV1 cellular activity by antagonists 
in the context of the pharmacological basis of oral pain sensation 
caused by inflammatory conditions (Steinberg et al., 2014).

The study and development of composites capable of acting 
on TRPV1 receptors have evolved greatly over time and capsaicin 
has been identified as the selective agonist ligand (Cheung et 
al., 2008; Gregorio-Teruel et al., 2014). The mechanism through 
which capsaicin exerts its function is known as tachyphylaxis, a 
rapid desensitization phenomenon associated to pore opening 
of cation channels permeable to sodium and potassium (Gavva 
et al., 2004; Ohbuchi et al., 2016). It is dependent on the 
exposure of the ligand to the channel, i.e., that the influx of 
Ca2+ ions has a protective feedback mechanism that presents 
a reduced response to repeated exposure (Brauchi and Orio, 
2011; Yang and Zheng, 2017). The reversible effect of channel 
desensitization was also observed in situations of overdose and 
epidermal degeneration of nerve fibers (Rosenbaum and Simon, 
2007; Cheung et al., 2008).

In clinics, capsaicin-derived formulations to treat severe and 
chronic pain are available in a drug delivery system known as 
transdermal patches (Carnevale and Rohacs, 2016). Formulations 
with a stable release of 8% capsaicin (80 mg per gram of adhesive) 
as a dermal patch have been approved for use on neuropathic pain 
in the US and Europe, and can be used at multiple sites according 
to patient needs (Trevisani and Szallasi, 2010). Randomized 
clinical trials in diseases like diabetes, traumatic tissue injuries, 
herpes zoster infections, and cancer among others, have proven 
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the clinical safety and efficacy of the formulation in terms of 
improving patient quality of life (Kulkantrakorn et al., 2013).

Capsaicin has also been tested in association with other drugs 
such as local anesthetics (Gerner et al., 2008). Among these 
is the quaternary lidocaine derivate QX-314, which displays 
the therapeutic advantage of prolonging the anesthetic effect 
10-times when compared to lidocaine hydrochloride (Nakagawa 
and Hiura, 2013). Ries et al. (2009) utilized capsaicin as a V1 
agonist, enabling QX-314 to reach its intracellular binding site 
in the sodium channel. This scenario suggests that QX-314 in the 
presence of capsaicin can produce selective blocking mediated by 
TRPV1 (Binshtok et al., 2007). This pharmacological association 
was tested in vivo for an inferior alveolar nerve block, where a 
selective, long-lasting effect on sensory perception was noted 
without affecting motor areas (Lim et al., 2007). The above-
described selective and long-lasting activity could be ideal in 
future formulations for the treatment of odontalgias caused by 
inflammatory processes, as well as in painful episodes caused 
by temporomandibular joint disorders (Kim et al., 2010a). 
Also, it demonstrates the potential of capsaicin and vanilloid-1 
derivatives in the clinical management of pain associated with 
frequent episodes of pulpal inflammation in dentistry (Hossain 
et al., 2019). Due to the strong involvement of TRPV1 in the 
transmission of pain processes, structure-activity studies 
allowed for modifications in the structure of capsaicin and 
the development of analogous compounds in the attempt to 
eliminate the undesired irritation effect and pungency (Baskaran 
et al., 2018).

In this context, numerous specific TRPV1 antagonists 
have been developed with the aim of inhibiting nociceptive 
sensitization and the resulting transduction of the pain signaling 
process (Norman et al., 2007). Capsazepine was described as the 
first competitive antagonist of the channel, but its poorly selective 
binding capacity made it fail in clinical trials (Bevan et al., 1992). 
In models applied to the treatment of dental pain, examples of 
clinical records of compounds and their respective laboratories 
include AMG 517 (Amgen), AZD1386 (AstraZeneza), MK2295 
(Merck/Neurogen) and SB705498 (GSK) (Trevisani and Szallasi, 
2010). The clinical trial coordinated for SB705498 described it 
primarily as a powerful in vitro TRPV1 antagonist with the ability 
to reverse inflammation and pain in vivo (Gunthorpe et  al., 
2007). The controlled clinical trial was a multicenter (Korea, 
Italy, and UK), single-blind and placebo randomized study with 
a total of 145 patients, and the evaluated outcome corresponded 
to postoperative pain during third molar extraction surgery 
(Gunthorpe et al., 2007; De Petrocellis and Moriello, 2013). The 
experimental groups consisted of the treatments: SB705498 (400 
mg and 1,000 mg), placebo and co-codamol (2 capsules of 500 
mg paracetamol, 12.8 mg phosphatized codeine and 2 placebo 
capsules) (Cairns, 2009). In January 2019, the phase II results 
concluded in 2008 were published and no serious adverse effects 
were found; however, reported effects of SB705498 included 
headaches (n = 5) and heat sensation (n = 2) for the highest 
dose of 1,000 mg (Gunthorpe et al., 2007). The pharmaceutical 
industry has made a concerted effort to generate potent and 
selective compounds for TRPV1, in particular due to its attractive 
mechanism of action, which differs from the nonsteroidal 

anti-inflammatories, and also in the attempt to find a drug with 
a wide therapeutic window (Cheung et al., 2008; Trevisani and 
Szallasi, 2010).

NOVEL APPROACHES FOR DENTAL 
PAIN TREATMENT AND BEYOND: 
REGENERATIVE MEDICINE AND OTHERS

Regenerative medicine, and more specifically cell and tissue 
engineering approaches, have become increasingly popular in 
dental research over the last years. The key concept underlying 
these approaches is to develop a causative treatment aiming for 
long-term regeneration rather than immediate pain control. Due 
to its complex structure, regeneration of dentin and dental pulp 
has been proven a difficult and versatile task, which can be firstly 
categorized according to the primary clinical problem tackled 
(antibacterial treatment or pulp restoration) and subsequently 
into the following strategies: a) bio(active)materials, b) stem cells 
and cell-based approaches, c) exosomes, and d) physical stimuli, 
as well as combinations of the above approaches (Figure 2).

Bioactive Materials
The use of active materials to control inflammation, infection 
and pain has been described since ancient times. Ancient 
Egyptians utilized pastes of ochre, honey, and willow extract 
(containing salicin) to treat loosening teeth as well as dental 
pain (Leek, 1967; Forshaw, 2009). The activity attributed to the 
materials used is mostly antibacterial, with salicin also displaying 
anti-inflammatory properties. Utilizing bioactive materials is 
a strategy pursued until today, currently aiming to ensure bio-
and cyto-compatibility as well as reliable mechanic properties. 
Bioactive materials extensively used for pulp capping have 
been calcium hydroxide (causing mineralization by reduction 
of pyrophosphate) (Farhad and Mohammadi, 2005), mineral 
trioxide aggregate (MTA) (Torabinejad and Chivian, 1999) (a 
Portland cement-based substrate stimulating proliferation, 
migration, and differentiation of dental pulp stem cells into 
odontoblast-like cells to produce a collagen matrix) (Parirokh 
and Torabinejad, 2010; Paranjpe et al., 2011) and biodentine 
(a tricalcium-silicate based susbtrate with similar properties 
as mineral trioxide aggregate in terms of dental pulp stem cell 
differentiation) (Luo et al., 2014; Malkondu et al., 2014). Newer 
materials based on bioglass derivates are aiming to improve overall 
results of pulp capping, however, so far have only demonstrated 
decreased setting times and increased compressive strength as 
main favourable characteristics (Long et al., 2018; Hanada et al., 
2019). Addressing the issue of biofilm formation, Yang et al. 
added the antimicrobial quaternary ammonium salt monomer 
2-methacryloxylethyl dodecyl methyl ammonium bromide to 
Portland cement, and could demonstrate a Streptococcus mutans-
inhibiting effect for up to 6 months (Yang et al., 2014). Kwon 
et al. (2019) used 2-methacryloyloxyethyl phosphorylcholine in 
combination with mineral trioxide aggregate and found a two-
fold effect: on the one hand the composite demonstrated protein-
repellent properties and prevented adhesion of Enterococcus 
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faecalis, and on the other hand increased calcium ion deposition 
on the surface compared to mineral trioxide aggregate alone.

With recent advances in nanoscale manufacturing, an 
increased number of approaches have utilized the opportunities 
given by nano-structured materials to effectively deliver drugs 
into the dental pulp. Cuppini et al. (2019) developed a tricalcium-
phosphate based paste containing amoxicillin microspheres, 
calcium tungstate and indomethacin nanocapsules to deliver 
antimicrobial and anti-inflammatory compounds to the defect 
site. Zhu et al. (2017) designed calcium silicate nanoparticles 
in combination with silver and zinc as a nano-disinfectant for 
dentin tubules and root canals. However, Ji et al. (2018) pointed 
out a limitation of this approach as insufficient amounts 
of nanoparticles are transported reliably through dentinal 
tubules; thus, they designed magnetic nanoparticles for 
directed transport through the dental pulp. Iron nanoparticles 
coated with prednisolone were applied onto the dental pulp 
and directed through dentinal tubules using external magnets, 
and authors hypothesized that this approach can serve to 
transport medications to reduce dental pulp inflammation, 

as well as enhance bond strength of composite resin to dentin 
(Ji et al., 2018).

Another potential way of controlling pain related to dentinal 
hypersensitivity is to develop materials that promote dentinal 
regeneration. As type-I collagen is the most abundant structural 
protein in the extracellular matrix, collagen-derived scaffolds 
have been of interest to promote homing and differentiation of 
cells for dental pulp regenerative purposes (Prescott et al., 2008). 
To induce reparative dentinogenesis, Rutherford et al. (1993) 
utilized osteogenic protein 1 and bone morphogenic factor 7 in a 
collagen matrix, as a chemo-attractive layer on dental pulp sealed 
with temporary dental cement. In the case of osteogenic protein 
1, a higher amount of dentin deposition was observed while bone 
morphogenic factor 7 did not induce reparative dentinogenesis 
(Rutherford and Gu, 2000). Using a similar approach involving 
a combination of growth factors (bFGF, VEGF, or PDGF with 
a basal set of NGF and BMP7), Kim et al. (2010b) highlighted a 
beneficial effect of applying growth factor cocktails to stimulate 
cell homing and subsequent expression of van Willebrand factor, 
dentin sialoprotein, and NGF. Also, Rosa et al. (2013) found that 

FIGURE 2 | Overview of current and potential regenerative medicine approaches for dental pain treatment.
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an injectable type I collagen scaffold in combination with stem 
cells from human exfoliated deciduous teeth (SHED) was able 
to express odontoblastic differentiation markers when implanted 
into root canals. The resulting pulp-like tissue presented similar 
vascularization and cellularity compared to control dental 
pulps, and formation of new dentin was observed throughout 
the root. Furthermore, Jiang et al. (2017) induced root canal 
regeneration of immature teeth by using a resorbable collagen 
membrane paired with MTA, and observed complete resolution 
of signs and symptoms in all patients. However, no statistically 
significant improvement in regeneration was observed compared 
to the MTA-only control group. Besides collagen, other materials 
have also been of interest for promoting pulp regeneration, 
such as platelet rich derivates such as platelet rich plasma (PRP) 
or platelet rich fibrin (PRF). These materials are known for 
their richness in growth factors, which makes them a popular 
biomaterial in several areas of regenerative medicine (De Pascale 
et al., 2015). Regarding dental pulp regeneration, several groups 
have utilized the strategy of autologous PRP/PRF with varying 
results. While Torabinejad et al. (2015) and Rodríguez-Benítez 
et al. (2015) reported improved rates of bone formation and 
re-vascularization, Bezgin et al. (2015) found no advantages in 
using PRP for pulpal repair. Overall, further research is necessary 
in order to clarify the potential effectiveness of PRP and PRF for 
dental pulp regeneration.

It is important to note that these material-based approaches 
rely mainly on the regenerative capacity of the dental pulp, 
augmenting the formation of new dentin by stimulating tissue-
resident dental pulp stem cells and controlling inflammation as 
well as infection. In aging teeth however, dentinal regeneration 
with material-based approaches has significantly lower success 
rates (Lipski et al., 2018), creating a demand for combined cell-
material approaches.

Cell-Based Approaches
The dental pulp is a tissue rich in vasculature and different 
cell types such as fibroblasts, dental pulp stem cells (DPSC), 
and odontoblasts. The latter are capable of forming dentin by 
production of collagenous and non-collagenous mineralizing 
proteins (known as secondary dentin). Furthermore, the 
odontoblast layer is located at the interface between dental pulp 
and dentin, protruding their processes into the dentinal tubules 
(Figure 1B). The dental pulp is crucial for tooth homeostasis and 
presents stimulus-dependent strategies for self-repair known 
as reactive dentinogenesis, where stimuli such as dental caries 
can induce odontoblasts to deposit tertiary dentin (Smith et al., 
1995). Reparative dentinogenesis involves the dental pulp and 
its cellular components in response to a severe insult. When the 
odontoblast layer is disrupted, DPSC migrate into the site of 
injury and differentiate into odontoblast-like cells, forming new 
but irregular and less tubular dentin (Mitsiadis and Rahiotis, 
2004; Tziafas, 2010). The presence of DPSC therefore is crucial 
for reparative dentinogenesis to occur. However, with age the 
dentin layer becomes thicker and the pulp chamber decreases 
in size, limiting the amount of DPSC available for regeneration. 
Furthermore, the resident DPSC are subjected to senescence 

through the p16INK4a/Rb pathway, driving the otherwise 
highly proliferative cells into cell cycle arrest (Feng et al., 2014). 
Hence, the main goals in pulpal cell therapy are to deliver DPSC 
to the damaged, resected or retracted pulp chamber, and/or to 
transplant odontoblasts to obtain dentin restoration.

DPSC display common features to mesenchymal stem 
cells such as ability to differentiate into several mesenchymal 
lineages, as well as a low immunogenicity. The latter makes 
them suitable for allogeneic stem cell therapies (Pierdomenico 
et al., 2005). Several studies speculate whether odontoblast-like 
cells differentiated from DPSC display the same characteristics 
as native odontoblasts (Shi et al., 2005; Huang et al., 2009). In 
the early 2000s, proof-of-concept studies demonstrated a high 
potential of dental-derived stem cells to differentiate into a 
functional pulp-like complex, using hydroxyapatite in ectopic rat 
models (Gronthos et al., 2002; Miura et al., 2003). Interestingly, 
in a similar model using 3D printed hydroxyapatite and DPSC 
or apical papilla stem cells, Hilkens et al. (2017) could not find 
significant differences between the stem cell- and cell free-
groups in terms of angiogenesis. However, it was shown by 
Huang et al. (2010) that apical papilla stem cells and DPSC are 
capable of producing pulp-like tissue de novo, differentiating into 
odontoblast-like cells producing dentin-like tissue on existing 
dentinal walls.

One of the key questions in cell therapy is the route of delivery 
through which cells are administered to the site of interest, with 
approaches ranging from free cell transplantation to scaffold-
free cell sheets and natural or synthetic scaffolds. Collagen and 
atelocollagen served as scaffolds to deliver mesenchymal stem 
cells in several studies (Iohara et al., 2011; Iohara et al., 2013; 
Hayashi et al., 2015), improving the formation of pulp-like 
tissue and secondary dentin in dog models (Iohara et al., 2011; 
Iohara et al., 2013). In a pilot clinical study, functional dentin 
formation was observed with no adverse effects (Nakashima 
et al., 2017). Interestingly, DPSC transplantation with platelet-
rich fibrin did not show superior results compared to controls 
and was found to produce mainly periodontal tissue and not 
pulp (Hausner et al., 2007). Chitosan-hydrogel scaffolds seeded 
with DPSC in combination with growth factors formed pulp-
like tissue and a layer of regenerative dentin in a necrotic-tooth 
dog model (El Ashiry et al., 2018). Decellularized swine dental 
pulp seeded with DPSC was found to induce the formation 
of pulp-like tissue and a layer of odontoblast-like cells in a 
subcutaneous mouse model (Hu et al., 2017). Also, Zhang et 
al. (2017) analysed decellularized tooth bud scaffolds seeded 
with porcine dental epithelial cells, human dental pulp cells, 
and human umbilical vein endothelial cells in combination 
with BMP-2, and discovered formation of organized dentin in 
a mini-pig model. Furthermore, in a scaffold-free approach, 
Itoh et al. (2018) designed a dual-celltype sheet containing 
undifferentiated DPSCs and differentiated odontoblast-like 
cells, reporting pulp regeneration in an ectopic mouse model. 
Xuan et al. (2018) demonstrated in a minipig–pulpectomy-
model that pelleted DPSC are capable of regenerating whole pulp 
tissue, including the odontoblast layer. In a subsequent clinical 
trial, they observed similar effects in patients and furthermore 
sensory nerve regeneration.
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Exosome Therapies
One of the main recurrent issues in cell therapy is promoting 
the survival of transplanted cells in the recipient tissue over 
time. Factors like mechanical and nutritional stress, hypoxia, 
or detachment from the extracellular matrix as well as immune 
responses limit cell survival during and after the transplantation 
process. Many attempts have been made to increase cell homing and 
design long-term active cells therapies including biomaterial- or 
growth factor co-administration, reactive oxygen species protected 
hydrogels or preconditioning of the cells, among others (reviewed 
by Baldari et al., 2017). Within this context, exosomes have been 
proposed as an interesting alternative to cell transplantation and 
have gained popularity over the last decade, avoiding the challenge 
of cellular homing. Exosomes were first described in mammalian 
cell culture in 1981 as the cargo of microvesicles being shed from 
cells (Trams et al., 1981). They were believed to be a cellular “waste” 
system, mainly involved in the removal of obsolete molecules 
from the cell and cell wall (Pan and Johnstone, 1983). Due to 
key findings such as their role in expression of antigens (Raposo, 
1996) and ability to transfer mRNA/miRNA (Valadi et al., 2007), 
they are now established as one of the main factors in inter-cellular 
communication. By definition, exosomes are vesicles between 30 
and 150 nm in size, and their cell surface markers and cargo can 
be associated to the phenotype, metabolic status, and biological 
role of their cell of origin (Ratajczak et al., 2006; Valadi et al., 2007; 
Alcayaga-Miranda, 2016).

Exosomes have been harvested from several types mesenchymal 
stem cells and have demonstrated immune-modulatory and pro-
angiogenic properties, amongst others (Liang et al., 2016; Cosenza 
et al., 2018). Within the analysed sources, DPSC have been 
demonstrated to produce exosomes with the capacity of regulating 
acute inflammation by suppressing activities of cathepsin B and 
matrix metalloproteinases in a carrageenan-induced inflammation 
model (Pivoraitė et al., 2015). As mentioned above, exosomes 
are a tool for cellular communication, representing the cell’s 
current state. Huang et al. (2016) utilized this characteristic and 
hypothesized that cell-type specific exosomes can trigger lineage-
specific differentiation of stem cells. They differentiated DPSCs into 
odontoblast-like cells to subsequently isolate the exosomes and 
could verify a superior odontoblast differentiation in vitro as well 
as regeneration of pulp-like tissue in an in vivo tooth slice model. 
Hu et al. (2019) confirmed these findings and analysed underlying 
mechanisms, finding an activation of the TGFβ1/smads signalling 
pathway via transfer of microRNAs.

Aside from active native cargo, exosomes have shown to be 
promising system for bio-inspired and targeted drug delivery 
(reviewed by Zhang et al., 2019). Despite a lack of studies reporting 
the use of drug-loaded exosomes for the treatment of dental pain, 
there are several likely possibilities originating from experiences 
in other tissues. One potential avenue could be the local delivery 
of anti-inflammatory drugs into the pulp, as curcumin-loaded 
stem cell or macrophage exosomes have shown to display anti-
inflammatory properties (Sun et al., 2010; Kalani et al., 2016). 
Also, delivery of liposome-encapsulated superoxide dismutase 
and catalase has demonstrated to locally suppress periodontal 
inflammation in a dog model (Petelin et al., 2000). Alternative 

approaches, originating from advances in nano-engineering, have 
demonstrated that exosomes can also be directed to specific tissues, 
making them an attractive option for targeted therapy (Gomari 
et al., 2018; Tian et al., 2018). Furthermore, several groups have 
designed artificial ion channels using DNA origami (reviewed 
by Shen et al., 2014). These channels could potentially resemble 
the biologic function of channels (i.e. TRP channel) and could 
be inserted as “mock-channels” into cell membranes. Overall, 
exosomes appear to be a promising alternative to cell therapy for 
dental pulp pain treatment; however, their efficacy relies strongly 
on recipient cells, which could be an issue in cases where the dental 
pulp is necrotic or a pulpectomy has been performed.

Physical Therapies
Aside from pharmacological pain treatment or causative tissue 
engineering approaches such as biomaterials and cell-based 
therapies, physical therapies such as photo-biomodulation or 
shockwave treatment are an upcoming field in dentistry. Some 
studies have tried to modulate pain and inflammation with 
these approaches, including treatment of dental pain.

Low level laser therapy (LLLT) was invented in the 1960s, and in 
an attempt to identify cancer risks of laser it was found to induce hair 
growth in mice (Mester et al., 1968). It utilizes wavelengths between 
600 nm and 1,000 nm and has been found to trigger many effects 
at the cellular and tissue levels. For example, cytochrome C oxidase 
absorbs near-infrared light, triggering downstream events such as 
changes in ATP, reactive oxygen species and nitric oxide (reviewed 
by Farivar et al., 2014). Regarding dental pain management, LLLT 
has been reported to reduce pain in several situations such as 
postoperatively after root canal retreatment (Arslan et al., 2017) 
or in cases of dentinal hypersensitivity (Gerschman et al., 1994; 
Orhan et al., 2011). However, several studies also demonstrate a 
regenerative effect of LLLT. In an in vitro tooth-slice model, LLLT 
increased odontogenic and angiogenic gene expression (El Nawam 
et al., 2019). Kim et al. (2018) also reported increased dentinogenic 
differentiation of DPSC in vitro using pulsing LLLT, proposing high 
production of reactive oxygen species and activation of the TGF-β1 
signalling pathway as potential mechanisms. In rat models it was 
shown that LLLT increased the density of odontoblasts and induced 
formation of more regular dentin after mechanical pulp damage (de 
Santana et al., 2017) and furthermore, stimulated cell proliferation as 
well as dentin formation after pulpal apoptosis (Shigetani et al., 2011). 
These results suggest LLLT as a promising non-invasive approach 
for dental pain management in diverse clinical situations, although 
further studies are needed to confirm its clinical reproducibility.

Extracorporeal shockwave treatment (ESWT) has demonstrated 
beneficial effects in several areas of regenerative medicine [e.g. bone 
regeneration (Schaden et al., 2001) or ischemia-induced tissue 
necrosis (Mittermayr et al., 2011)]. Shockwaves are sonic pulses 
characterized by an initial rise in pressure, reaching a positive 
peak of up to 100 MPa within 10 ns, followed by a negative 
amplitude of up to 10 MPa and a total life cycle of less than 10 
µs (Ogden et al., 2001). The underlying effect on cells and tissues 
has been attributed to increased ATP secretion and subsequent 
activation of the extracellular-signal-regulated kinase pathway 
(ERK) (Weihs et al., 2014). For DPSC it has been demonstrated 
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that extracellular ATP activates P2 receptors and downstream 
signaling events that induce odontogenic differentiation, with 
ESWT suggested as one of the triggering factors (Wang et al., 
2016). Furthermore, it has been shown that ESWT increases 
efficacy of desensitizing agents for dentine hypersensitivity 
(Datey et al., 2016). Despite these promising initial studies, there 
remains a lack of animal and clinical studies associating ESWT to 
dental pain control, and future research is needed to strengthen 
these initial observations.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

Although significant improvements have been made in dental 
care, dental pain remains a frequent source for patient poor 
quality of life. Current treatment is mainly centered around a 
combination of the pharmacological management of symptoms 
and restorative treatment, nonetheless drugs such as NSAIDs 
or opioids can potentially present significant side effects and 
addiction in limited patients. Thus, there are many novel 
approaches for dental pain management being explored in hopes 
of improving treatment outcomes in the long-term. Approaches 
such as TRPV1-targeting drugs have shown promising results 
so far, although further clinical research is needed in order 
to demonstrate their efficacy in dental pain management. 
Furthermore, causative treatment approaches originating from 
regenerative medicine have the potential to significantly improve 
the resolution of dental pain. Cell-based and exosome therapies 
are already being used in other fields, and introduction into clinics 
could provide long-term solutions for the modulation of local 
pulp inflammation and nociception. Material-based therapies 
that promote tooth remineralization have been used in the past, 
and current advances improving bioactivity and antibacterial 
effect of materials could provide clinicians with novel approaches 
for the treatment of dental caries and subsequent dental pain.

Interestingly, physical therapies such as LLLT and ESWT have 
been widely used for the treatment of inflammation and pain 
in a range of tissues in humans (Cotler et al., 2015; Lee et al., 

2017; Moya et al., 2018). One of the main advantages of these 
approaches is their non-invasiveness, generating a biological 
effect in deep tissues without the need of surgery of restorative 
treatment. Initial studies regarding use of LLLT and ESWT for 
dentinal hypersensitivity showed promising results (Gerschman 
et al., 1994; Datey et al., 2016), as well as the use of ESWT for 
controlling inflammation in other areas of the mouth. However, 
there is still a lack of clarity regarding the biological mechanism 
of ESWT in tissues. Further studies elucidating the mechanisms 
underlying ESWT as well as effectiveness to resolve dental pulp 
inflammation and pain are necessary.

As discussed throughout this review, teeth are highly specialized 
organs with a quite particular nociception mechanism. Nerve fibers 
within the dental pulp are triggered either by environmental 
factors (dentinal hypersensitivity) or by the release of pro-
inflammatory and bacterial molecules. Thus, the ultimate goal 
of any therapy should be to reduce local inflammation while 
restoring protection to dentin and the dental pulp, in order to 
provide causative treatment and long-term success to patients. 
Current research should therefore focus on developing novel and 
causative treatments against dental pain, with limited adverse 
effects and clinically reproducible results.
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