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Abstract: The insect nervous system is critical for its functional integrity. The cholinergic system, of
which acetylcholinesterase (AChE) is a key enzyme, is essential to the Anopheles (consisting of major
malaria vector species) nervous system. Furthermore, the nervous system is also the primary target
site for insecticides used in malaria vector control programs. Insecticides, incorporated in insecticide-
treated nets and used for indoor residual spraying, are a core intervention employed in malaria vector
control. However, Anopheles resistance against these insecticides has grown rapidly. Due to this major
setback, novel agents with potential activity against resistant Anopheles and/or capacity to overcome
resistance against current WHO-approved insecticides are urgently needed. The essential oils have
the potential to be natural sources of novel insecticides with potential to inhibit the Anopheles AChE
target. In the current review, the scientific evidence highlights the ability of essential oils and specific
essential oil constituents to serve as anticholinesterase insecticides. For this reason, the published
data from scientific databases on the essential oils and essential oil constituents on anticholinesterase,
ovicidal, larvicidal, pupicidal and adulticidal activities were analyzed. The identification of major
constituents in active essential oils and their possible influence on the biological activity have also
been critically evaluated. Furthermore, the toxicity to mammals as well as potential activity against
the mammalian AChE target has also been reviewed. The importance of identifying novel potent
insecticides from essential oils has been discussed, in relation to human safety and cost-effectiveness.
Finally, the critical insights from this review can be used to inform future researchers towards potent
and safe anticholinesterase insecticides for the management of Anopheles malaria vectors.

Keywords: malaria; insecticides; terpenoids; acetylcholinesterase

1. Introduction

Malaria is a devastating disease caused by a protozoan parasite, namely
Plasmodium falciparum which is the major causative agent in the pathogenesis of this in-
fectious disease [1–3]. Anopheles vectors are infected with malaria after they ingest blood
from an infected human host. The female Anopheles vectors effectively bite the human
hosts between dusk and dawn [3] and it is during this time that she ingests gametocytes.
The Plasmodium gametocytes develop into an oocyst in the mosquito midgut, which then
matures into sporozoites. The sporozoites are released into the hemolymph and migrate
to the salivary glands [1,4]. This parasite developmental process within the vector takes
approximately 11–16 days before the female mosquito is able to transmit the parasite to the
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next human host during a blood feeding. This means that a long lifespan of the Anopheles
vector is required for the successful completion of the parasite development and reinfection
of the human host. Vertebrate blood is needed every 2–3 days by the female mosquito for
nutrition, as well as egg development. The eggs are oviposited into water and fertile eggs
hatch into larvae a few days later. Larvae will develop into pupae and finally adults will
emerge after a few days [3]. There are more than 400 Anopheles species of which about
30 are major malaria vectors. The African Anopheles vectors have both long lifespans and a
higher preference for human feeding and, collectively, these account for the high malaria
cases and mortality that is recorded in Africa [3,5]. Other factors, such as climate conditions
and political and economic stability, also affect the intensity of transmission and enhance
the problem [3].

The malaria vectors have long been controlled by using insecticides. Insecticide
classes include organophosphates, carbamates, pyrethroids, organochlorines and neoni-
cotinoids [6]. Larvicides including insect growth inhibitors as well as bacterial larvicides,
such as Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus and spinosyns from
Saccharopolyspora species, have also gained popularity in mosquito control activities [6–8].
The implementation of large-scale larviciding is however challenging in Sub-Saharan Africa
and these may be used as a complementary intervention [6,9–11]. The Anopheles vectors
have developed substantial resistance against almost all current insecticides [12–15]. To
compound the issue, the commercial development of insecticides through various and often
complicated synthetic mechanisms is expensive and time-consuming [16,17]. We propose
that the identification of potential insecticides from natural product resources, such as
essential oils (EOs), is a relatively cost-effective and faster alternative. Target identification
and the corresponding mechanism of action are critical components of the drug discovery
process [18]. Acetylcholinesterase (AChE) is a validated target in the insect nervous system
and inhibitors of this critical enzyme have been useful in the control of malaria vectors for
over eighty years [6,19,20].

To facilitate future research in EOs and potential insecticidal activity through AChE in-
hibition, this review will first discuss malaria vector control systems and current challenges,
and we will explore the insect nervous system with relevance to a specific neurotransmitter,
acetylcholine (ACh), and provide an in-depth discussion on AChE function and inhibition.
Finally, we identify the potential of various EOs and essential oil constituents (EOCs)
as anticholinesterase agents against Anopheles vectors. This was achieved by collecting
scientific data using keywords such as anticholinesterase/acetylcholinesterase inhibition,
EOs, terpenoids/terpenes, Anopheles, larvicidal, pupicidal, adulticidal and insecticidal in
the search engines of PubMed, Google Scholar, ScienceDirect, SciFinder, SCOPUS and Web
of Science.

2. Malaria Vector Control

The early vector control strategies adopted vast activities to reduce larval populations,
which included, amongst others, the drainage of breeding sites such as swamps or the
application of copper (II) acetoarsenite (Paris green), a highly toxic inorganic compound
to the breeding sites [21,22]. In addition, the screening of windows and doors to prevent
vectors entering houses and the use of mosquito nets have been at the forefront in protecting
people against mosquito bites [6]. The plant-based insecticides were the first preparations
used historically. Pyrethrins extracted from the flowers of Chrysanthemum cinerariifolium
and Chrysanthemum roseum were used against indoor Anopheles mosquitoes in the 19th
century [23,24]. However, the structural modifications of the natural pyrethrins and the
generation of first synthetic pyrethroids were first reported in the period 1924 to 1970 [25].
The discovery of an organochloride, namely, dichlorodiphenyltrichloroethane (DDT), was
reported in 1939 [25,26]. DDT has been highly effective against malaria vectors. However,
in recent times increasing safety concerns have seen it being replaced in many countries by
newer insecticides with reduced toxicity profiles [27–29].
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Currently, malaria vector control adopts an integrated vector management program
through the use of insecticides targeting both the larval and adult stages [6,27]. This is
achieved through two main interventions, namely, insecticide-treated mosquito nets and
indoor residual spraying, with additional interventions including larviciding [6]. The
insecticide-treated nets provide both a physical barrier and insecticidal activity against
Anopheles vectors. Indoor residual spraying (IRS) on the other hand, provides host protec-
tion through the Anopheles insecticidal effect [3]. Pyrethroids, pyrethroid-PBO combinations
and pyrroles are the only insecticide classes used for the insecticide-treated nets, as the
latter insecticides pose a low toxicity risk to humans [30,31]. The pyrethroids used in IRS
include deltamethrin, alpha-cypermethrin, etofenprox, lambda-cyhalothrin, bifenthrin and
cyfluthrin, while the organochlorines include DDT. On the other hand, the organophos-
phates approved by WHO for IRS include malathion, fenitrothion, pirimiphos-methyl and
the carbamates such as propoxur and bendiocarb [6,32–34].

2.1. Insecticide Resistance in Main African Malaria Vectors

Insecticide resistance has been reported in all of the main African malaria vectors and
this resistance against WHO approved insecticidal agents is rapidly increasing in intensity
and geographical distribution [5,35,36]. An overview of mosquito resistance has been
highlighted below. To keep this brief, only a few examples will be provided to explain the
extent of the problem mainly on the African continent. Insecticide resistance in the main
vector species has been reported for pyrethroids [35,37–41], organochlorides [38,41–43],
organophosphates [12,44] and carbamates [20,38,43,45].

Common insecticide resistance markers associated with pyrethroid and organochlo-
ride resistance include the L1014F and L1014S mutation of the voltage-gated sodium
channel gene, known as knockdown resistance (kdr). These mutations shift activation
voltage dependence of sodium channels stabilizing them in the closed state. This antago-
nizes the action of pyrethroids and organochlorines since these compounds bind to open
sodium channels [25,41,46,47]. Apart from the kdr mutations, elevated metabolic enzymes,
including P450 monooxygenases, glutathione-S-transferases and non-specific esterases, also
convey high resistance to pyrethroids and organochlorides [13,39,40,44,48,49]. On the other
hand, the resistance mechanism commonly conferring organophosphate and carbamate
resistance is a single point polymorphism resulting from glycine conversion to a serine
residue at position 119 (G119S; Torpedo californica AChE numbering) or more precisely,
position 280 (G280S; Anopheles gambiae AChE numbering) in the AChE target [41,47,50,51].
Resistance mechanisms often prevent the intended biological activity of a specific insecti-
cide; therefore, it is important to discuss modes of action of the major insecticide classes.

2.2. Modes of Action of Main Insecticides Used in Malaria Vector Control

Regardless of their small size, insects have a high surface area for the penetration and
subsequent systemic distribution of an insecticide from contact exposure. Furthermore,
the small size generates short pathways to the insect’s nervous system and as a result,
most insecticides act on the insect’s nervous system [52]. Organochlorines act specifically
on the peripheral nervous system, where they bind and stabilize the open voltage-gated
sodium channels [25]. The stabilized open state of the sodium channels allows for con-
tinuous sodium influx and prolonged action potentials leading to spontaneous neuronal
firings succeeded by muscle twitches and sustained body tremors [46]. In contrast to
the organochlorines, pyrethroids act on both the peripheral and central nervous systems;
however, they act in a similar manner to prevent the closing of the voltage-gated sodium
channels, resulting in continuous neuronal discharges followed by paralysis [46]. Similarly,
the organophosphates and carbamates also exert their effects on the central nervous system.
However, these insecticide classes inhibit acetylcholinesterase, a principal enzyme in the
insect nervous system, which leads to an increase in the neurotransmitter ACh levels in
the synapse. This leads to enhanced ACh effects on the cholinergic receptors resulting in
constant neurotransmission and neuronal hyperexcitation [53]. On the other hand, the
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neonicotinoids enhance cholinergic activity by acting as agonists on nicotinic acetylcholine
receptors (nAChRs). Similarly, this disrupts neuronal transmission in the insect nervous
system, causing paralysis and subsequent insect death [54]. Since the insect nervous sys-
tem is the target site for all of the major insecticide classes, it is worth discussing it in
more detail.

2.3. Insect Nervous System

The insect nervous system is composed of central, visceral and peripheral nervous
systems [55]. The insect central nervous system (CNS) is composed of the ventral nerve
cord and brain connected to various ganglia including supra- and sub-esophageal ganglia,
thoracic ganglia and abdominal ganglia (Figure 1). The sub-esophageal ganglion transmits
impulses to the mouthparts and salivary glands. The insect brain is composed of three
cephalic neuromeres, including the protocerebrum, deutocerebrum and tritocerebrum. The
deutocerebrum carries out olfactory and sensory functions through the antennae; where
the olfactory signal transduction is important in host identification and interaction by the
insect. The tritocerebrum nerves innervate the ventral nerve cord and internal organs
including the anterior digestive canal [55–57]. The insect’s peripheral nervous system,
commonly referred to as a stomatogastric nervous system is composed of the peripheral
ganglia complex and nerves that innervate visceral organs. This system mainly controls
food intake and digestion. Generally, the insect CNS ganglia receive sensory impulses
from the appendages and body cuticle after which the efferent signals are sent to the body
muscles, internal organs and genitalia [58,59]. The protocerebrum controls the insect’s
vision through compound eyes and ocelli. Most importantly, neurosecretory cells are
located in the protocerebrum [59,60]. Most insecticides including the organophosphates
and carbamates affect neurotransmitter secretion and action [61,62]. As a result, the insect
neurotransmitters, more specifically ACh and its transmission cascade, will be discussed in
more detail.
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2.3.1. Insect Neurotransmitters

The protocerebrum of the insect brain has nerves that innervate the corpora cardiaca,
an organ located posterior to the brain that is composed of the neurohemal and endocrine
sections. This enables the corpora cardiaca to perform the important role of neurotransmit-
ter storage and release [55]. Biogenic amines play an important role in the insect nervous
system as neuromodulators, neurohormones and neurotransmitters. Moreover, biogenic
amines are also a key role player in associative learning and memory for insects. Common
neurotransmitters found in the insect CNS include biogenic amines such as dopamine,
5-hydroxy-tryptamine, octopamine, noradrenaline and ACh [58,63,64]. In addition, other
neurotransmitters important in the insect nervous system are histamine, glutamate and
gamma-aminobutyric acid (GABA). GABA is a main CNS inhibitory neurotransmitter,
while glutamate plays an excitatory role both centrally and peripherally [55,65]. For
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example, the insect heart rate and contraction are regulated by glutamate and other neuro-
transmitters including ACh, norepinephrine, dopamine, serotonin and octopamine [66].
ACh is a key excitatory neurotransmitter in the insect nervous system [67].

2.3.2. Acetylcholine and Its Function in Insects

ACh is synthesized from acetyl-coenzyme A and choline in insect cholinergic neurons
and stored in nerve terminals inside presynaptic vesicles from which they are released
upon detecting the nerve impulse. This impulse activates voltage-gated calcium chan-
nels leading to the influx of calcium ions that then induce ACh release from vesicles via
exocytosis [68]. After being released in the synapse, ACh exerts its actions by binding
to the postsynaptic nAChRs [69]. ACh is the main excitatory neurotransmitter in insects
and its binding to nAChRs and generation of excitatory action potential controls the rapid
synaptic neurotransmission process [70]. The nAChRs are ligand-gated channels controlled
by binding of ACh and its subsequent removal from the binding site. As long as ACh is
bound on the postsynaptic nAChRs, the nerve impulses are transmitted. However, this is
short-lived as ACh is rapidly hydrolyzed from the binding site by a specialized enzyme,
namely AChE. This ensures that the action potentials are initiated at precise and accurate
intervals for efficient neurotransmission [71,72].

2.3.3. Acetylcholinesterase and Its Function in Insects

AChE belongs to the general family of cholinesterases; these are the specialized hy-
drolase enzymes that hydrolyze the choline ester bonds [73]. Therefore, AChE rapidly
hydrolyzes the neurotransmitter ACh, to the resultant products, choline and acetate (Fig-
ure 2). Through this, it prevents constant nerve firings and maintains normal neuronal
impulse transmission at cholinergic synapses and neuromuscular junctions [74,75].
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Figure 2. Acetylcholine release, postsynaptic receptor binding, and hydrolysis by acetyl-
cholinesterase [74].

Exclusively in insects, the cholinergic system is localized centrally and is absent at the
neuromuscular junctions [76]. The cholinergic system is essential for the functioning of
the insect nervous system and AChE is a key enzyme in this system [77]. The functional
integrity of insects is maintained by its nervous system, and it is for this reason that most
insecticides act on the insects’ nervous system [72,78].

2.4. Molecular Characterization of Acetylcholinesterase

There are apparent AChE structural differences between insects and mammals. These
span from their distinct genomics, amino acid sequences to their active and peripheral an-
ionic site conformations [76]. Recent biochemical studies have revealed critical differences
between the Anopheles AChE and human AChE that could serve as potential drug targets
for directed insecticide design.

The amino acid sequence of Anopheles AChE is reported to be 48–49% identical to
that of the human AChE [79,80]. Unlike humans where there is a single ace gene coding
for AChE, mosquitoes have two ace genes, ace-1 and ace-2, coding for AChE1 and AChE2
enzymes, respectively [81,82]. These genes are crucial in all life stages of the mosquito,
ranging from egg through to adult stages [83]. AChE1 is the main catalytic enzyme, while
AChE2 is involved in non-catalytic activities such as reproduction. As a result, target site
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insensitivity on insect AChEs, such as G280S genotype, is linked to mutations in ace-1 but
not ace-2 [51,62,81]. AChE is characterized by a deep and narrow active-site gorge (Figure 3).
There are differences in these gorge structures between Anopheles and human AChEs and
this may affect ligand binding and specificity [51,79,84]. Notably, a free cysteine residue
(Cys447) is available at the entrance to the active site gorge of Anopheles AChE (Figure 3A,B),
but not in human AChE. Instead, a human AChE has a bulky phenylalanine (Phe295) at the
active site entrance (Figure 3C). Additionally, in Anopheles AChE, a smaller aspartic acid
residue (Asp602; Figure 3A,B) replaces a larger tyrosine residue (Tyr449) at the base of the
active site gorge [51]. Moreover, a conserved arginine residue (Arg339; not shown in order
to maintain the catalytic side resolution) has also been identified in Anopheles AChE [85].
In addition, the displayed An. gambiae AChE catalytic site in Figure 3B shows a G280S
mutated site (pointed).
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Figure 3. Molecular comparison of An. gambiae wild-type (A) and resistant (B) AChE catalytic sites
(PDB IDs: 5YDI and 6ARY, respectively) to the human AChE (PDB ID: 7E3H) (C). generated by
Schrodinger’s Maestro 2018-2 software (New York, NY, USA). The G280S mutation is shown (red
arrow) in the resistant Anopheles AChE phenotype (B) [51,75].

2.4.1. Acetylcholinesterase Inhibition in Anopheles

The catalytic site in Anopheles is characterized with a catalytic triad made of His-
Ser-Glu (His600-Ser360-Glu359; Figure 3A) amino acid combination. The catalytic serine
(Ser360; Figure 3A) is the target for covalent insecticides, including organophosphates
and carbamates [61,62]. These insecticides establish a covalent bond with AChE through
phosphorylation and carbamoylation, respectively [67]. The inhibition of AChE leads to
ACh accumulation that eventually results in over-stimulation of postsynaptic cholinergic
receptors [76]. This neuroexcitation causes rapid insect paralysis and death [72,76]. The
Anopheles resistance to the anticholinesterase insecticide classes is usually caused by ace-1
G280S mutation (Figure 3B) and metabolic resistance resulting from the elevated levels of
monooxygenases, glutathione-S-transferases and general esterases [62,86–88]. Given the
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widespread resistance that has largely rendered organophosphates and carbamates non-
effective, there is an urgent need to identify novel anticholinesterase insecticides. AChE
has proven to be a valid target in Anopheles vectors [79] and EOs have also shown to be the
promising sources of novel insecticides [89–91]. Interestingly, the EOs have shown activity
against resistant Anopheles species and a capability to synergize conventional insecticides
including the pyrethroids [92,93]. Additionally, the EOs and their constituents inhibit the
P450 monooxygenase and glutathione-S-transferase detoxification enzymes involved in
multiple insecticide resistance including the pyrethroids, organophosphates and carba-
mates. The insect toxicity of pyrethroids, organophosphates and carbamates has been
greatly enhanced by synergy with EOs including cedarwood oil, geranium oil, clove oil,
patchouli oil, cinnamon oil, basil oil, oregano oil, purple nutsedge oil, thyme, coriander
and galangal oil [94–96]. The identified individual EOCs capable of synergizing conven-
tional insecticides, especially pyrethroids, include thymol, eugenol, carvacrol, geraniol and
linalool [96,97].

Essential Oils and Constituents as Potential Anopheles AChE Inhibitors

EOs are hydrophobic secondary metabolites extracted from different aromatic plant
parts by steam distillation, hydro-distillation, head-space analysis, solvent extraction or liq-
uid carbon dioxide extraction [93,98]. Various terpenoids including sesquiterpenes, monoter-
penes, diterpenes and phenylpropanoids are major phytoconstituents in EOs [99,100]. Many
EOs and certain EOCs have exhibited significant anticholinesterase activity in in vitro
studies. In insects, many EOs have been reported to exhibit neurotoxic effects characterized
by rapid paralysis and death [98], which links them to AChE inhibition. Interestingly, most
EOCs can only inhibit mammalian AChE very weakly. In addition, most EOs and EOCs
are relatively non-toxic to mammals with very low potency for acute oral toxicity, whereby
lethal doses for pure compounds range from 800 to 3000 mg/kg and more than 5000 mg/kg
for EOs or EOCs incorporated in pharmaceutical formulations [93,101,102]. The EOs are
natural resources and therefore, the identification of novel insecticides from such sources
is relatively cost-effective. Production of insecticides from EOs can be relatively less ex-
pensive translating into low costs for the malaria endemic countries [103,104]. In addition,
the discovery of insecticides is relatively rapid since the lead compounds are screened
on the actual insect as opposed to pharmaceuticals intended for human use that undergo
a lengthy translational science process from the in vitro to the in vivo studies including
animal models and human clinical trials [105].

In vitro anticholinesterase activity is usually assessed with the Ellman assay, a globally
accepted method to assess the AChE activity and potential inhibition thereof [106]. For
such studies, the insect homogenate may be used as a crude enzyme source [107–109].
However, some studies use AChE from Electrophorus electricus (electric eel) to estimate
insect AChE activity [110,111]. The electric eel and Anopheles AChEs are reported to have
nearly the same backbone conformation [85]. For the purpose of this review, EOs or EOCs
inhibiting AChE in the in vitro studies are only considered to have potential Anopheles
anticholinesterase activity if they have shown Anopheles insecticidal activity in addition
to the observed AChE inhibition. Furthermore, where available, the selectivity between
human and Anopheles AChE targets, as well as human toxicity potential for the EOs and
EOCs, are extensively discussed.

The EOs as Potential Anticholinesterase Insecticides

Several EOs have shown insecticidal activity against Anopheles species [93]. Given
their high volatility, the EOs can reach their target through inhalation by the insect species,
ingestion or contact [112]. The absorption of EOs is facilitated by the lipophilic character
and low molecular weights of their active constituents [100,112]. This behavior is also
important for the partitioning of EOs into the insect midgut plasma membrane [112,113].

Some of the EOs have not only shown the insecticidal effects, but also exhibited an-
ticholinesterase activity indicating a potential to be anticholinesterase insecticides [102].
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With increasing resistance against current insecticides, the potential use of EOs as alter-
native insecticides has been suggested [93]. Various EOs have shown potential to be
active against resistant colonies including pyrethroid resistant Anopheles species, such as
An. gambiae and An. stephensi [93,114,115]. Furthermore, the EOs and EOCs have shown
potential to synergize with conventional insecticides and to inhibit those enzymes responsi-
ble for insecticide detoxification, which shows promise in overcoming resistance [88,92,94].
This study identified essential oils from 16 plant species with anticholinesterase potential
and corresponding insecticidal capabilities (Table 1). Seven of these exhibited both an-
ticholinesterase and insecticidal activities at IC50 and LC50 values less than 100 µg/mL,
indicating high potencies [116]. These highly potent EOs with potential of being an-
ticholinesterase insecticides include Hyptis suaveolens, Hyptis spicigera, Ocimum canum,
Lantana camara, Ferulago carduchorum, Ferulago trifida, Salvia officinalis and Curcuma longa
(Table 1); the latter EOs belong to the general plant families of Lamiaceae, Verbenaceae,
Apiaceae and Zingiberaceae [93,117,118].

Table 1. Anticholinesterase and insecticidal activities of EOs.

Essential Oil Anticholinesterase
IC50

Insecticidal
Activity Insecticidal LD50

Anopheles Species
(Laboratory Strain) Reference(s)

Carum carvi 0.82 ± 0.05 mg/mL Larvicidal 72.00 µg/mL An. dirus [93,119]

Citrus limon 0.85 ± 0.01 mg/mL Larvicidal
13.75 µg/mL An. gambiae (Kisumu)

[120,121]
32.28 µg/mL An. gambiae Logbessou

Curcuma longa 34.70 ± 3.10 µg/mL
Larvicidal 33.61 µg/mL An. cracens

[122–124]
Larvicidal 1.8–3.7 µg/mL An. quadrimaculatus

Eucalyptus globulus Labill. 0.13 ± 0.01 mg/mL Larvicidal 0.09 mg/mL An. arabiensis [121,125]

Ferulago carduchorum 23.6 µg/mL Larvicidal 12.00–12.78 µg/mL An. stephensi [93,126]

Ferulago trifida 21.5 ± 2.2 mg/mL Larvicidal 10.46 µg/mL An. stephensi [127]

Foeniculum vulgare Mill. 1.19 ± 0.01 mg/mL
Larvicidal 35.30 µg/mL An. dirus

[93,121,128]
Larvicidal 20.10 µg/mL An. stephensi

Hyptis spicigera Lam. 6.3 ± 0.43 µg/mL

Ovicidal
Larvicidal

Adulticidal

69.61 µg/mL
45.18 µg/mL

1.45% w/v
* An. gambiae

[110,129]

Adulticidal 1.04% w/v An. gambiae (Kisumu)

Hyptis suaveolens Poit. 0.55 ± 0.12 µg/mL

Ovicidal
Larvicidal

Adulticidal

61.71 µg/mL
159.5 µg/mL

1.86% w/v
* An. gambiae

[110,129]

Adulticidal 0.85% w/v An. gambiae (Kisumu)

Lantana camara L. 1.75 ± 0.12 µg/mL

Ovicidal
Larvicidal

Adulticidal

53.59 µg/mL
61.69 µg/mL

0.84% w/v
* An. gambiae

[110,129]

Adulticidal 0.24% w/v An. gambiae (Kisumu)

Mentha pulegium L. 108.75 µg/mL

Larvicidal 40.13–113.6 µg/mL An. stephensi

[130–132]Larvicidal 118.0 µg/mL An. gambiae

Larvicidal 58.9 µg/mL An. atroparvus

Ocimum canum Sims. 0.21–26.16 µg/mL

Ovicidal
Larvicidal

Adulticidal

71.56 µg/mL
138.7 µg/mL

1.84% w/v
* An. gambiae

[93,110,129,133]
Adulticidal 1.22% w/v An. gambiae (Kisumu)

Larvicidal 74.12 µg/mL An. funestus

Salvia leucantha >250 µg/mL Larvicidal 10.9 µg/mL An. quadrimaculatus [93,134]

Salvia officinalis 47.68–77.51 µg/mL Larvicidal 14.1 µg/mL An. quadrimaculatus [93,135]

Schinus molle L. 6.54 ± 0.15 mg/mL Larvicidal 21.0 µg/mL An. arabiensis [136,137]

Thymus vulgaris 0.22–0.54 mg/mL Larvicidal 351.63 µg/mL An. labranchiae [121,138,139]

* Wild population.

Notably, one EO could exhibit considerable differences in anticholinesterase and/or
insecticidal activity (Table 1). This is probably due to variations in the identity or quantity
of its specific phytoconstituents. Three Salvia officinalis EOs from different locations in Italy
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exhibited anticholinesterase activity at IC50 values of 47.68, 58.35 and 77.51 µg/mL [135].
While these EOs had a similar content of camphor (16.84%, 16.16% and 18.92%, respec-
tively) as the main constituent, it was notable that the borneol content in the third EO
(IC50: 77.51 µg/mL) was approximately half (2.34%) of that yielded from the former
EOs (4.48% and 4.68%, respectively) [135]. Borneol has been previously shown to inhibit
AChE [121]. Using similar experimental conditions and AChE enzyme concentrations,
the Ocimum canum Sims. EOs from Burkina Faso inhibited AChE at the IC50 value of
0.21 µg/mL [110] and a relatively higher value of 36.16 µg/mL [133]. The latter EO had
59.9% content of 1,8-cineole as the main constituent, while the composition of the former
and more active EO was not mentioned [110,133]. Mentha pulegium L. EO from Iran exhib-
ited the larvicidal activity against An. stephensi with the LC50 value of 40.13 µg/mL [130],
while that from Portugal attained the LC50 of 113.6 µg/mL against the same Anopheles
species [132]. Mentha pulegium L. EO from Portugal had 61.4% pulegone and 20% menthone
as the main constituents, while the phytochemical analysis was not reported for the Mentha
species from Iran [130,132].

Major constituents in EOs are often responsible for the observed biological activ-
ity associated with such a sample [100,140,141]. For this reason, this review collected
phytochemical data on the major components in the identified bioactive EOs (Table 2).
Some of these major constituents possess anticholinesterase and insecticidal activity as
displayed in Table 3. Common constituents in most EOs include α-pinene, β-pinene,
p-cymene, γ-terpinene and β-caryophyllene. Certain EOCs such as terpinen-4-ol, 1,8-
cineole, menthone, menthol, fenchone, γ-terpinene, (-)-bornyl acetate, linalool, citral and
pulegone have been reported as competitive AChE inhibitors [98,142–144]. Addition-
ally, common constituents in seven of the most active EOs, especially Hyptis suaveolens,
Hyptis spicigera, Ocimum canum, Lantana camara, Ferulago carduchorum, Ferulago trifida and
Salvia officinalis are α-pinene, β-pinene, β-caryophyllene and γ-terpinene (Table 2). The
Curcuma longa EO has a unique composition profile of ar-turmerone, tumerone, curlone,
α-curcumene and β-sesquiphellandrene [123]. The main constituent ar-turmerone has only
attained anticholinesterase activity against human AChE with an IC50 value of >100 µg/mL
(IC50: 191.1 ± 0.3 µg/mL), indicating a low potency [116]. Curcuma longa EO has been
reported as possessing an anticholinesterase with an IC50 value of 34.70 ± 3.10 µg/mL. The
Curcuma longa EO has also been reported to possess strong larvicidal activity with the LC50
range of 1.5 to 34 µg/mL [122,123], indicating that it may be selectively targeting the insect.

Table 2. Major constituents of EOs with anticholinesterase insecticidal activity.

Essential Oil Major Constituents References

Carum carvi γ-Terpinene, β-pinene, bornyl acetate, carvone, p-cymene [119]

Citrus limon Limonene [121]

Curcuma longa ar-Turmerone, tumerone, curlone, α-curcumene, β-sesquiphellandrene [123]

Eucalyptus globulus Labill. Eucalyptol, α- pinene, p-cymene, β-cymene, 1,8-cineole, limonene [121,145,146]

Ferulago carduchorum (Z)-β-ocimene, α-pinene, bornyl acetate [126]

Ferulago trifida Isobornyl acetate, trans-verbenol, (E)- β-caryophyllene [127]

Foeniculum vulgare Mill. Thymol, estragole, α-phellandrene, limonene, (E)-anethole, fenchone, [121,123,147]

Hyptis spicigera Lam. β-caryophyllene, α-pinene, β-pinene, α-phellandrene, α-thujene, sabinene [129,148,149]

Hyptis suaveolens Poit. 1,8-cineole, sabinene, terpinolene α-thujene, α- pinene, β-pinene [129,150,151]

Lantana camara L. β-caryophyllene, α-humulene, γ-curcumene, germacrene D [152,153]

Mentha pulegium L. Pulegone, neomenthol, menthone [131,132]

Ocimum canum Sims. Thymol, p-cymene, γ-terpinene, estragole, linalool [154,155]

Salvia leucantha Bornyl acetate, 6,9-guaiadiene, (E)-β-caryophyllene, bicyclogermacrene, camphene, α- pinene, β-pinene [117,134]

Salvia officinalis Camphor, camphene, α-thujone, 1,8-cineole, α- pinene, β-pinene [135]

Schinus molle L. α-Phellandrene, β-phellandrene, α- pinene, β-pinene, γ-terpinene, p-cymene [136]

Thymus vulgaris p-Cymene, borneol, thymol, carvacrol [121]
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The EOCs as Potential Anticholinesterase Insecticides

Some studies have isolated the active principles from EOs and demonstrated the
potential of these to exert Anopheles anticholinesterase activity [98,156]. Moreover, some of
these have also exerted Anopheles mortality in insecticide susceptibility assays [93,131,157].
Gnankiné and Bassolé (2017) reported that several constituents in EOs possess ovicidal,
larvicidal and adulticidal effects against Anopheles species. In this study, 22 EOCs from
various terpenoid classes such as sesquiterpene alcohols, sesquiterpene oxides, monoter-
penoids and monoterpene alcohols, as well as phenylpropanoids, have been identified
as possessing both anticholinesterase and insecticidal activity against Anopheles species
(Table 3). Some of these EOCs, such as 1,8-cineole, α-pinene, camphor, linalool, borneol,
(+)-3-δ-carene, γ-terpinene, caryophyllene oxide, p-cymene, (E)-anethole, terpinen-4-ol,
pulegone and limonene, have shown low potency towards human AChE [98,102,158–160].

The α-pinene, estragole, carvacrol, (+)-δ-3-carene, eugenol and camphor were the most
active in terms of both AChE inhibition and insecticidal activity (Table 3); thus, indicating
that these EOCs show potential to serve as anticholinesterase insecticides. Interestingly,
previous studies have shown that these EOCs have a lower activity against human AChE.
For example, camphor and α-pinene could only inhibit AChE from human erythrocytes
with IC50 values of >10 mM and 0.4–0.7 mM, respectively [159,161]. Similarly, an IC50 range
of 0.2 to 0.3 mM of (+)-3-δ-carene was needed to inhibit bovine and human erythrocytes
AChE [159,161]. These EOCs may therefore produce insecticides with high selectivity
towards Anopheles AChE inhibition over the human target.

Monoterpenoids: The monoterpenoid α-pinene is the main constituent in many essential
oils [93]. Orhan et al. (2008) reported that α-pinene, but not β-pinene, has anticholinesterase
properties [162]. α-Pinene has shown anticholinesterase activity at an IC50 value as low as
22 µg/mL [163]; however, this was higher than its parent EOs from Hyptis suaveolens and
Hyptis spicigera that obtained IC50 values between 0.5 and 6.5 µg/mL [110]. Apart from the
fact that different Anopheles species were used, this suggests the possibility of synergism
among the EOCs in such EOs. Due to their smaller molecular weights, more than one
monoterpenoid can bind to the AChE catalytic and/or peripheral site and, usually, binding
of one monoterpenoid facilitates binding of the other [102]. On the other hand, α-pinene
exhibited larvicidal activity (LC50 of 32.1 µg/mL) against An. subpictus that was comparable
to its anticholinesterase activity [93,163]. In another study, Wojtunik-Kulesza et al. (2017)
reported a higher anticholinesterase IC50 value of 102.0 mM for α-pinene along with
declaration that insolubility of the EOCs affected the accuracy of spectrophotometric
measurements [164]. Generally, the observed variations were caused by the use of different
AChE types and protein contents. For example, using 0.25 U/mL AChE, Farag et al. (2016)
determined an IC50 of 0.337 µM for estragole; meanwhile, Lopez et al. (2015) doubled
the AChE concentration and obtained an IC50 value of 12.6 mM [102,165]. The purity
and stability of reagents and EOs or EOCs used in AChE activity assays may also affect
the outcome [166,167]. Additionally, AChE activity is a pH-dependent reaction [168] and
variations in pH across studies may cause potential differences in inhibition kinetics.

A major constituent in the EO of Echinophora lamondiana, (+)-δ-3-carene, resulted
in comparable anticholinesterase (IC50 value: 36 µg/mL) and larvicidal (LC50 value of
42.9 µg/mL) activity against An. quadrimaculatus [169,170]. The latter larvicidal LC50 value
of the EOC was observed to be similar to that obtained for the EO of the flowers (LC50:
46.9 µg/mL) with 61.9% (+)-δ-3-carene content, but higher than the EOC of the leaves
(LC50: 26.2 µg/mL) with comparable (+)-δ-3-carene content (75.0%) [169]. Though less
predominant than (+)-δ-3-carene in the Echinophora lamondiana EO, both terpinolene (2.7 to
3.3%) and α-phellandrene (12.8 to 20.3%) were reported to be even more potent larvicidal
agents than (+)-δ-3-carene, with LC50 values of 20.9 and 15.6 µg/mL, respectively [169].

Camphor, a monoterpenoid ketone and the major component in the EOs of
Ocimum africanum and Ocimum americanum, was also shown to exhibit low anticholinesterase
activity (IC50 value of 21.43 µM) [165]. Moreover, camphor is known to non-competitively
inhibit nAChRs [98,102,171]. Camphor is also active as a repellent against An. culicifacies,
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An. gambiae and An. funestus [172–174]. However, poor larvicidal activity by camphor was
obtained with a LC50 value > 100 µg/mL [175].

Aazza et al. (2011) reported that the EO of Thymus vulgaris consists of 16% carvacrol.
Interestingly, carvacrol is more than three times as active (IC50 value of 63.0 µg/mL) as
its parent EO (IC50 value of 216.9 µg/mL) in AChE inhibition studies [121,139]. This
indicates the potential effect of antagonistic interactions within the complex mixture
of the Thymus vulgaris EO resulting in decreased activity. However, the Anopheles anti-
cholinesterase potential of carvacrol (IC50 value of 63.0 µg/mL) is non-specific as its activity
is comparable to that against AChE from bovine serum (IC50 value of 70.3 µg/mL) [139,162].
Stereochemistry in AChE inhibition also plays a role, whereby carvone (a monoterpenoid ke-
tone) attained weak AChE inhibition (IC50 value of 830 µg/mL), in comparison to the struc-
turally related phenolic monoterpenoid, carvacrol (IC50 value of 63.0 µg/mL) [93,139,164].
Carvone has previously been reported to be a potent non-competitive AChE inhibitor of
mammal AChE [102,162].

Another phenolic monoterpene, thymol, is ineffective in inhibiting AChE, but is a
positive allosteric modulator of the insect’s GABA-A receptors [118,164]. Thymol has also
been reported to act at the octopamine receptors; this is where octopamine is an analogue
of norepinephrine, functioning as a neurotransmitter, neuromodulator and neurohormone
in insects [176]. Most studies have shown thymol to be as ineffective as its parent EO
Thymus vulgaris against the AChE target [121,139].

Phenylpropanoids: Estragole is a phenylpropanoid isolated from the EOs of the Ocimum
species. Along with strong anticholinesterase activity (IC50 value of 0.337 µM) [165], it has
shown similarly potent larvicidal activity against An. stephensi (LC50 value of 11.01 µg/mL)
and An. atroparvus (LC50 value of 15.7 µg/mL) [102,118]. Estragole was reported to be
potentially selective for Anopheles, as it has shown no inhibition of mammal AChE [162].

Eugenol, an allyl chain-substituted guaiacol (phenol), is a major constituent (31.12%) in
the Plectranthus barbatus EO, an EO with the LC50 value of 84.2 µg/mL, against An. subpictus
larvae [177]. However, eugenol is three times more potent (LC50 value of 25.45 µg/mL)
than this latter parent EO as a larvicide against An. subpictus [93]. Again, this suggests pos-
sible antagonism with other constituents. Eugenol and (E)-anethole (a phenylpropanoid)
reportedly interacted in an antagonistic manner when tested for larvicidal activity [178].
Although eugenol had an IC50 value of 40.32 µg/mL for AChE inhibition, this inhibitory
activity was however comparable to that attained against bovine erythrocytes AChE
(42.44 ± 1.21 µg/mL) [165,179]. In contrast, Dohi et al. (2009) reported a much higher
IC50 value for eugenol (480 µg/mL) against electric eel AChE [163]. Based on these two
findings, eugenol has a potential nonselective AChE inhibition, and to be an antagonist at
insect octopamine receptors [93].

Table 3. Anticholinesterase and insecticidal activities of EOCs.

Essential Oil
Constituent

Anticholinesterase
IC50

Insecticidal Activity Insecticidal LD50
Anopheles Species
(Laboratory Strain) Reference(s)

(E)-Anethole 1.324 ± 0.011 mg/mL Larvicidal 25.11 µg/mL * An. sinensis [121,178]

Borneol 0.132 ± 0.012 mg/mL Larvicidal 35.89 µg/mL An. anthropophagus [121,180]

Camphor 0.003–1.7 mg/mL Larvicidal 129.17 µg/mL An. anthropophagus [102,165,175]

(+)-δ-3-Carene 0.036–0.64 mg/mL Larvicidal 42.9 µg/mL An. quadrimaculatus [169,170]

Carvacrol 0.063–0.092 mg/mL
Larvicidal 21.1–24.06 µg/mL An. subpictus

[121,139,181]
Larvicidal 21.15 µg/mL An. stephensi

Carvone 0.437–0.83 mg/mL Larvicidal 19.3 µg/mL An. stephensi [102,157,164]

Caryophyllene oxide >200 µg/mL Larvicidal 49.46 µg/mL An. anthropophagus [93,175,182]

Estragole 0.337 µM–12.6 mM Larvicidal
15.7 µg/mL An. atroparvus

[102,118,165]
11.01 µg/mL An. stephensi

Eucalyptol 266.0 ± 11.87 mM Larvicidal >200 µg/mL An. anthropophagus [93,102,164]
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Table 3. Cont.

Essential Oil
Constituent

Anticholinesterase
IC50

Insecticidal Activity Insecticidal LD50
Anopheles Species
(Laboratory Strain) Reference(s)

Eugenol 40–480 mg/mL Larvicidal

93.14 µg/mL An. stephensi

[163,165,178,181,183]25.45 µg/mL An. subpictus

31.09 µg/mL * An. sinensis

Isopulegol 233.0 ± 10.08 mM Larvicidal 49.4 µg/mL An. gambiae s.s [93,102]

Limonene 220–586 µg/mL
Larvicidal 8.8 µg/mL An. stephensi

[121,184–186]
Larvicidal 18.91 µg/mL An. sinensis

Linalool 1.69–2.4 mg/mL Larvicidal 35.87 µg/mL An. anthropophagus [102,164,180]

(Z)-β-Ocimene 4.7 ± 0.20 mM Larvicidal
25.84 µg/mL An. stephensi

[118,164]
30.86 µg/mL An. subpictus

α-Phellandrene 0.12–3.68 mg/mL Larvicidal 15.6 µg/mL An. quadrimaculatus [102,169]

α-Pinene 0.022–1.43 mg/mL Larvicidal 32.1 µg/mL An. subpictus [163–165,187]

Pulegone 9.0 ± 0.41 mM Larvicidal 48.9 µg/mL An. stephensi [141,164]

Sabinene 176.5 ± 2.8 µg/mL Larvicidal 19.67 µg/mL An. stephensi [118]

Terpinen-4-ol 0.19–3.2 mg/mL

Larvicidal 47.73 µg/mL An. subpictus

[143,156,163,186,188]
Larvicidal 43.27 µg/mL An. stephensi

Larvicidal 62.09 µg/mL An. sinensis

Larvicidal 337.7 µg/mL An. gambiae s.s

γ-Terpinene 5.8 mM
Larvicidal 44.61 µg/mL An. anthropophagus

[102,180,186]
Larvicidal 36.42 µg/mL An. sinensis

α-Terpineol 1.3 ± 0.06 mg/mL Larvicidal 39.98 µg/mL An. sinensis [163,186]

Terpinolene 156.4–550.0 µg/mL
Larvicidal 404.71 µg/mL An. gambiae s.s

[93,118,156,169,170]
Larvicidal 20.9–25.7 µg/mL An. quadrimaculatus

Thymol 0.05–0.74 mg/mL
Larvicidal 10.3–22.06 µg/mL An. subpictus

[118,139,141,189,190]
Larvicidal 48.88 µg/mL An. stephensi

* Wild population.

While showing potent insecticidal activity, some EOs and EOCs did not show any
evidence that their mode of action involved targeting AChE. Pulegone has a potent insecti-
cidal activity against An. stephensi, however, it could not efficiently inhibit AChE [141,164].
In contrast, the epoxide form of pulegone, the pulegone-1,2-epoxide isolated from the
Lippia steochadifolia EO, has be reported to be an insect neurotoxin, acting as an irreversible
inhibitor of AChE [191]. In addition, the Citrus limon EO and it major EOC, limonene (99%)
both possess weak AChE inhibition properties; whilst both are potent larvicides against
An. gambiae and An. stephensi [120,121,184]. This suggests that a different mode of action
may be responsible for their insecticidal activity. In Cimex cimicidae (bedbugs), limonene has
been proposed as acting by destroying the wax layer of the insect respiratory system [192].

This review identified EOs and specific EOCs with anticholinesterase activity and
indeed the capacity to cause Anopheles mortality. The EOs and EOCs spectrum of activity
against Anopheles included ovicidal, larvicidal and adulticidal activities, where they were
regarded as active if they obtained LC50 values less than 100 µg/mL [193]. The common
Anopheles species involved in global malaria transmission that have been assessed include
An. stephensi, An. gambiae, An. arabiensis, An. subpictus, An. anthropophagus, An. quadrimaculatus,
An. dirus, An. cracens, An.labranchiae, An. sinensis and An. atroparvus [194,195]. Interestingly,
almost all of these have already developed clinically significant resistance against current
insecticides [194,196–198]. The commonly assessed An. Stephensi, that was susceptible to
many of the EOs and EOCs, is predominant in Asia and recently invaded Africa [199,200].
This species is resistant to conventional AChE insecticides, including organophosphates and
carbamates, and has also shown resistance to other insecticide classes such as pyrethroids
and organochlorines [201,202]. The EO of Ferulago carduchorum has shown both larvicidal
and anticholinesterase activity at LC50 and IC50 values around 12 µg/mL, which are
extremely promising [126].



Molecules 2022, 27, 7026 13 of 22

Interestingly, the EOs of Hyptis suaveolens, Hyptis spicigera, Ocimum canum and
Lantana camara have shown activity against all three developmental stages of An. gambiae,
a main African vector. Meanwhile, the EO of Mentha pulegium and Ocimum canum have
been shown to target the larval stage of An. gambiae [93,131] and An. funestus (LC50 value of
91.2 µg/mL), respectively [93,195,203]. Of all the species, An. arabiensis is the main vector
in Sub-Saharan Africa [48] against which the EOs of Schinus mole and Eucalyptus globulus
have displayed larvicidal activity with LC50 values less than 100 µg/mL. However, the
anticholinesterase activity of these latter EOs, as well as their major EOCs, α-phellandrene
and eucalyptol, respectively, were in the millimolar range indicating that their larvicidal
activity is not primarily through AChE inhibition. Both Schinus mole and Eucalyptus globulus
EOs are non-toxic towards mammals and the Eucalyptus globulus EO is recommended for
skin application as a repellent [93,204].

It is crucial to identify novel insecticides from EOs as most are relatively safe to
mammals [93,118]. An EO of Foeniculum vulgare could only exhibit acute oral toxicity at
the LD50 of 3120 mg/kg in the rat model [118]. This EO is active against An. stephensi and
An. dirus with LD50 values between 20 and 35 µg/mL, thus indicating a high safety index
for human use [93]. The EOCs, (E)-anethole, eugenol, limonene, thymol and γ-terpinene,
displayed acute oral toxicity at the LD50 values ranging from 980 to 4600 mg/kg [118]
where all attained insecticidal LC50 values less than 100 µg/mL (Table 3); thus, indicating
their potential as bioinsecticides.

3. Conclusions and Future Perspective

The Anopheles vectors are responsible for malaria transmission across the world; addi-
tionally, most of these vectors have acquired resistance against current insecticide classes.
Anopheles AChE is a valid target by conventional AChE inhibitors in the market. Due to
the current resistance status towards anticholinesterase insecticides, organophosphates
and carbamates, the identification of novel insecticides is critical. The EOs and EOCs have
shown potential to serve as anticholinesterase insecticides against Anopheles vectors. This
is afforded by the capability of some EOs and EOCs to exhibit both anticholinesterase
and insecticidal activity. In this review, seven EOs from Hyptis suaveolens, Hyptis spicigera,
Ocimum canum, Lantana camara, Ferulago carduchorum, Ferulago trifida, Salvia officinalis and
Curcuma longa plant species which showed potent anticholinesterase and insecticidal ac-
tivities against various Anopheles species were summarized. Along with these, six EOCs,
namely, α-pinene, estragole, carvacrol, (+)-3-δ-carene, eugenol and camphor, were identi-
fied as being the most active against the Anopheles vector and AChE target. All of these,
except for eugenol and carvacrol, have the potential to be selective towards Anopheles
AChE. This scientific data review is important for informing future research towards novel
anticholinesterase insecticides for malaria vector control. Future studies in this area should
focus on the EOs and EOCs identified in this review for possible development into insec-
ticidal agents. Active constituents should be identified from the EO complex mixtures
and possible synergistic interaction taken into consideration. The EOs and the identified
EOCs in this review require further assessment against various stages of the Anopheles life
cycles and potential activity against insecticide resistant Anopheles vectors. Moreover, these
promising EOs and EOCs should be assessed for possible activity against human AChE,
toxicity against other aquatic lives, as well as for mammal toxicity.

In general, this review supports the future development of EOs as a potential source
for novel insecticides with AChE inhibitory potential; including the specific EOs with
potential anticholinesterase and insecticidal activities outlined in this review, belonging
to the families of Lamiaceae, Verbenaceae, Apiaceae and Zingiberaceae. Meanwhile, the
promising EOCs for development into novel anticholinesterase insecticides belong to
broader classes of sesquiterpene alcohols, monoterpenoids, monoterpene alcohols and
phenylpropanoids.
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