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Abstract: Polycyclic aromatic hydrocarbons (PAHs) refer to a group of several hundred compounds,
among which 16 are identified as priority pollutants, due to their adverse health effects, frequency
of occurrence, and potential for human exposure. This study is focused on benzo(a)pyrene, being
considered an indicator of exposure to a PAH carcinogenic mixture. For this purpose, we have
applied the XGBoost model to a two-year database of pollutant concentrations and meteorological
parameters, with the aim to identify the factors which were mostly associated with the observed
benzo(a)pyrene concentrations and to describe types of environments that supported the interactions
between benzo(a)pyrene and other polluting species. The pollutant data were collected at the
energy industry center in Serbia, in the vicinity of coal mining areas and power stations, where
the observed benzo(a)pyrene maximum concentration for a study period reached 43.7 ng m−3.
The metaheuristics algorithm has been used to optimize the XGBoost hyperparameters, and the
results have been compared to the results of XGBoost models tuned by eight other cutting-edge
metaheuristics algorithms. The best-produced model was later on interpreted by applying Shapley
Additive exPlanations (SHAP). As indicated by mean absolute SHAP values, the temperature at the
surface, arsenic, PM10, and total nitrogen oxide (NOx) concentrations appear to be the major factors
affecting benzo(a)pyrene concentrations and its environmental fate.

Keywords: machine learning; extreme gradient boosting; metaheuristics optimization; swarm intelli-
gence; explainable artificial intelligence; sine cosine algorithm; benzo(a)pyrene

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) refer to a group of several hundred species
with two to seven fused benzene rings, generated via incomplete combustion of organic
substances, in the high temperature or pressure process. The majority of these polluting
species are persistent, bioaccumulative, light sensitive, heat and corrosion resistant, and
emitted from both natural and anthropogenic sources, with the latter being dominant in
urban areas.

The concentrations of PAHs in the atmosphere are dependent on the number and
quality of air pollutant emission sources, regional meteorological conditions, season, mea-
surement site characteristics, as well as other factors which contribute to their dispersion
and have an impact on atmospheric chemistry, dry or wet deposition, and finally, pollutant
half-lives and their mutual interactions [1].

After being released, mostly as part of vehicle exhaust and emissions from biomass
and fossil fuel burning, PAHs are distributed to all environmental compartments, adsorbed
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to airborne particle matter, and deposited on terrestrial and water surfaces. Their concen-
trations are particularly high in the cold season, as a result of increased fossil fuel burning,
reduced thermal and photo-decomposition, and a low planetary boundary layer. Apart
from their common sources in urban areas, Hoffer et al. [2] reported that municipal inciner-
ation of plastic waste in urban areas emits up to 750 more PAHs than the combustion of dry
firewood under the same conditions, and estimated that these emissions were dominated
by 4–6 ring PAHs, which are up to 4100 times more toxic than the ones emitted from wood
combustion.

In the atmosphere, PAHs are found in the gaseous phase or, more often, adsorbed onto
suspended particles. The U.S. EPA has listed 16 compounds as the “priority PAHs” due to
their adverse health effects, frequency of occurrence, and potential for human exposure. As
regards their impacts on human health, PAHs have obtained significant attention due to
the toxicity of low molecular weight species, being the most abundant in the gas phase, and
the carcinogenic potential of heavy molecular weight compounds, being mostly particle-
bound [3]. The smaller the particle size, the higher the share of carcinogenic PAHs, and
thus fine aerosol fraction poses excessive risks to human health. In addition to this, PAHs
contribute to the high mutagenicity and carcinogenicity of suspended particles through
reactions with atmospheric oxidants, which result in the formation of secondary species [4].

In Serbia, the use of low-quality lignite coal is the major cause of low air quality. While
domestic fuel burning (wood, coal, and gas) contributes to global PM2.5 and PM10 emissions
with 20% and 15%, respectively. Karagulian et al. [5] estimated that these contributions
amount to 32% and 45% in Central and Eastern Europe, respectively. Since it has been
recognized as an indicator of total exposure to carcinogenic PAHs, the benzo(a)pyrene
(B[a]P) presence is regularly monitored. To prevent and reduce harmful effects on human
health and the environment, a European Directive has set a target value of 1 ng m−3 for
the total content of B[a]P in the PM10 fraction, averaged over a calendar year. In this study,
we have used the pollutant data from Lazarevac, an energy industry center in the vicinity
of the coal mining areas and power stations, where the observed B[a]P concentrations
have occasionally reached 30 ng m−3. In comparison to this, Elzein et al. [6] reported the
∑17-PAHs concentrations have ranged from 2.6 and 31.2 ng m−3, and 8.4 to 42.9 ng m−3,
in Beijing and Delhi, respectively. Previous studies have confirmed that the residents of the
coal mining regions face an incremental lifetime cancer risk which is significantly higher
than the target value [7].

In this study, based on our previous research [8–15], we have applied a novel approach
based on the XGBoost model to identify the factors which are mostly associated with the ob-
served B[a]P concentrations and the environmental conditions which support and facilitate
B[a]P level dynamics and its interactions with other polluting species. The XGBoost itself is
an efficient model; nevertheless, its hyperparameters require tuning for each particular pre-
diction task in order to achieve good performance on the observed dataset. Manual tuning
of the hyperparameters is an extremely slow, time-consuming, and error-prone task that is
considered to be NP-hard by nature. To address this, a variant of the SCA metaheuristics
algorithm [16] has been used to optimize the XGBoost hyperparameters. Metaheuristics
algorithms, being stochastic by nature, have been established as a common choice to tackle
NP-hard challenges. By performing simulations for the sake of this research, the most
promising metaheuristics algorithm was determined to be the sine cosine algorithm (SCA);
in other words, it was selected empirically. Moreover, this paper also proposes a modified
version of SCA, by hybridizing it with another algorithm, to cancel the limitations of the
elementary SCA. Modified SCA was later utilized as a part of the machine learning frame-
work, and tasked to tune the collection of the XGBoost hyperparameters for this problem.
The results attained by the proposed model have been compared to the results of XGBoost
models tuned by eight other cutting-edge metaheuristics algorithms. The best-produced
model was later on interpreted by applying Shapley Additive exPlanations (SHAP).
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2. Background
2.1. XGBoost

The XGBoost algorithm utilizes an adaptive training method for optimizing its ob-
jective function, where each step in the optimization process relies on the outcome of the
previous step. The mathematical representation of the XGBoost model’s objective function
has been defined as follows:

Fo
i = ∑n

k=1 l
(

yk, ŷi−1
k + fi(xk)

)
+ R( fi) + C, (1)

where the t-th round loss is denoted by l, yk and ŷk denote target observed values and
predictions, respectively; fi are additive functions from the space of the regression trees, con-
stant term is marked as C, while the model’s regularization parameter R can be defined as:

R( fi) = γTi +
λ
2 ∑T

j=1 w2
j (2)

where T corresponds to the number of leaves in the tree, while w values denote the scores
in the corresponding leaves [17].

In general, the complexity of the tree structure is inversely proportional to the values
of the customization parameters γ and λ. The larger the values of these parameters, the
simpler the tree structure becomes. The model’s first and second derivatives, represented
by g and h, respectively, are expressed as follows:

gj = ∂ŷi−1
k

l
(

yj, ŷi−1
k

)
(3)

hj = ∂2
ŷi−1

k
l
(

yj, ŷi−1
k

)
(4)

The solution is obtained using the next two formulas:

w∗j = − ∑ gt
∑ ht+λ (5)

Fo
∗ = −1

2

T

∑
j=1

(∑ g)2

∑ h + λ
+ γT, (6)

where the loss function score is denoted by Fo
∗, while the solution’s weight values are

marked by w∗j .

2.2. Metaheuristics Optimization

NP-hard challenges, a common occurrence in computer science, necessitate the use
of stochastic algorithms like metaheuristics because deterministic methods are imprac-
tical. Metaheuristics methods can be categorized into various families with respect to
the natural phenomenon they utilize to steer the search process, such as evolution or
insect behavior [18–20]. The most significant families of metaheuristic algorithms are
nature-inspired methods (further divided into genetic algorithms and swarm intelligence),
methods established upon certain physical phenomena (e.g., storm, gravity, electromag-
netism), algorithms that imitate certain aspects of the human behavior (e.g., teaching and
learning, or brainstorming, or actions taken on social media), and approaches based on
mathematical laws to guide the search (e.g., trigonometric function oscillations).

Swarm intelligence is established upon the behavior manifested by massive groups
comprised of relatively modest units; for example, insects or birds in swarms, that are
able to manifest highly coordinated and sophisticated behavioral patterns while they hunt,
feed, mate or migrate [21,22]. These algorithms have exhibited high efficiency in solving
a variety of the real-world NP-hard challenges. Among many available algorithms, well-
known samples are the particle swarm optimization (PSO) [23], the ant colony optimization
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(ACO) [24], the firefly algorithm (FA) [25] and the bat algorithm (BA) [26,27]. Recently, a
highly efficient group of algorithms were derived from the mathematical functions and their
properties to steer the search procedure, including the sine-cosine algorithm (SCA) [16]
and the arithmetic optimization algorithm (AOA) [28].

The reason why there is a range of population-based algorithms is due to the no-free-
lunch theorem (NFL) [29]. The NFL discloses that no single method can be the best for all
optimization problems. Consequently, one algorithm may excel in one task but entirely fail
in another, leading to the need for diverse metaheuristics approaches and the requirement
to choose a suitable method for each specific optimization challenge.

Recently, population-based algorithms have been a common choice to address numerous
real-world problems. The application domains include predicting the number of COVID-19
cases [30,31], fog, cloud and cloud-edge computing systems organization [32–35], wireless
sensors and IoT optimization [36–39], feature selection [40], image processing and classifying
in medicine [41,42], global tuning challenges [43,44], credit card fraud identification [45,46],
tracking and predicting air pollution [47,48], network and computer systems intrusion detec-
tion [49,50], and finally, tuning different ML structures [51–56].

2.3. Shapley Additive Explanations

To explain the obtained best-performing model, which is vital for understanding the
process being modeled, we have applied the explainable artificial intelligence method
SHAP. Avoiding the trade-off between accuracy and interpretability, SHAP provides a
straightforward and meaningful interpretation of the model-derived decisions. It is based
on Shapley values, calculated as a feature importance measure by a game-theory approach
which provides an impact of features on individual predictions [57]. Apportioning the
difference between the prediction and the average prediction among the features [58],
Shapley values represent fairly distributed payouts among the cooperating players (fea-
tures) depending on their contribution to the joint payout (prediction). SHAP assigns
each feature importance as a measure of its contribution to a particular prediction and
interprets the impact compared to a model’s prediction if that feature took some baseline
value (mean). This way, the method provides valuable insights into a model’s behavior
(1) overcoming the main drawback of inconsistency, (2) minimizing the possibility of under-
estimating the importance of a feature with a specific attribution value, and (3) capturing
feature interaction effects based on a generalization of Shapley values and interpreting the
model’s global behavior while retaining local faithfulness [15,59]. The main challenges of
the method include Shapley value computation and background data choice which can
induce uncertain or unintuitive feature attributions.

In this study, we have used the relative SHAP values introduced by Stojic et al. [11] to
gain an insight into relative relationships among feature attributions for each prediction.
Relative SHAP values, defined as a share of absolute SHAP in total attributed importance
of all features for the particular prediction, show the relative influence of a feature on the
prediction.

We have used the Python SHAP implementation (SHAP Python package) and TreeEx-
plainer [59] to obtain SHAP values that we have used to produce SHAP dependency plots,
representing the change of feature importance over its value range.

3. Methods
3.1. Measurements Methods

For this study, the two-year daily concentrations (2018–2019; 645 observations) of
particulate matter PM10, its constituents (Pb, As, Cd, Ni, and B[a]P), and inorganic gaseous
pollutants (NO, NO2, NOx, and SO2) were obtained from the regulatory air quality monitor-
ing station (44◦23’02” N, 20◦15’55” E) in Lazarevac (Serbia). The meteorological data were
obtained from the Global Data Assimilation System (GDAS1) with a 1.0◦ × 1.0◦ spatial
resolution for the longitude and latitude of the monitoring station.
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The Sven Leckel SEQ 47/50-RV sampler was used for collecting 24-h samples of
particulate matter. The mass concentrations of PM10, Pb, As, Cd, Ni, and B[a]P were
determined according to the standards EN 12341, EN 14902, and EN 15549, while the
concentrations of NO, NO2, NOx, and SO2 were obtained in accordance with the sampling
procedures standardized in EN 14211 and EN 14212.

PM10 were collected on quartz filters (Whatman QMA, 47 mm) daily, as described
in the Standard SRPS EN 12341:2015 (Ambient air—Standard gravimetric measurement
method for the determination of the PM10 or PM2.5 mass concentration of suspended
particulate matter, 2015). The filters were pre-fired to remove organic impurities, and the
pre-conditioning of both non-exposed and loaded filters was performed prior to gravimetric
measurements.

The concentrations of As, Cd, Cr, Ni, and Pb as PM10 constituents were determined as
described in the EN 14902:2008/AC:2013 Standard (Ambient air quality—Standard method
for the measurement of Pb, Cd, As, and Ni in the PM fraction of suspended particulate
matter, 2008). Firstly, the CEN/TC 264 N779 procedure was applied for the extraction of
the trace elements. In brief, the pieces of exposed quartz filters were treated with an acidic
mixture of HNO3(c)/30% H2O2/H2O (3/2/5) using analytical grade reagents (Merck) and
distilled/deionized water (MiliQ, 18.2 MΩ). The filters were digested in closed 100 mL
Teflon vessels in the Anton Paar 3000 microwave accelerated reaction system and the
concentrations of trace elements were determined by inductively coupled plasma–mass
spectrometry (ICP-MS) (device Agilent 7500ce with Octopole Reaction System). Quality con-
trol and verification of the applied procedures for microwave digestion and multi-elemental
trace analysis using ICP-MS was conducted using the 2783 NIST (National Institute of
Standard and Technology, MD, USA) standard reference material analysis, containing a
PM10 fraction of urban dust from a mixed industrial urban area of Vienna, collected on a
polycarbonate membrane filter. The recovery values were within the satisfactory range of
±20% from the reference value.

B[a]P was determined by the procedure described in the SRPS ISO 12884:2010 Stan-
dard (Ambient air—Determination of total (gas and particle-phase) polycyclic aromatic
hydrocarbons—Collection on sorbent-backed filters with gas chromatographic/mass spec-
trometric analyses, 2010). Parts of the exposed filters underwent a microwave extraction
procedure with a solvent mixture of n-hexane and acetone (12.5 mL n-hexane: 12.5 mL
acetone) according to EPA method 3546. After extraction, the solution volume was reduced
by rotary evaporation under reduced pressure (55.6 kPa and 0.2 mL iso-octane) to 1 mL.
Afterward, the n-hexane solution was reduced to 0.25 mL under a nitrogen stream. Known
quantities of internal standards were added to estimate the method recovery. B[a]P was
analyzed using gas chromatography coupled with a mass selective detector (Agilent GC
6890/5973 MSD) according to the EPA compendium method TO-13A with a DB-5 MS
capillary column (30 m × 0.25 mm × 25 µm). The oven temperature program started at
70 ◦C (duration of 4 min) and ramped 8 ◦C min-1 to the end temperature of 310 ◦C (duration
of 5 min). The solvent delay was 5 min and the run time was 46 min. The calibration curve
was obtained by spiking seven different quantities of B[a]P, all with an R2 of the calibration
curve above 0.995. Recovery values ranged from 85% to 110% for all the PAHs contained in
the internal standard.

The samples were collected at the suburban site located in the energy industry center
of Lazarevac, a municipality of Belgrade (Serbia), and a home to 60,000 residents. The sam-
pling location, surrounded by residential areas and sports facilities, is exposed to mining
pollutant sources and emissions from household coal and wood fireboxes. Additionally,
the nearest coal mine Vreoci and regional power station are located around 5 km east and
northeast, while the 80 square kilometers large coal mining area Kolubara, which supplies
75% of Serbia’s electricity generation and largest state power plants Nikola Tesla A and B,
are located around 10 km north and 30 km northwest of the sampling site, respectively.
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3.2. Original Sine Cosine Algorithm

The algorithm, proposed by Mirjalili in 2016 [16], is based on the properties of elemen-
tary trigonometrical functions. SCA belongs to the group of population-based metaheuris-
tics that starts each run by producing a set of arbitrary initial solutions within the scope
of the search realm. The individual positions update following the swinging behavior of
the sine and cosine functions over time. SCA conducts the exploration and exploitation
mechanisms steered by the set of four arbitrary control parameters. The fundamental SCA
search is mathematically defined by Equation (7):

Xt+1
i =

{
Xt+1

i = Xt
i + r1 · sin(r2) · |r3 · P∗ti − Xt

i |, r4 < 0.5
Xt+1

i = Xt
i + r1 · cos(r2) · |r3 · P∗ti − Xt

i |, r4 ≥ 0.5,
(7)

where Xt
i and Xt+1

i define the individual’s position in i-th dimension in a pair of consecu-
tive iterations t and i + 1, respectively, r1−4 are four generated above-mentioned control
parameters, the P∗i defines the target’s position (the most recent estimation of the optimal
solution) within i-th dimension. Additionally, the fresh values for r1−4 parameters are
summoned for each component of each solution within the population.

3.3. Proposed Modified Sine Cosine Algorithm

The core implementation of SCA is considered to be an exceptional optimizer; however,
like other metaheuristics methods, it also has some drawbacks. Testing using benchmark
sets has shown that SCA is effective at exploring solutions, but lacks the ability to effectively
exploit these solutions in the later stages of the process. This results in a limited exploration
when the algorithm should be focusing on the most promising areas. In contrast, the firefly
algorithm (FA) is known for its superior exploitation capability, as described by [25].

This manuscript suggests a hybrid solution by combining SCA and FA algorithms,
aiming to profit from the advantages of both metaheuristics, aiming to cancel out each
other’s disadvantages. At the start of the execution, the solutions within the population
will update according to the SCA search procedure, as described by Equation (7). However,
in later stages, when it is necessary to narrow down and exploit the favorable regions of
the search realm, the exploitation phase is backed up by employing the powerful FA search
mechanism, defined by Equation (8):

Xt+1
i = Xt

i + β0 · e
−γr2

i,j(Xt
j − Xt

i ) + αt(κ − 0.5) (8)

where α represents the randomization variable, κ is an arbitrary value drawn from the
Gaussian distribution. Finally, the space between solutions i and j is denoted as ri,j.

A couple of new control parameters have been suggested to steer the alternation
between the two search procedures in the later stage of the execution. The varying search
vs control parameter is used to activate the combined search mode in the case where t > vs,
when the suggested approach should alternate between SCA and FA search methods.
Variable vs is initially set as maxIter/5, that has been determined empirically.

The second control parameter, named search mode sm, determines for every individual
solution in the population whether to proceed with the SCA or FA search option. Each
solution produces a random value rnd in range [0, 1], and if rnd < sm it will perform an
SCA search, or otherwise continue with the FA search option. The value of this parameter
is dynamically reduced over the iterations, giving an additional focus on a stronger FA
search in the latter rounds. Initially, sm is set to 0.8, being reduced over time according to
Equation (9).

smt = smt−1 − (smt−1/10) (9)

The hybrid algorithm is labeled hybrid self-adaptive SCA (HSA-SCA), and its pseu-
docode summarizing the most significant steps of the approach is provided by Algorithm 1.
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Algorithm 1 Pseudocode of the HSA-SCA metaheuristics

Spawn a collection of starting solutions (X)
while t < maxIter do

validate each individual in terms of its fitness
for each individual inside (X) do

if t < vs then
Perform SCA search mechanism, provided by Equation (7)

else
if rnd < sm then

Perform SCA search mechanism, provided by Equation (7)
else

Perform FA search mechanism, provided by Equation (8)
end if

end if
end for

end while
return The current fittest solution determined as the global optimum

4. Experimental Findings and Comparative Analysis

This section first provides insights into the dataset preprocessing, implementation tech-
nology, and evaluation metrics used to evaluate different tuned XGBoost models, followed
by experimental setup, results, and comparative analysis. Finally, to validate improvements
of devised hybrid metaheuristics over other baseline cutting-edge approaches, statistical
tests were conducted, as suggested in the state-of-the-art AI literature [60].

4.1. Dataset Preprocessing, Implementation Technology and Evaluation Metrics

As already pointed out in Section 3, the employed dataset includes 645 observations.
The challenge is formulated as a regression problem, where the feature with daily values
for B[a]P was set as the target. Since the XGBoost is a tree-based method, scaling values,
e.g., within the range [0, 1], were not needed; therefore original measured values were used.

However, since the XGBoost requires training, the dataset was divided into train and
test, where 70% of observations were used for training and 30% for testing. The same
split was used for all metaheuristics considered for comparative analysis and the same
pseudo-random number seed was employed, with the goal of establishing fair comparison
conditions. It is noted that during the pre-experimentation, simulations with validation
test were also conducted; however, improvements could not be achieved, and therefore it
was decided to proceed with only training and testing data. Visual representation of the
dataset split for the target variable is shown in Figure 1.
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Figure 1. The Benzo(a)pyrene feature dataset split.
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The analysis was conducted using daily concentrations and daily mean meteorological
parameters, which have minimal to no autocorrelation in such a short period. Moreover,
atmospheric processes relevant to air pollution dynamics usually occur within an hour,
making autocorrelations even less prominent when using daily data.

The simulation environment, along with all methods, was implemented in Python
using data science and ML libraries: numpy, pandas, scikitlearn, xgboost, matplotlib, seaborn
and shap. Code snippets of the simulation framework along with the best generated
XGBoost model by proposed HSA-SCA approach is available at the following URL: https:
//doi.org/10.5281/zenodo.7831739 (accessed on 25 February 2023).

The XGBoost model’s experimental results have been evaluated by a set of traditional
machine learning metrics, including mean squared error (MSE) defined by Equation (10),
root mean squared error (RMSE) obtainable by Equation (11), mean absolute error (MAE)
calculated by Equation (13), and the coefficient of determination (R2) described with
Equation (13).

MSE =
1
N

N

∑
i=1

(âi − ai)
2 (10)

RMSE =

√√√√ 1
N

N

∑
i=1

(âi − ai)
2 (11)

MAE =
1
N

N

∑
i=1
|âi − ai| (12)

R2 = 1− ∑n
i =1 (ai − âi)

2

∑n
i =1 (ai − ā)2 , (13)

where ai and âi represent arrays comprised of the observed values that are predicted, and
predicted values, both with length N. This paper utilizes MSE as the fitness function that is
required to be minimized.

Additionally, according to [61,62], the index of agreement (IA) can be an insightful
statistical measure used to evaluate the performance of a model or forecast in predicting a
particular event or phenomenon, as well as the metric for the best-generated models. The
IA can be calculated as the ratio of the MSE and the potential error that is varying in range
[0, 1], where the value of 1 suggests perfect agreement, while the value of 0 suggests no
match at all. The Eq. 14 shows how the IA value is obtained:

IA = 1− ∑n
i =1 (ai − âi)

2

∑n
i =1 (|âi − ā|+ |ai − ā|)2 , 0 ≤ IA ≤ 1, (14)

where ai and âi again denote arrays comprised of the observed and predicted values, and
the ā are average observed values.

4.2. Experimental Setup

The proposed HSA-SCA algorithm was tasked to optimize the XGBoost model for this
particular dataset. The set of optimized XGBoost hyperparameters, accompanied by their
corresponding search limits and variable types are provided as follows:

• learning rate (η), search limits: [0.1, 0.9], continuous variable,
• min_child_weight, search limits: [1, 10], continuous variable,
• subsample, search limits: [0.01, 1], continuous variable,
• collsample_bytree, search limits: [0.01, 1], continuous variable,
• max_depth, search limits: [3, 10], integer variable and
• gamma, search limits: [0, 0.8], continuous variable.

https://doi.org/10.5281/zenodo.7831739
https://doi.org/10.5281/zenodo.7831739
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The parameter counts of the softprob objective function (‘num_class’:self.no_classes)were
passed as a parameter to the XGBoost, while the remainder of the XGBoost parameters
were set to XGBoost defaults during the simulations.

The suggested method has been implemented in the Python programming language,
accompanied by the standard collection of Python libraries related to machine learnin
including scipy, numpy, and pandas, while the XGBoost model was acquired from the
scikit-learn package.

The proposed setup utilizes the solutions’ encoding scheme that observes each solution
as an array with length l, where l denotes the number of optimized hyperparameters. Hence,
the value l has been set to six, to match the tuned parameters.

Aiming to validate the performance of the XGBoost model tuned by the suggested
HSA-SCA algorithm, the achieved results were compared to the results attained by eight
other contending powerful algorithms. The comparisons were executed with elementary
SCA, genetic algorithm (GA) [63,64], PSO [23], ABC [65], FA [25], whale optimization
algorithm (WOA) [66], harris hawks’ optimization (HHO) [67] and chimp optimization
algorithm (ChOA) [68]. Every contending algorithm has been implemented independently
by the authors of this manuscript, with the control parameters set to the recommended
values from their respective publications. Each algorithm has been given the same task, to
tune the same set of XGBoost hyperparameters.

All metaheuristics algorithms were tested with 40 solutions in the population and 20
iterations per run, over the course of 20 separate runs. As previously noted, MSE was set
as the fitness function that needs to be minimized.

4.3. Experimental Findings and Comparative Analysis

This section yields the attained experimental outcomes, for the observed HSA-SCA
algorithm and other contenders. Tables 1 and 2 show the simulation outcomes with respect
to the fitness function, accompanied by the detailed metrics achieved in the best individual
run of each algorithm, where the best results in each category are marked in bold.

Table 1 shows detailed comparisons with respect to the fitness function (MSE) attained
by XGBoost models optimized by the nine regarded algorithms (the proposed HSA-SCA
and eight contenders). The results suggest that the HSA-SCA method displayed a supreme
performance level, by achieving the best scores for key performance indicators (best, worst,
mean, and median). FA scored the best results for standard deviation and variance, by
delivering the most stable results. The second best result with respect to the best, worst,
mean and median run values was also FA, followed by PSO and ChOA. The best attained
score by the HSA-SCA XGBoost model was the MSE of 2.468293, and R2 of 0.892845.

Table 1. Comparative results of the objective function (MSE) of the observed metaheuristics.

Method HSA-SCA SCA GA PSO ABC FA WOA HHO ChOA

Best 2.468293 3.184137 3.192827 3.077008 3.153481 2.590850 3.206221 3.180909 3.129932
Worst 2.893362 3.605363 3.635218 3.773639 3.774347 2.918338 3.685749 3.584440 3.561904
Mean 2.731538 3.443475 3.413906 3.390799 3.369339 2.771516 3.466122 3.363900 3.379943

Median 2.725915 3.479927 3.423980 3.413375 3.306318 2.779478 3.472304 3.358337 3.371960
Std 0.114964 0.112574 0.144976 0.214997 0.157270 0.097592 0.109602 0.130492 0.112995
Var 0.013217 0.012673 0.021018 0.046224 0.024734 0.009524 0.012013 0.017028 0.012768

Table 2 presents the detailed metrics achieved in the best single run of all regarded
algorithms. Once more, it can clearly be seen that the proposed HSA-SCA dominantly
outperformed contenders in terms of all indicators—R2, R, MSE, RMSE and IA, except
MAE, where FA achieved the best score. Looking into the MSE that has been employed as
the fitness function with a goal to minimize it, HSA-SCA exhibited superior performance
with the score of 2.468293, in front of the FA that scored 2.590850, PSO in third place that
achieved 3.077008, and ChOA finishing fourth with the score of 3.129932. In terms of the
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IA metric, the proposed HSA-SCA was also superior, attaining the value of 0.970348. FA
finished second, with IA value of 0.967438, while WOA was third with IA value of 0.961817.

Table 2. Detailed metrics for the best individual run of the observed metaheuristics.

R2 R MAE MSE RMSE IA

HSA-SCA 0.892845 0.944905 0.987179 2.468293 1.571080 0.970348
SCA 0.861769 0.928315 1.081976 3.184137 1.784415 0.960579
GA 0.861392 0.928112 1.056114 3.192827 1.786848 0.958925
PSO 0.866420 0.930817 1.096070 3.077008 1.754140 0.959703
ABC 0.863100 0.929032 1.085311 3.153481 1.775804 0.959175
FA 0.887525 0.942085 0.981363 2.590850 1.609612 0.967438

WOA 0.860810 0.927799 1.036537 3.206221 1.790592 0.961817
HHO 0.861909 0.928391 1.143855 3.180909 1.783510 0.961245
ChOA 0.864122 0.929582 1.048337 3.129932 1.769161 0.960678

Lastly, the sets of the XGBoost hyperparameters that have been established by the
best run of every algorithm are provided within the Table 3. The best performing method,
that was the proposed HSA-SCA, produced the XGBoost model with a learning rate of
0.535844, max_child_weight of 4.768378, a subsample of 0.920331, collsample_bytree of
0.899994, max_depth of 5, and gamma value of 0.037125. The XGBoost structure pro-
duced by the FA algorithm, that finished in second place, consisted of the learning rate of
0.473028, max_child_weight of 5.459757, a subsample value of 0.937122, collsample_bytree
of 1.000000, max_depth value of 7, and finally, gamma value of 0.318114.

Table 3. Best solutions’ determined XGBoost hyper-parameters set.

Method l.r. (µ) Max_child_weight Subsample Collsample_bytree Max_depth Gamma

HSA-SCA 0.535844 4.768378 0.920331 0.899994 5 0.037125
SCA 0.424673 6.830426 0.903051 1.000000 10 0.800000
GA 0.515505 1.239850 0.921408 1.000000 4 0.000000
PSO 0.469675 5.890036 0.966332 0.732996 7 0.514569
ABC 0.424717 6.756257 0.910125 0.797826 7 0.349785
FA 0.473028 5.459757 0.937122 1.000000 7 0.318114

WOA 0.518772 6.961853 0.976281 0.978017 4 0.408959
HHO 0.533272 6.254540 1.000000 1.000000 10 0.800000
ChOA 0.388340 2.995555 0.766726 1.000000 8 0.000000

The performed simulations are visualized in Figures 2 and 3, showing the convergence
graphs, box plots, violin plots and swarm plots of all nine algorithms, for both fitness
function (Figure 2) and R2 (Figure 3).

While looking into the Figures 2 and 3, it is possible to see that the HSA-SCA method
exhibits a very fast converging speed, together with FA metaheuristics, that is a little bit
faster at the beginning, but finishing behind HSA-SCA at the end. One can note that FA also
exhibits the most stable results, closely followed by the WOA and SCA, as can be seen from
the box plot diagrams. Finally, the swarm plots show the diversity of the population within
the last round of execution of the best run of each algorithm. It is possible to conclude that
all solutions of the HSA-SCA population were proximal to the optimum value.
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Figure 2. Visualized XGBoost results for all nine metaheuristics in terms of the convergence, box plot,
violin diagrams, and swarm diversity plots for the fitness function (MSE).
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Figure 3. Visualized XGBoost results for all nine metaheuristics in terms of the convergence, box plot,
violin diagrams, and swarm diversity plots for the R2 indicator.
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Figure 4 depicts the kernel density estimation (KDE), representing the estimation of
the probability density function. It can be noted from these plots that the results originate
from the normal distribution. Additionally, join plots of both fitness function (MSE) and
R2 containing histograms for the two best algorithms (HSA-SCA and FA) are shown in
Figure 5.
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Figure 4. KDE diagrams for MSE (left) and R2 indicator (right).
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Figure 5. Join plots with histograms of two best methods: HSA-SCA (left) and FA (right).

Finally, the visualizations of the best-predicted outcomes attained by the best-produced
model by four best algorithms is shown in Figure 6. Once more, it can be concluded that
the model optimized by the HSA-SCA algorithm produced the best predictions for the
observed problem.
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Figure 6. Best-predicted outcomes by the best produced models of HSA-SCA, FA, SCA and ChOA
algorithms.

4.4. Results Improvements Validation—Statistical Tests

To further evaluate the obtained simulation results and determine whether or not
they are statistically significant, the best scores of each of 20 runs from each observed
metaheruistics were gathered and inspected as a data series. At the beginning, it was
necessary to decide what sort of statistical tests was suitable—parametric or non parametric.
First, the safe usage of parametric tests is checked, by evaluation of the independence,
normality, and homoscedasticity of the data variances [69]. The independence condition
is satisfied, because every run of the metaheuristics algorithms begins by producing a
collection of random individuals. Considering the second condition, homoscedasticity,
Levene’s test [70] was executed, and since the p-value of 0.65 was obtained in every case, it
was safe to assume that the homoscedasticity requirement was also fulfilled.

The normality condition has been investigated by employing the Shapiro-Wilk single
problem analysis [71]. Shapiro-Wilk p-values were independently calculated in terms
of each of the observed methods. The established p-values for every algorithm were
greater than 0.05, therefore it was safe to conclude that it was not possible to reject the H0
hypothesis for both alpha = 0.05 and alpha = 0.1. As a consequence, it was also possible
to conclude that the observed values originated from the normal distribution. One could
establish a similar conclusion by simply taking a look at the KDE plots shown in Figure 4.
The Shapiro-Wilk test scores are provided within Table 4.
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Table 4. Shapiro-Wilk scores for validating the normality condition.

Methods HSA-SCA SCA GA PSO ABC FA WOA HHO ChOA

0.362 0.351 0.198 0.145 0.312 0.304 0.342 0.263 0.347

After verifying that the normality requirement was fulfilled, it was safe to conclude
that one can proceed by applying the parametric tests. This paper utilizes the paired-t
test [72], which is frequently selected to evaluate metaheuristics methods [73]. Paired-t test
can be utilized if it is possible to observe the set of data points as paired measurements, and
the differences among the pairs follows a normal distribution. In other words, the variances
between samples for every pair of algorithms are required to be normally distributed.
To inspect this condition, the Shapiro-Wilk test was employed one more time, over the
absolute differences between distributions of the proposed algorithm and other contending
methods. The obtained Shapiro-Wilk p-values were in every instance greater than the
threshold value alpha = 0.05, meaning that H0 hypothesis cannot be rejected, and the set
of observed values originates from the normal distribution. Since this is the prerequisite
for using the paired-t test, it is safe to use it and compare the proposed algorithm against
each of the opposing methods. The summarized results of both Shapiro-Wilk p-values
calculated as the prerequisite for the paired-t test, and the paired-t test itself, are provided
in Table 5.

The results of the paired-t test show that the p-values was smaller then 0.05 for all
algorithms. Accordingly, it can be concluded that the introduced HSA-SCA approach is
significantly superior over all contenders for both thresholds alpha = 0.1 and alpha = 0.05.

Table 5. Shapiro-Wilk scores over the mean differences between two samples as prerequisite for
paired-t test, accompanied by the paired-t test results

Methods vs. HSA-SCA SCA GA PSO ABC FA WOA HHO ChOA

Shapiro-Wilk 0.164 0.202 0.241 0.195 0.213 0.224 0.189 0.207

paired-t test 0.021 0.024 0.025 0.031 0.041 0.025 0.031 0.033

5. Discussion

The average annual B[a]P concentrations of 3.73 ng m−3 and 2.78 ng m−3 in 2018
and 2019, respectively (Table 6), significantly exceeded the European Directive set level of
1 ng m−3. The maximum pollutant level reached 43.71 ng m−3 in the first year of the study
period. At the same time, no values exceeded the critical threshold for the concentration of
PM10, As, Cd, Ni, and Pb, and inorganic gaseous pollutants.

Table 6. Descriptive statistics.

Year Statistics B[a]P PM10 As Cd Ni Pb SO2 NO NO2 NOx
[ng m−3] [µg m−3] [ng m−3] [ng m−3] [ng m−3] [ng m−3] [µg m−3] [µg m−3] [µg m−3] [µg m−3]

2018 Average 3.73 36.18 1.56 0.41 2.78 4.35 10.82 10.63 17.88 29.96
Minimum 0.07 10.2 0.5 0.05 1.5 2.5 2.09 0.5 0.5 0.5
Maximum 43.71 179.7 11.2 27.1 19.6 30.7 25.02 101.49 98.5 189.71
Median 1.15 29 0.5 0.2 1.5 2.5 12.45 4.61 14.33 19.3

2019 Average 2.78 33.01 1.38 0.2 2.26 4.26 17.21 4.98 11.91 19.43
Minimum 0.03 4.9 0.5 0.05 1.5 2.5 5.7 1.1 1.75 6.1
Maximum 23.63 180.7 13.6 1.9 28.5 40.6 66.3 91.2 48 146.81
Median 1.07 23.3 0.5 0.1 1.5 2.5 15.45 2.75 10.45 14.6

As indicated by the mean absolute SHAP values, the temperature at surface (TMPS),
As, PM10, and total nitrogen oxide (NOx) concentrations appear to be major factors for
governing B[a]P environmental fate (Table 7). In addition, the most important variables also
include NO, SO2, Pb, and Cd concentrations, as well as the temperature at 2 m (T02M) and



Toxics 2023, 11, 394 15 of 25

momentum flux intensity (MOFI)m have been shown to affect B[a]P dynamics. However,
for this paper, we will focus on the aforementioned four.

Table 7. SHAP values.

Parameter TMPS As PM10 NOx NO SO2 TO2M Pb MOFI LIB4 SHIF LHTF

Absolute 1.17 0.906 0.796 0.608 0.321 0.247 0.192 0.161 0.158 0.158 0.141 0.131
Relative [%] 22.7 14.36 13.75 9.99 4.99 4.25 3.98 3.38 2.45 2.99 2.18 2.33

5.1. Temperature at Surface

In this study, the temperature at the surface (TMPS) was estimated to be the most
important parameter responsible for the B[a]P concentration increase of 1.17 ng m−3 on
average, while mutual interrelations between TMPS and other studied parameters define
three types of environmental conditions being responsible for shaping B[a]P levels. As
a high-molecular-weight PAH, B[a]P is dominantly particle-bound in the atmosphere.
The B[a]P partition between gas and particles is enhanced during colder months due
to low temperature and high atmospheric pressure, which cause intense descending air
movements and dry deposition of organic compounds [74]. Additionally, previous studies
have shown that higher organic carbon content of particles in the cold season negatively
affects the immobilization and biodegradation of PAHs [75], while high temperatures and
light intensity in warm months enable both their photo- and biodegradation.

The first type of environment resulting in the increase of B[a]P concentrations up to
3.4 ng m−3 (Figure 7), was characterized by medium to low PM10, B[a]P, As, Cd, and Ni
levels (35.2 µg m−3, and 3.4, 1.4, 0.3, and 2.5 ng m−3 on average, respectively), medium
to high NO and NOx concentrations (6.9 and 23.4 µg m−3 on average, respectively), and
meteorological parameters registered in a wide range of values. The observed constancy
of the conditions suggests that this environment type might be related to anthropogenic
sources, such as traffic and off-road vehicles.

Figure 7. Temperature at surface impact on benzo(a)pyrene.

In the second type of environment, TMPS was ambivalently related to the B[a]P
concentrations, leading both to their decrease by up to−1 ng m−3 and the increase by up to
0.7 ng m−3. Compared to the first type, the second type of environment was characterized
by lower B[a]P, As, Cd, Ni, Pb, PM10, NO2, and SO2 (2.0, 1.1, 0.2, 1.8, 3.8 ng m−3, and 32.8,
13.8, and 13.4 µg m−3, respectively) and higher NO and NOx (about 9.5 and 28.8 µg m−3,
respectively) mean concentrations. The decrease in temperature range and wind speed
(Figure 7) and the rise in relative humidity, alongside other meteorological parameters
(MOFI, LIDS, and SHIF), indicate the stability of the atmosphere and cold weather-related
conditions.

The third type of environment, leading to a decrease in B[a]P concentrations of
2.3 ng m−3, was associated with medium mean PM10, SO2, and As levels (34.6 and
14.1 µg m−3, and 1.6 ng m−3, respectively), maximum observed B[a]P, As, and NO2 con-
centrations (43.7 and 13.6 ng m−3, and 98.5 µg m−3, respectively), standard lifted index
(304), and relative humidity (98%), minimum study period temperature (−15.3 ◦C), as well
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as the highest number of precipitation events, i.e., non-zero TPP6, CPP6, and CRAI values
(Figure 7).

The atmospheric stability and the intensity of anthropogenic emissions during the
cold part of the year seem to result in high B[a]P concentrations. Since PAHs are mostly
particle-bound, and precipitation scavenging plays a significant role in the PM removal
from the atmosphere, it could be expected that wet deposition represents a way of PM-
bound B[a]P elimination from the atmosphere. As shown by Liu et al. [76], wet removal
and photodegradation are up to 10 and 5 times, respectively, more efficient in B[a]P elimi-
nation during summer than in winter. Additionally, wet scavenging dominates as a B[a]P
removal path in summer, while the impact of photodegradation outweighs the wet removal
in winter.

5.2. Arsenic

This study suggests that As concentrations affect B[a]P level dynamics up to
0.9 ng m−3 on average (Table 7), more than any other pollutant. A few types of envi-
ronment were distinguished by analyzing the interrelations between As and B[a]P and
their coexistence within certain conditions.

The obtained interrelation indicates similar emission sources of inorganic As, in a
mixture of arsenite (AsIII) and arsenate (AsV), and organic B[a]P in the air, that could be
identified as high-temperature combustion of fossil fuels and wood [77,78]. In addition,
because of low volatility, both As and B[a]P mostly exist as particle-bound in the atmo-
sphere, particularly associated with fine aerosol fractions. Up to approximately 10% of
B[a]P occurs in the gaseous phase [79], although the multiphase B[a]P distribution was also
highly dependent on ambient temperature [80].

In the first type of environment, B[a]P concentrations exhibited an increase in the range
from 4 to 7 ng m−3 (Figure 8), with maximum concentrations reaching 30 ng m−3. The
relative impact of As, i.e., its association with B[a]P, compared to other studied parameters,
reaches a maximum share of 43.6%. This environment was characterized by the lowest As
and Cd concentrations, below 2 and 1.5 ng m−3, respectively, and low to medium NOx,
SO2, and PM10 levels of below 55 µg m−3, below 25 µg m−3, and from 10 to 25 µg m−3,
respectively. Other PM-bound constituents, including Ni and Pb, were registered in higher
concentrations of 8.2 and 24.6 ng m−3, respectively, which suggests the impact of local
anthropogenic source emissions and dust resuspension, as well as the impact of occasional
fossil fuel burning emissions. The co-occurrence of As and B[a]P was observed in the
wide range of temperatures at the surface and 2 m (from 1 to 20 ◦C), which indicates
that the relationship between As and B[a]P concentrations was not seasonally dependent.
Additionally, this type of environment was featured by PBLH below 150 m, humidity above
74%, wind speed below 2 m s−1, and very low MOFI (Figure 8), all of which reflected
extremely stable meteorological and atmospheric conditions, which were registered on a
few occasions during the measurement campaign. Therefore, it can be assumed that in the
first type of environment, the contributions of remote air pollution sources and atmospheric
long-range transport to the observed B[a]P and As concentrations can be excluded.
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Figure 8. Arsenic impact on benzo(a)pyrene.

The second type of environment was characterized by an increase in B[a]P concen-
trations up to 4 ng m−3 on average and by the lower impact of As (5 to 20%), relative to
other pollutants. In comparison to the previous one, this environment was also marked
by up to three times higher PM10 levels (70 µg m−3), up to two times higher As (5 ng m−3)
and NOx (up to 100 µg m−3) levels, and somewhat higher SO2 (30 µg m−3) concentrations.
The assigned meteorological conditions included low humidity, air and soil temperatures
ranging from −5 to 20 ◦C, PBLH below 480 m (Figure 8), and wind speed below 3.7 m s−1,
as well as MOFI values typical for the cold season. As can be concluded, the second type
of environment represented the cold season and its associated emissions of As and B[a]P
as well as inorganic oxides from heating-related sources. In cold weather conditions, PM,
NOx, SO2, and As are slow-reacting and the atmospheric reactions associated with the gen-
eration of secondary air pollutants (other oxide forms, sulfates, nitrates, or ozone), reaction
byproducts or fine particles require a prolonged time, which in this case contributed to
high pollutant concentrations assigned to the second type of B[a]P environment.

The third type of environment referring to the majority of measured pollutant con-
centrations recognized more than one pattern of As-B[a]P interrelations. Depending on
the wind speed and other meteorological factors, both high and low B[a]P and As con-
centrations were registered. Namely, wind speed below 2 m s−1 was associated with the
highest pollutant concentrations, while the increase in wind speed above 5 m s−1 resulted
in a significant decrease in both pollutant concentrations below 1 ng m−3. These findings
suggest a negligible contribution of regional pollutant sources to air quality at the sampling
site, but also the presence of local pollution sources and processes, such as resuspension of
ash from crude-oil and lignite-fired boilers, which strongly affect pollutant concentrations
during the episodes of low wind speed.

SHAP values ranging from −0.6 to 0 ng m−3 referred to the situations in which As
levels had a moderately negative or null impact on B[a]P dynamics. On these occasions,
As, B[a]P, and PM10 levels were very high, 13.6 ng m−3, 22 ng m−3 and 177 µg m−3,
respectively, while the SO2 and NOx levels did not exceed 10 µg m−3. Given these findings
were associated with the T02M range from -3 to 5 ◦C, we can assume that As and B[a]P
have separate sources during the cold season, which contribute to high concentrations of
either one or another pollutant. More data and further analysis could provide detailed
insight and confirm these assumptions.

5.3. Particulate Matter

The PM10 concentration is the third significant parameter that affects B[a]P concen-
trations, as shown by the mean absolute SHAP value of 0.8 ng m−3. In the absence of
meteorological conditions favoring the association of B[a]P and small particle fraction, the
relationship between PM10 and B[a]P stands out.

The highest observed positive associations between PM10 levels and B[a]P concentra-
tions, in compliance with a relative share of 57.52% and assigned an absolute SHAP value
of 8.36 ng m−3, was registered in the environmental conditions associated with the lowest
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concentrations of all pollutants, including PM10 levels below 32 µg m−3. As regards meteo-
rological conditions, the strongest interrelation between PM10 and B[a]P concentrations
was detected in the environment characterized by air and soil temperatures ranging from 0
to 20 ◦C and low wind speed (below 2 m s−1). This type of environment is not seasonally
specific and might indicate natural interactions in the atmosphere such as associations be-
tween PAHs and PM. Atmospheric PAHs such as high-ring B[a]P are easily adsorbed onto
suspended particles with high organic content [76] while the degradation of particle-bound
B[a]P fraction is minimized or inhibited. The gas-to-particle partitioning of pollutants
and atmospheric removal by wet scavenging are favored depending on the atmospheric
conditions, PM surface, its composition and size, and contaminant properties [81]. In the
warm season, the increase in temperatures leads to increased B[a]P volatility, followed
by its biodegradation. As the impact of PM10 on B[a]P levels weaken the environmental
conditions change slightly towards higher pollutant concentrations and an increase in wind
speed and PBLH (Figure 9).

Figure 9. Particulate matter impact on benzo(a)pyrene.

Given the SHAP value of −0.87 PM10, a high number of registered medium to high
B[a]P concentrations was negatively associated with PM10, particularly in the environment
of high suspended particles As and low Cd, Ni, Pb, NOx, and SO2 levels. As regards
meteorological conditions, these interactions took place during the coldest days of the
winter period, when low PBLH, high cloudiness, and wind speed up to 3 m s−1 were
recorded (Figure 9).

As previously mentioned, the cold season was the period of intense emissions from
power plants, domestic heating units, and commercial sources, resulting in elevated levels
of PM, especially those of smaller diameter (PM2.5 and PM1) rather than PM10. The finest
particle fractions represented a highly suitable matrix for the adsorption of PAHs and these
associations could be a possible explanation for the negative relation between B[a]P and
PM. A number of studies have shown that small particle diameter plays an important role
in the entrapment of PAHs, and thus more than 70% of high-molecular-weight PAHs with
higher octanol-water partition coefficients, including B[a]P, is PM2.5-bound [82,83]. Low
air temperature, wind speed, solar radiation, and PBLH inhibited the vertical diffusion
of pollutants and enhanced gas-to-particle pollutant partitioning [84,85]. In addition to
this, the strong adsorption capacity of fine PM fraction prevailed over other environmental
factors and suggests the particle partition of B[a]P to PM2.5 and a smaller fraction rather than
to PM10. Lobscheid et al. [86] used multivariate linear regression models to predict relations
of ambient B[a]P levels and PM2.5 concentrations, spatial, temporal, and meteorological
variates. The most significant variables included the average daily PM2.5 concentration,
wind speed, temperature, and relative humidity.

In contrast to this, during the warm and windy season, when the average temperatures,
wind speed, and PBLH exceeded 15 ◦C, 4 m s−1, and 450 m, respectively, the concentrations
of PM10 and their constituents exhibited a significant decrease, although the same does not
apply for NOx and SO2. High solar radiation and temperature in warmer seasons lead to the
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dispersion and photochemical degradation of the majority air polluting species [80,87], but
the persistence of medium to high gaseous oxide levels during the warm season indicated
the impact of intense and year-round continuous traffic emissions at the sampling site.

5.4. Nitrogen Oxides

Similar to PAHs, NOx (NO and smaller share of NO2) emissions mainly resulted from
the high-temperature combustion processes in power plants and motor vehicles. Both
groups of compounds, PAHs and NOx, were subject to photochemical reactions in the
atmosphere. Besides undergoing gas-particle phase distribution, PAHs are precursors for
the generation of nitro-compounds. Namely, in the presence of free radicals, OH-PAH or
NO3-PAH are formed and subsequently, in the few-hour reaction with NO2 upon release
of nitric acid or water molecule, nitro-PAHs were generated [88,89].

The mean absolute SHAP value of 0.6 ng m−3 defines NOx as the third most significant
parameter for shaping B[a]P levels in two distinguished types of environment, one of which
strongly supports the increase in B[a]P concentrations. The polluted environment, with
moderate to high B[a]P levels (average value of 3 ng m−3) and attributed SHAP value of
6.78 ng m−3, was characterized by a wide range of NOx, PM10, and SO2 concentrations,
from 1.28 to 144 µg m−3, up to 70 µg m−3 and up to 30 µg m−3, respectively; however, the
lowest levels of PM-bound As, Cd, Ni, and Pb (Figure 10).

Figure 10. Nitrogen oxides impact on benzo(a)pyrene.

The meteorological conditions which enabled the positive impact of NOx on modelled
B[a]P level dynamics and a wide range of B[a]P, NOx, PM10, and SO2 concentrations, refer
to stable high-humidity cold weather without precipitations, with wind speed and PBLH
below 3 m s−1 and 400 m, respectively; temperatures in the range from −7 to 20 ◦C, as well
as with the corresponding CAPE, CPP6, CRAI, MOFI, and SHIF values (Figure 10). Under
these conditions, common emission sources (fossil fuel burning for heating purposes) of
the listed pollutants were intensified leading to their higher concentrations. In addition, the
stagnant high-humidity conditions during heavy haze events enhanced the transformation
of primary emitted particles containing PAHs to secondary organic aerosol (SOA), with the
prominent presence of sulfate and nitrate water-soluble species dissolved in an aqueous
outer particle layer [90].

The majority of studied pollutant events can be distinguished into two groups de-
pending on the SHAP values and the strength of NOxs negative impact on modeled B[a]P
concentration dynamics. The type of environment in which NOx and B[a]P interrelations
are expressed by a lower SHAP value of −1.76 ng m−3, refers to the warm season, with air
temperatures from 15 to 20 ◦C, an occasional wind of high speed from 5 to 8 m s−1 and
mean daily PBLH above 1000 m. As can be expected, these meteorological conditions have
favored pollutant dispersion and resulted in low pollutant concentrations, as confirmed
by measurements (Figure 10). During the warm season, PAHs undergo photolysis or
processes which can yield their derivative compounds, such as oxygenated and nitrated
PAHs. The UV-mediated ozone photolysis is a source of OH radicals in the troposphere,
which react with PAHs to produce intermediate compounds OH-PAHs. After substitution
with NO2, OH-PAHs are further converted to nitro-PAHs, particularly at night, when the
concentrations of NO are low [88]. Additionally, nitro-PAHs are also generated in the
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chemical reactions between PAHs and NO3-radicals, originating from reactions between
O3 and NO, and their formation can explain the negative NOx and B[a]P interrelations.

The SHAP value of −0.3 ng m−3 was attributed to the environment where no sig-
nificant interactions between NOx and B[a]P were registered. Occasionally, these events
were characterized either by high concentrations of B[a]P, PM10, PM-bound constituents,
and low NOx levels, or the opposite, the lowest concentrations of suspended particles,
their constituents and high NOx levels exceeding 50 µg m−3, which implies two different
sources of origin.

6. Conclusions

In this study, we employed, coupled, and optimized advanced artificial intelligence-
based modeling to accurately interrelate air pollution-related parameters to capture defining
factors and processes that shape benzo(a)pyrene behavior. We have applied the XGBoost
model optimized by metaheuristics and the Shapley Additive exPlanations explainable
artificial intelligence method to a two-year database of pollutant concentrations and mete-
orological parameters to characterize types of environments that govern the interactions
between benzo(a)pyrene, other polluting species, and meteorological conditions. The
results suggest that the hybrid self-adaptive sine cosine algorithm method displayed a
supreme performance level, by achieving the best scores for key performance indicators
(mean square error of 2.5 and R2 of 0.9), while the firefly algorithm scored the best results for
standard deviation and variance, by delivering the most stable results. As shown, the tem-
perature at the surface, arsenic, PM10, and NOx were recognized to affect 22.7%, 14.4%, and
10.0% of benzo(a)pyrene concentrations, respectively. The observed interrelation between
particulates and inorganic and organic pollutants could be associated with intensified fossil
fuel burning such as low-quality lignite coal during the cold season. In the conditions
of low temperature, PM, NOx, SO2, and As are slow-reacting, and the atmospheric reac-
tions in which the pollutants are involved require a prolonged time, which in this case
enhanced the pollutant ambient levels. In addition, during cold seasons, photodegradation
of B[a]P was weakened and its adsorption to the particles was favored. The results of
this study have proved the potential of the applied methodology to improve the scientific
knowledge and understanding of the complex factors that govern the environmental fate
of air-polluting species.
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Abbreviations
The following abbreviations are used in this manuscript:

SHAP SHapley Additive exPlanations
XGBoost eXtreme Gradient Boosting
Label Meteorological paramater Unit
PRSS Pressure at surface hPa
MSLP Pressure reduced to mean sea level hPa
TPP6 Accumulated precipitation (6 h accumulation) m
MOFI Momentum flux intensity (3- or 6-h average) N m−2

MOFD Momentum flux direction (3- or 6-h average) ◦
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SHTF Sensible heat net flux at surface (3- or 6-h average) W m−2

DSWF Downward short wave radiation flux (3- or 6-h average) W m−2

RH2M Relative Humidity at 2 m AGL %
WS Wind speed at 10 m AGL m s−1

WD Wind direction at 10 m AGL ◦

TO2M Temperature at 2 m AGL ◦C
TCLD Total cloud cover (3- or 6-h average) %
SHGT Geopotential height gpm *
CAPE Convective available potential energy J Kg−1

CINH Convective inhibition J Kg−1

LISD Standard lifted index ◦C
LIB4 Best 4-layer lifted index ◦C
PBLH Planetary boundary layer height m
TMPS Temperature at surface ◦C
CPP6 ** Accumulated convective precipitation (6 h accumulation) m
SOLM Volumetric soil moisture content frac.
CSNO Categorial snow (yes = 1, no = 0) (3- or 6-h average)
CICE Categorial ice (yes = 1, no = 0) (3- or 6-h average)
CFZR Categorial freezing rain (yes = 1, no = 0) (3- or 6-h average)
CRAI Categorial rain (yes = 1, no = 0) (3- or 6-h average)
LHTF Latent heat net flux at surface (3- or 6-h average) W/m2

LCLD Low cloud cover (3- or 6-h average) %
MCLD Middle cloud cover (3- or 6-h average) %
HCLD High cloud cover (3- or 6-h average) %
* geopotential meters
** Beginning with 00 UTC July 15, 2019, CPPA (total accumulation) instead of CPP6
(6-h accumulation)
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