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Abstract—In this paper, the potential of using polarimetric SAR
(PolSAR) acquisitions for the estimation of volumetric soil mois-
ture under agricultural vegetation is investigated. Soil-moisture es-
timation by means of SAR is a topic that is intensively investigated
but yet not solved satisfactorily. The key problem is the presence
of vegetation cover which biases soil-moisture estimates. In this
paper, we discuss the problem of soil-moisture estimation in the
presence of agricultural vegetation by means of L-band PolSAR
images. SAR polarimetry allows the decomposition of the scat-
tering signature into canonical scattering components and their
quantification. We discuss simple canonical models for surface,
dihedral, and vegetation scattering and use them to model and
interpret scattering processes. The performance and modifications
of the individual scattering components are discussed. The ob-
tained surface and dihedral components are then used to retrieve
surface soil moisture. The investigations cover, for the first time,
the whole vegetation-growing period for three crop types using
SAR data and ground measurements acquired in the frame of the
AgriSAR campaign.

Index Terms—Model-based decomposition, polarimetric
SAR (PolSAR), scattering mechanisms, surface-soil-moisture
estimation.

I. INTRODUCTION

THE ESTIMATION of soil moisture by means of SAR has

been intensively investigated in the last decades. In the

case of bare surfaces, satisfactory estimation results have been

achieved using theoretical as well as empirical or semiempir-

ical approaches. However, bare fields are only a special case.

Agricultural fields are over large periods of their yearly cycle

covered by different crop types. The presence of vegetation

increases the complexity of the scattering scenario: The waves

propagate through and interact with the vegetation layer and

then interact with the underlying surface. Therefore, vegetation

and surface effects are superimposed in the measured scat-

tering signature. In order to decompose the individual con-

tributions, model-based decompositions can be used. A basic

requirement for achieving this is the availability of an appro-
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priat and sufficient observation space that provides enough

observables for estimating the individual scattering compo-

nents. Different ways to extend the observation space by means

of multiparameter SAR acquisitions have been proposed and

investigated.

An important step in understanding the interaction of elec-

tromagnetic (EM) waves with agricultural scatterers and in-

terpretation of the radar signatures over different crop types

at different frequencies [1]–[3] and polarizations [4], [5]

was with the availability of multitemporal acquisition series.

Multitemporal data improved the performance of agricultural-

crop classification in terms of the number of possible classes

that can be separated as well as in terms of achieved clas-

sification accuracy. The analysis of multifrequency (C- and

L-band) [6] multitemporal fully polarimetric data allowed a

more detailed insight into the scattering mechanisms occur-

ring, facilitating the development of quantitative inversion al-

gorithms. Their development emphasized the importance of

EM modeling. The evolution of agricultural vegetation scatter-

ing modeling started with the modification of forest-scattering

models. Tree and forest structure elements such as branches and

leaves of different shapes have been scaled down to simplified

agricultural-crop structures—primarily on the basis of inco-

herent radiative-transfer models. These models are in general

strongly overparameterized to be of any value for inversion

purposes. In order to overcome the inversion deficiencies of in-

coherent discrete models and to account for coherent polarimet-

ric effects, first, simplified coherent models [7]–[10] have been

developed. Combined with a priori information, this allowed

to demonstrate accurate surface-soil-moisture estimation over

wheat fields [16].

A next key step was reached with the introduction of SAR

interferometry, primarily in terms of the first European Re-

mote Sensing satellite. The utilization of interferometric co-

herence improved significantly the potential of single-channel

SAR data for land-use classification and monitoring of crop

biomass and increased the sensitivity to the vegetation layer

[2], [11], [12]. However, differences in plowing and/or sowing

direction, sowing time, soil properties, tillage practice, and

crop type and development stage, as well as decorrelation due

to environmental factors (precipitation, soil moisture, wind),

caused difficulties in the interpretation of the measurements

[13]–[15].

In this paper, we discuss the potential of using quad-

polarimetric data for the separation of vegetation and ground

scattering components and the estimation of moisture of

the underlying soil. We investigate the potential of using
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polarimetric-decomposition techniques to decompose the

scattering signature into individual (canonical) scattering

components, and we discuss the inversion of moisture of the

underlying soil using the ground-related scattering components.

The decomposition and inversion performances are investigated

over the entire vegetation-growing cycle for different crop

types. In Section II, simple canonical scattering models for

surface, dihedral, and volume scattering as well as their poten-

tial modifications are presented. The implementation of the de-

composition approach and its application on the experimental

data are discussed in Sections III and IV, respectively. The

sensitivity of the ground-related components (i.e., surface and

dihedral) to the moisture content of the ground as well as the

inversion of soil moisture are investigated in Section V. Finally,

conclusions and recommendations are give in Section VI.

II. MODELING ELEMENTARY SCATTERING

CONTRIBUTIONS

This section reviews the elementary scattering mechanisms

used in polarimetric modeling of mixed vegetation surface

scattering and discusses their advantages and limitations.

A. Surface-Scattering Mechanisms

A simple model of surface scattering is given by the Bragg

scattering formulation derived as a low-frequency scattering

approximation in the microwave region. The corresponding

2 × 2 scattering matrix [SB ] is given by [17]

[SB ] = mS

[

Rh(θ, εS) 0
0 Rv(θ, εS)

]

. (1)

The coefficients Rh and Rv are the horizontal (perpendicular)

and the vertical (parallel) Bragg scattering coefficients

Rh :=
cos θ −

√

εs − sin2 θ

cos θ +
√

εs − sin2 θ

Rv :=
(εs − 1)

(

sin2 θ − εs(1 + sin2 θ)
)

(εs cos θ +
√

εs − sin2 θ)2
. (2)

Both depend on the dielectric constant εs of the surface and

the incidence angle θ. The corresponding Pauli scattering

vector [19]

�kB =
ms√

2
[Rh + Rv, Rh − Rv, 0]T (3)

allows us to form the coherency matrix [TB ]

〈[TB ]〉 =
〈

�kB · �k+
B

〉

= fs

⎡

⎣

1 β∗ 0
β |β|2 0
0 0 0

⎤

⎦ (4)

where the scattering amplitude fs and the ratio β are given by

fs =
m2

s

2
|Rh + Rv|2 β =

Rh − Rv

Rh + Rv

. (5)

The validity range of the Bragg scattering model is limited

to the low (compared to the wavelength) roughness domain.

Accordingly, the model does not account for depolarization

effects. Thus, the coherency matrix of (4) is of rank 1. In

consequence, the model is not able to describe cross-polarized

scattering (except in the case of terrain slopes). Nevertheless,

its robustness within its validity range and its parameterization

simplicity (it requires only two parameters to describe the

surface scattering) make Bragg scattering a popular choice for

surface-scatter modeling.

In order to extend the validity range of the Bragg model

and to introduce cross-polarized scattering and depolarization

effects, the extended Bragg (X-Bragg) model was proposed

in [20]. It introduces roughness by means of an azimuthally

symmetric term, leading to a rank-3 coherency matrix

〈[TXB ]〉

=fS

⎡

⎣

1 β∗ sin c(2δ) 0
β sin c(2δ) 1

2 |β|2(1+sin c(4δ)) 0
0 0 1

2 |β|2(1−sin c(4δ))

⎤

⎦ .

(6)

The roughness effect is accounted for by integrating a Bragg

surface over a line-of-sight (LOS) rotation-angle distribution

parameterized by the width δ of the distribution. Consequently,

a single parameter δ controls the depolarization as well as the

cross-polarized power level. In the limit when δ = 0, X-Bragg

converges to the Bragg case.

B. Dihedral Scattering Mechanisms

The simplest way to model the dihedral scattering component

is by a double reflection on a smooth dielectric [18], leading to

the following scattering matrix:

[SD] =

[

1 0
0 −1

] [

1 0
0 eiϕ

] [

Rsh 0
0 Rsv

] [

Rth 0
0 Rtv

]

.

(7)

The horizontal and vertical Fresnel coefficients Rsh and Rsv

for the soil and Rth and Rtv for the trunk plane depend on

the soil (and trunk) dielectric constant εs (and εt), and the

corresponding incidence angle θs = θ (and θt = (π/2) − θ)

Rih =
cos θi −

√

εi − sin2 θi

cos θi +
√

εi − sin2 θi

Riv =
εi cos θi −

√

εi − sin2 θi

εi cos θi +
√

εi − sin2 θi

(8)

where i ∈ {t, s}. The phase term eiϕ accounts for the case of

a differential propagation phase introduced by the vegetation

layer. The corresponding Pauli scattering vector

�kD =
1√
2
[RshRth − RsvRtve

iϕ, RshRth + RsvRtveiϕ, 0]T

(9)
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leads to a rank-1 coherency matrix [TD]

〈[TD]〉 =
〈

�kD · �k+
D

〉

= fd

⎡

⎣

|α|2 α 0
α∗ 1 0
0 0 0

⎤

⎦ (10)

where the scattering amplitude fd and the ratio α are given by

α =
RshRth − RsvRtve

iϕ

RshRth + RsvRtveiϕ

fd =
1

2
|RshRth + RsvRtve

iϕ|2. (11)

The dihedral contribution of (7) assumes a smooth soil

surface, implying a loss-free and nondepolarizing reflection.

However, in order to account for reflection losses due to the

soil roughness that is expected in a realistic scattering scenario,

the modified Fresnel coefficients can be used. A scattering loss

factor LS [21]

LS = exp(−2 · k2 · σ2 · cos2 θ) (12)

accounts for the roughness-induced losses, where k is the

wavenumber, σ is the standard deviation of the vertical rough-

ness, and θ is the incidence angle leading to a scattering matrix

[

RLsh 0
0 RLsv

]

= LS

[

Rsh 0
0 Rsv

]

(13)

with modified Fresnel coefficients

RLsh = Rsh · LS RLsv = Rsv · LS . (14)

Equation (14) leads finally to a modified coherency matrix

〈[TDS ]〉 = |LS |2 · 〈[TD]〉 . (15)

Note that the use of the modified Fresnel coefficients affects

only the amplitude of the individual components but does not

account for coherence loss or cross-polarization scattering due

to roughness-induced depolarization. In this sense, (15) is still

of rank 1.

C. Volume Component

Probably, the most challenging component to model is the

vegetation component that is often approximated by a cloud of

equally shaped particles [22], [23]. In this case, the scattering

properties of the layer (neglecting multiple-scattering interac-

tions) are controlled by three parameters: The EM density of

the volume that affects the scattered power, the shape, and the

orientation distribution of the volume particles. Starting from

the scattering matrix of a single-volume particle

[SP ] =

[

a c
c b

]

(16)

the particle orientation can be changed in the 3-D space (x, y, z)
by rotating the particle by the rotation angles (i.e., cant ψ, tilt

τ , and spin χ angles) according to

[SP (ψ, τ, χ)] = [Rψ][Rτ ][Rχ][SP ][Rχ]T[Rτ ]T[Rψ]T (17)

where

[Rψ] =

[

cos ψ sin ψ
− sin ψ cos ψ

]

[Rτ ] =

[

cos τ − sin τ
sin τ cos τ

]

[Rχ] =

[

cos χ sin χ
− sin χ cos χ

]

(18)

are the rotation matrices. It is common to restrict them to

rotational symmetric particles (i.e., χ invariant) and to assume

untilted particles (τ = 0) so that only azimuthal rotations about

ψ have to be considered. From (17), the corresponding scatter-

ing vector for spheroidal particles is

�kp =
1√
2
[a + b, a − b, 0]T (19)

and leads to a (rank 1) particle coherency matrix

[TP ] =
〈

�kP · �k+
P

〉

(20)

that can be rotated along the azimuth direction ψ according to

[Trot] =
[

R3
2ψ

]

[TP ]
[

R3
2ψ

]T
(21)

with

[

R3
2ψ

]

=

⎡

⎣

1 0 0
0 cos 2ψ sin 2ψ
0 − sin 2ψ cos 2ψ

⎤

⎦ . (22)

A rank-3 coherence matrix is obtained by integrating over the

probability density functions p(ψ) of the uniform angular distri-

bution with width ∆ψ = ψ2 − ψ1 and mean ψ = (ψ1 + ψ2)/2

[TV ] =

∫

∆ψ

[Trot]p(ψ)dψ (23)

with following analytical form:

[TV ]=

⎡

⎢

⎢

⎢

⎢

⎣

T11

T12[sin 2ψ]
ψ2

ψ1

2∆ψ

T12[cos 2ψ]
ψ2

ψ1

2∆ψ

T∗

12
[sin 2ψ]

ψ2

ψ1

2∆ψ

T22[ψ+ 1

4
sin 4ψ]

ψ2

ψ1

2∆ψ

T22[cos 4ψ]
ψ2

ψ1

8∆ψ

T∗

12
[cos 2ψ]

ψ2

ψ1

2∆ψ

T∗

22
[cos 4ψ]

ψ2

ψ1

8∆ψ

T22[ψ− 1

4
sin 4ψ]

ψ2

ψ1

2∆ψ

⎤

⎥

⎥

⎥

⎥

⎦

(24)

where the Tij are the matrix elements of [Tp].

III. DECOMPOSITION APPROACHES

A. Three-Component Decomposition

Fields covered with vegetation have a rather complex scat-

tering behavior. The measured scattering signature consists of
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a coherent superposition of volume and ground-scattering com-

ponents. In order to decompose the individual scattering contri-

butions, model-based decompositions have been proposed (and

applied) with some success [24]–[27] using the five indepen-

dent observables of the measured scattering matrix: The three

amplitudes (|SHH|, |SVV|, |SXX|) and the two phase differences

between elements of the scattering matrix.

One of the first model-based decompositions used to fit and

to interpret SAR data is the Three-Component Decomposition

proposed by Freeman and Durden in 1998 [24]. The model

decomposes the measured coherency matrix [Ttot] into a Bragg

scattering component, a (smooth) dihedral reflection, and into

a volume of randomly oriented (i.e., prandom(ψ) = 1/(2π),
∆ψrandom = 2π) dipole scattering elements

[Ttot]=fs

⎡

⎣

1 β∗ 0
β |β|2 0
0 0 0

⎤

⎦+fd

⎡

⎣

|α|2 α 0
α∗ 1 0
0 0 0

⎤

⎦+
fv

4

⎡

⎣

2 0 0
0 1 0
0 0 1

⎤

⎦.

(25)

The scattering power of the surface Ps, dihedral Pd, and volume

Pv components are given by the trace of the corresponding

coherency matrices

Ps = fs

(

1 + |β|2
)

Pd = fd

(

1 + |α|2
)

Pv = fv. (26)

The total power Ptot is obtained as

Ptot = Ps + Pd + Pv = fs

(

1 + |β|2
)

+ fd

(

1 + |α|2
)

+ fv.
(27)

Equation (25) leads to an underdetermined inversion problem

of five (three real and one complex) observables for six (real)

unknown parameters. For this, the nondominant of the two

components, either surface or dihedral, is set to a constant value

according to the sign of RE[〈SHHS∗
VV〉] after removal of the

volume contribution. Surface scattering is dominant if this term

is positive; otherwise, dihedral scattering is dominant [24].

B. Modifications of the Three-Component Decomposition

In order to introduce a cross-polarized component generated

by the roughness of the underlying surface, the Bragg scattering

component [TB ] in (25) can be replaced by an X-Bragg surface

component [TXB ] as given in (6). The use of the X-Bragg

model (later referred as X-Bragg) increases the number of

unknown parameters by one (the angular-distribution width

δ used to describe the surface roughness) and requires an

additional constraint. One way to do this is fixing δ to a

predefined value. In the following investigations, δ is set to π/6,

a value that has been estimated empirically. When the standard

three-component decomposition leads to a negative surface or

dihedral component, this component can be eliminated. Thus,

the parameter space is reduced, and δ can be determined.

A second possible modification is to use the modified Fresnel

coefficients instead of the canonical Fresnel coefficients to

describe the dihedral component, accounting for the roughness

effect on the dihedral scattering power. In this case, [TD]
is replaced in (25) by [TDS ] as given in (15). The standard

deviation of the vertical roughness σ of the soil is additionally

taken into account.

More critical are modifications of the volume layer. In [26],

orientation effects of the dipoles forming the volume have been

discussed. Three possible orientation distributions have been

considered (random, vertical, or horizontal), and the copolar-

ization power ratio Pr

Pr = 10 · log

〈

|SVV|2
〉

〈|SHH|2〉
(28)

has been proposed as a first approximation to identify which

of them is valid: If Pr is less than −2 dB, vertically oriented

dipoles are assumed, for Pr between −2 and 2 dB, randomly

oriented ones are assumed, while for Pr values higher than

2 dB, horizontally oriented dipoles are used. Volumes with

vertically (∆ψ = π and p(ψ) = 0.5 sin ψ for 0 < ψ < π) or

horizontally oriented dipoles (∆ψ = π and p(ψ) = 0.5 cos ψ
for −π/2 < ψ < π/2) result in the following coherence

matrices:

〈[T v
V ]〉= fv

30

⎡

⎣

15 5 0
5 7 0
0 0 8

⎤

⎦

〈[

Th
V

]〉

=
fv

30

⎡

⎣

15 −5 0
−5 7 0
0 0 8

⎤

⎦ .

(29)

This model is later referred as Vol2.

In a further step (later referred as Vol3), the orientation

distributions can be narrowed, leading to stronger oriented

volumes.

1) ∆ψ = π/2 and p(ψ) = (1/
√

2) sin ψ for π/4 < ψ <
3π/4 in the vertical-orientation case.

2) ∆ψ = π/2 and p(ψ) = (1/
√

2) cos ψ for −π/4 < ψ <
π/4 in the horizontal-oriented case.

Which leads us to

〈[T v
V ]〉= fv

30

⎡

⎣

15 10 0
10 8 0
0 0 7

⎤

⎦

〈[

Th
V

]〉

=
fv

30

⎡

⎣

15 −10 0
−10 8 0
0 0 7

⎤

⎦ .

(30)

Changing the shape of the volume particles gives a further

degree of freedom. Hence, the volume component can be mod-

ified by varying the so-called shape parameter ρ [27] that runs

continuously from ρ = 1/3 (corresponding to dipoles) to ρ = 1
(corresponding to spheres). This method is later referred as

Vol1. In the case of randomly distributed particles, the volume

coherency matrix as a function of particle shape is obtained

as [28]

〈[TV ]〉 = fv

⎡

⎣

1 + ρ 0 0
0 1 − ρ 0
0 0 1 − ρ

⎤

⎦ . (31)

IV. EXPERIMENTAL DATA

A. AgriSAR Campaign

In the following investigations, data acquired in the frame

of the AgriSAR campaign are used. AgriSAR stands for Agri-

cultural bio/Geophysical RetrIeval from frequent repeat pass

SAR and optical imaging and was an experimental campaign

conducted in 2006 [29]. The main objective was to acquire
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TABLE I
SAR DATA-ACQUISITION TABLE. DATE: ACQUISITION DATE,

INTERVAL: TIME INTERVAL FROM THE LAST ACQUISITION

IN DAYS, DOY: DAY OF YEAR

Fig. 1. Pauli component RGB representation of the AgriSAR scene in
April 19th.

multifrequency SAR, optical and ground measurements over

a whole vegetation-growing period. The campaign was spon-

sored by the European Space Agency (ESA) and performed by

a European team of 16 institutions. The test site Demmin is

located in northern Germany close to the village of Görmin and

is characterized by representative soil and crop types growing

in Europe. During a period of four months, every one- to two-

week ground and airborne data were simultaneously acquired.

The SAR data were acquired by the airborne experimental

SAR (E-SAR) system of the Microwave and Radar Institute,

DLR, at different frequencies (X-, C-, and L-band) and different

modes (singe-, dual-, quad-polarimetric, interferometric, and

polarimetric interferometric). In total, 12 SAR flights were

performed and processed (see Table I). In this paper, the quad-

polarimetric L-band data are analyzed.

Ground measurements were collected regularly by two teams

led by DLR and the University of Kiel. In total, nine fields

with five different crop types were chosen, where soil and

vegetation parameters were sampled. The investigation in this

paper focuses primarily on three fields with different crop types:

wheat (No. 250), corn (No. 222), and rape (No. 101). The

three crop types have been selected due to their differences

in sowing and harvest time, crop volume and crop structure,

growing cycle, and consumption of surface soil water.

B. Three-Component Decomposition

First, the three-component decomposition according to (25)

is applied on the L-band data of the west–east strip of the

AgriSAR flight track for the different acquisition times. An

RGB-representation scene using the individual Pauli compo-

nents (Pauli2: 0.5〈|SHH − SVV|2〉, Pauli3: 2〈|SHV|2〉, Pauli1:

0.5〈|SHH + SVV|2〉) is shown in Fig. 1. The three selected

fields are indicated, as well as the central area of the scene

Fig. 2. RGB image of the Freeman decomposition powers (normalized) in
(top) April 19th, (middle) June 14th, and (bottom) July 12th at L-band [(red)
Pdihedral/Ptotal, (green) Pvolume/Ptotal, (blue) Psurface/Ptotal].

marked by the red rectangle. These fields will be in the focus of

the following investigations.

The decomposition results obtained for three different times,

at the beginning (April 19th), the middle (June 14th), and

toward the end (July 12th) of the vegetation period 2006, are

shown in Fig. 2. The results are represented as RGB composites

where the relative dihedral power is set to red, the relative

volume power is set to green, and the relative surface power

is set to blue, according to (26). A strong distinction between

the three components can be observed: In April, when only

a few fields were vegetated, the surface component (blue) is

predominant; in June, most fields are vegetated with a dominant

volume component (green), while in July, some of them were

close to be harvested and dry with increasing surface scattering

as main scattering contribution (blue).

Concentrating on single fields now, the following observa-

tions can be made: The rape field 101 appears blue and green in

April, corresponding to the early (low vegetation) development

stage. In June, the plants are fully developed, and the vegetation

component (green) dominates clearly. For the wheat field 230,

the dominant mechanism changes from dihedral in April, prob-

ably due to the already grown wheat stalks, to mainly surface

in June. Indeed, in June, the dihedral component has almost

disappeared, although the vegetation is still present according

to the ground measurements. This is because the wheat was

dry in June and, hence, almost transparent at L-band. In addi-

tion, a change in plant phenology linked to the plant growth

occurs, switching from a volume scatterer with a significant

dihedral component to a volume scatterer with a strong surface

component. This is an example on how carefully one should

interpret scattering contributions. In contrast to wheat which

is characterized by an early development cycle and is close
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Fig. 3. Comparison of the relative component powers [(top) dihedral, (middle) surface, (bottom row) volume] in time for three different fields at L-band. The
powers have been calculated with five different decomposition approaches which are displayed with different bar colors (see legend). The unmodified Freeman
decomposition approach is denoted by “Bragg.” (right y-axis) Green curve in the background shows the height of the crop of the respective field. The colors of
the bars correspond to different decomposition methods (blue—Bragg, green—X-Bragg, red—Volume 1, gray—Volume 2, orange—Volume 3).

to be harvested in July, the corn field 222 shows the opposite

behavior. It is totally bare in April, while some vegetation can

be seen in June that approaches its maximum in July, when the

field shows a dominant volume component.

C. Modified Decompositions

In a second step, the different decomposition approaches

discussed in Section III have been applied and compared to each

other. The standard decomposition by means of (25) is referred

as Bragg, while the modifications of the standard approach are

named as follows with the following indications.

1) X-Bragg indicates the decomposition using the X-Bragg

model instead of the Bragg model for modeling the

surface component [cf. (6)].

2) Volume1 indicates the decomposition using a random-

oriented volume with particles of arbitrary particle shape

described by the shape parameter ρ [cf. (31)].

3) Volume2 indicates the decomposition using a weak-

oriented volume of dipoles [cf. (29)].

4) Volume3 indicates the decomposition using a stronger

oriented volume of dipoles [cf. (30)].

The obtained results in terms of powers of the individual

components are compared as shown in Fig. 3. The green line

indicates the measured crop height. The comparison is done

for the three fields as discussed earlier. The following analysis

is based on representative areas of 21 × 21 pixels located

within the fields where ground measurements have also been

performed.

1) The rape plants grew quite early (until day 150) to a

height of about 150 cm. The planting was very dense

and appears therefore as a strong volume component

right from the beginning. Both the dihedral and surface

components are quite low. The surface component was

the stronger one while the plants were still low (below

30 cm), whereas the dihedral component started to in-

crease (slightly) as the plants grew.

2) All five decompositions yield similar results not only for

rape but also for the two other fields with few exceptions,

indicating the individual differences of the approaches.

For instance, the X-Bragg approach (green bars) has its

strength in a more realistic interpretation of the surface.

For the rape field, the surface component of “X-Bragg”

is lower than that of the other approaches, whereas the

corresponding volume component is higher. In addition,

in the case of the corn field, the X-Bragg appears to

appropriately model the surface as long as no vegetation
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is present (approximately until day 172), interpreting the

HV component as a surface and not as volume part.

Later, the corn grew rapidly, and the volume component

increased, particularly when combined with the X-Bragg

surface model. The dihedral component is practically

nonexistent for the bare field and only appears during the

growing period.

3) The relative powers of the individual components of the

wheat field are, however, more difficult to interpret. The

dihedral component is strongly present in the first half

of the vegetation-growth period when the vegetation is

at medium height (30–50 cm). In total, the vegetation

reaches a final height of only 80 cm. In addition, the

wheat has a comparably low biomass and becomes dry

at its mature state. As a consequence, in the second half

of the vegetation period, the wheat field appears rather

transparent at L-band. This may explain why the surface

component appears quite strong particularly during

the period of maximum vegetation height. However,

this is not true for the Volume1 decomposition which

has a much weaker surface component and, in turn, a

significantly higher volume component. The reason for

this is that the shape parameter, which characterizes the

Volume1 approach (see Section III-B), deviates for

the wheat field considerably from ρ = 1/3 which

would correspond to the value used in the other

described approaches. For ρ > 1/3, the particle shape

of the volume is getting increasingly elliptical until it

becomes a sphere. At ρ = 1, the particles are spherical,

and the coherence matrix of the volume component

simplifies to TV 11 = 2 · fv while all other [TV ] elements

become zero [cf. (31)]. As the T11 element is in a first

approximation (Pauli decomposition) attributing to the

surface component, this makes clear why the shape

parameter close to one reduces the surface power.

V. SOIL-MOISTURE ESTIMATION

After removing the volume component according to (25),

(29), (30), or (31), the remaining surface and dihedral com-

ponents depend on the dielectric properties of the underlying

soil. How, and under which circumstances, this can be used

to estimate the moisture content of the underlying ground is

discussed in the following.

A. Surface Component

In the case of a Bragg surface component, the real part of the

dielectric constant of the soil εs can be directly inverted from

the roughness-independent real ratio β. The obtained dielectric

constant estimates are converted into volumetric soil moisture

via a polynomial relation [30]. Fig. 4 shows the dependence

of β on a range of dielectric constant εs at different incidence

angles θ, corresponding to the near-to-far range variation of the

E-SAR acquisition geometry. The sensitivity of β to a change of

εs is increasing with rising incidence angle θ. For all incidence

angles, the sensitivity of β drops with increasing dielectric

constant εs. Vice versa, a slight change of β causes a big

variation of εs, particularly in the near-range region (θ = 25◦).

Fig. 4. Sensitivity of β on incidence angle θ and dielectric constant of soil εs.

Fig. 5. Scatter plot of α−fd lookup table, θ = 25◦, εs = εt = [2, 41]
(example line of triangles ∆ = difference of εs by ±1, example line of squares
� = difference of εt by ±1, black arrows show main direction of increase of
εs and εt).

B. Dihedral Component

The case of the dihedral component is more complex as the

signature depends on both parameters: the dielectric properties

of the ground εs and the vegetation εt (trunk) as indicated by

the Fresnel coefficients in (8). The assumption of a randomly

oriented volume allows us to prevent anisotropic propagation

effects so that the polarimetric phase difference ϕ can be

neglected. Therefore, (11) leads to an inversion problem with

two equations, one for α and one for fd, for the estimation of

two unknown parameters εs and εt.

Figs. 5–7 show the sensitivity of the real ratio α and the real

backscattering amplitude fd to the dielectric constant of the

ground εs and the trunk εt for three different incidence angles:

25◦, 45◦, and 54◦. The εs and εt values increase from 2 to 41

in steps of one in the direction indicated by the arrows in the

bottom right corner of the plots.

However, at 25◦ incidence, the sensitivity of fd to changes of

εs increases at higher εt levels, i.e., for wetter vegetation layers.
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Fig. 6. Scatter plot of α−fd lookup table, θ = 45◦, εs = εt = [2, 41]
(example line of triangles ∆ = difference of εs by ±1, example line of squares
� = difference of εt by ±1, black arrows show main direction of increase of
εs and εt).

Fig. 7. Scatter plot of α−fd lookup table, θ = 54◦, εs = εt = [2, 41]
(example line of triangles ∆ = difference of εs by ±1, example line of squares
� = difference of εt by ±1, black arrows show main direction of increase of
εs and εt).

The ratio α shows the opposite behavior as it is significantly

more sensitive to the variation of the dielectric constant of the

trunk εt. At θ = 45◦, the separability between the dielectric

properties of the trunk and the ground, in terms of the ratio α
as well as in terms of the backscattering amplitude fd, get lost

as shown in Fig. 6. Moving farther to shallow incidence angles

(see θ = 54◦ in Fig. 7), the estimation of εs and εt from fd and

α again becomes unambiguous: The sensitivity depends on both

the dielectric constant of the soil and the trunk εt. However,

the ratio α is more sensitive to changes of εs than to changes

of εt, while the amplitude fd is characterized by the opposite

sensitivity.

C. Soil-Moisture Inversion

Both scattering components, surface and dihedral, have been

used to invert for soil-moisture values. Following conditions

Fig. 8. Percentage of surface (or dihedral)-dominated points within the central
region of the scene as obtained by using (dashed) Volume1 approach and (solid)
other approaches at L-band.

Fig. 9. Inversion rate of the surface component as obtained by the different
decomposition models over time at L-band.

must be met for the soil-moisture inversion.

1) The inverted scattering mechanism must be dominant (see

Section III-A for details).

2) The inversion parameters must be physically correct (con-

ditions: fs, fd, fv > 0, α > 0, −1 ≤ β ≤ 0).

The inversion rate is then given by the relative amount

of pixels in the image that can be inverted. In Fig. 8, the

percentage of the surface (dihedral)-dominated points within

the central area (marked with the red box as shown in Fig. 1)

of the AgriSAR campaign is plotted as a function of time. The

dominant scattering mechanism is different between Volume1

and all other methods. For Volume1, the ρ parameter is driving

the decision, whereas for the other methods, the decision rule

is the same. However, the surface shows the highest dominance

throughout time for all other methods, with only one exception

that is at the beginning of the vegetation-growing period. In

comparison, Volume1 has a lower surface but higher dihedral-

dominated points. The inversion rates for each component as

a function of time are shown in Figs. 9–11. The obtained

soil moisture maps for three times, at the beginning (April

19th), the middle (June 14th), and toward the end (July 12th)

of the vegetation period, obtained by inverting the individual

scattering components, are shown in Figs. 10, 12, and 13. Soil
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Fig. 10. Inversion rate of the dihedral component as obtained by the different
decomposition models over time at L-band.

Fig. 11. Inversion rate of the modified dihedral component as obtained by the
different decomposition models over time at L-band.

moisture is scaled from 0 to 50 vol%, and noninvertible points

appear white.

The moisture maps obtained from the inversion of the Bragg

component (see Fig. 12) indicate a higher soil-moisture level

in April than in June and July. Estimates are obtained for a

relatively high percentage of the whole area. The inversion

rate is particularly high at the beginning and at the end of

the growing season where surface scattering is dominant (bare

fields). However, not all and not always the same fields could

be inverted within the vegetation period. The forested area on

the lower left of the image cannot be inverted at any time and

appears white in all images. Looking at Fig. 9, one can see

that the inversion rate for the Volume1 approach is significantly

lower than for the other approaches. This is due to the fact that

there are more dihedral-dominant points, as shown in Fig. 8.

The soil moisture maps obtained from the dihedral compo-

nent are shown in Fig. 13. Clearly, less points than in the case of

the surface component could be inverted. However, the inverted

fields are complementary to those from the surface component

(keep in mind that the inversion was performed on the dominant

dihedral areas only), providing a more complete image of the

total soil-moisture situation at each time.

The moisture maps obtained by inverting the dihedral com-

ponent based on the modified Fresnel coefficients are shown in

Fig. 14. The decomposition using the modified Fresnel dihedral

component requires knowledge of the roughness in terms of kσ

Fig. 12. Soil moisture map in (top) April 19th, (middle) June 14th, and
(bottom) July 12th as obtained by inverting the surface component of (4) at
L-band.

Fig. 13. Soil moisture map in (top) April 19th, (middle) June 14th, and
(bottom) July 12th as obtained by inverting the dihedral component (10) at
L-band.

to retrieve the loss factor LS . An estimate of the kσ level has

been obtained from the polarimetric anisotropy A by using the

linear approximation kσ = 1 − A [31] for the April data set
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Fig. 14. Soil moisture map in (top) April 19th, (middle) June 14th, and
(bottom) July 12th as obtained by inverting the modified dihedral component
(15) at L-band.

where most of the fields were bare and surface roughness could

be best estimated.

The introduction of the loss factor LS according to (15) leads

to higher fd values and to average soil-moisture values which

are clearly higher than the respective values obtained from

the unmodified dihedral component (see Figs. 13 and 14). Al-

though, the results are comparable to the results obtained from

the inversion of the surface component. This is a positive sign

since both components should give comparable soil-moisture

values. The inversion rate for the modified dihedral component

shows the same characteristics as the one for the smooth

dihedral component even though the values are slightly higher.

D. Comparison of Inverted Soil Moistures

The quantitative comparison of the estimated soil moisture

is performed using three crop fields introduced in Section IV-A

for every acquisition time. For each field, three samples in two

different soil depths (0–5 and 5–10 cm) have been measured.

In order to obtain a significant estimate, a 21 × 21 window

size was taken around each sample point. In Figs. 15–17, the

mean-estimated soil moisture is plotted against the ground-

measured soil moisture. The variation of the ground-measured

soil moisture with depth and within a single field is less than

5 vol%. Therefore, the mean value of both depths averaged

over the three sample points has been used for validation. The

ground-measured values are represented by the dashed black

line while the gray area indicates the ±30% interval. Even

though the inversion of the surface and dihedral components

was performed separately, both are plotted on the same plot.

The dashed green line indicates the vegetation height at each

time obtained from the ground measurements.

The variation of the estimated soil-moisture values using

the five different approaches is significant. For a given time,

the individual performances vary strongly from disillusioning

(rmse = 13 vol% obtained in the case of day 144 over the rape

field) to exceptional (rmse = 3 vol% in the case of day 214

over the same rape field). Note that, on both dates, the field

was vegetated (see Fig. 15).

Looking on the temporal performance now, no single ap-

proach performs well over the whole vegetation cycle. There

are encouraging examples as for instance on the corn field

(Fig. 17) where the surface soil moisture derived from the

X-Bragg approach lies within the gray ground-measured region

as long as the field was rough and the vegetation height did

not exceed 30 cm (DoY 109–165: r2 = 0.4 and rmse = 8).

However, all other approaches result in an rmse of 10–14.

No single approach performs well over the whole vegetation

cycle. The performance obtained by inverting the dihedral and

the surface components depends on the crop type as well

as on the condition (developing stage and phenology) of the

vegetation layer. Both components underestimate the moisture

values in the case of the wheat and the corn fields, while in

the case of the rape field, the estimates are both over and

underestimated.

Looking on the best estimate from the surface component,

one obtains for the rape field r2 = 0.3 and rmse = 7. The wheat

and the corn fields show a better correlation (wheat field r2 =
0.6 and rmse = 6, corn field r2 = 0.6 and rmse = 7). Inferior is

the temporal performance of the best estimate from the dihedral

component with r2 = 0.2 and rmse = 7 for the rape field,

r2 < 0.1 and rmse = 14 for the wheat field, but mentionable

r2 = 0.5 and rmse = 8 for the corn field. Combining the best

estimates obtained from both surface and dihedral components,

the performance improves with r2 = 0.7 and rmse = 4 for the

rape field and r2 = 0.7 and rmse = 6 for the corn field. Only

in the case of the wheat field the combined performance with

r2 = 0.4 and rmse = 7 is worse than from only the surface

component because, at some points, only the dihedral method

provides results which, however, have bad statistics. Of course,

the combination of the best estimates obtained from dihedral

and surface components is only possible when it is known

which method performs best. Nevertheless, the inverted soil

moisture from the dihedral component is sometimes better

than the one obtained from the surface component, improving

significantly the overall inversion performance.

An interesting observation can be made when looking at the

beginning of the growing period (DoY 172 for the corn field)

where a strong dihedral component appears and increases with

increasing vegetation height. At this time, the soil-moisture

estimates obtained from the dihedral component are accurate

within the ±30% margin. This is the case for all three crop

types investigated. Later, in the phenological cycle, when the

vegetation gets higher, the sensitivity of the dihedral component

diminishes.

When the vegetation is at its maximum, the moisture

values obtained from the surface component show the best

performance. This can be understood by considering that the
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Fig. 15. Estimated mean soil moisture over the rape field 101 in time inverted from the (blue) surface and (red) dihedral scattering components as obtained from
the different decomposition approaches. The ground-estimated soil moisture is indicated by the black dashed line, and the ±30% variation region is indicated in
gray region. The vegetation height is given by the green dashed line.

Fig. 16. Estimated mean soil moisture over the wheat field 230 in time inverted from the (blue) surface and (red) dihedral scattering components as obtained
from the different decomposition approaches. The ground-estimated soil moisture is indicated by the black dashed line, and the ±30% variation region is indicated
in gray region. The vegetation height is given by the green dashed line.

Fig. 17. Estimated mean soil moisture over the corn field 222 in time inverted from the (blue) surface and (red) dihedral scattering components as obtained from
the different decomposition approaches. The ground-estimated soil moisture is indicated by the black dashed line, and the ±30% variation region is indicated in
gray region. The vegetation height is given by the green dashed line.

volume is modeled by dipoles. This assumption applies better to

high vegetation with a dipolelike shape and random orientation

of leaves and ears than to moderate or low vegetation which

has rather spherical particle shape that, according to (31),

corresponds to a ρ value close to one. It can be shown that this

leads to an underestimation of the soil moisture when assuming
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dipolar particle shape. Apart from the particle shape, the orien-

tation of the volume also plays a role, which is modeled with

randomly oriented dipoles in (25) and (31). Thus, a further

source of error is the fact that, at some vegetation state, the

volume is better described by vertically oriented dipoles.

For the corn crop, however, the maximum vegetation height

was still not reached at the end of the AgriSAR campaign,

leading to best inversion results with the dihedral component.

VI. DISCUSSION AND CONCLUSION

An extensive investigation on the potential of using

polarimetric-decomposition techniques to remove the effect of

the vegetation layer and to obtain estimates of soil moisture of

the underlying ground was performed.

Simple canonical scattering models have been used to de-

compose the polarimetric signature into volume, dihedral, and

surface components. While the application of decomposition

techniques has widely been discussed in terms of forest-

scattering scenarios, this is one of the first investigations on

the applicability of decomposition techniques on agricultural

vegetation scattering. In this paper, five different decomposition

approaches using different models for the individual scattering

contributions have been investigated. The performance of the

decomposition approaches has been validated at L-band using

fully polarimetric airborne SAR data acquired in the frame of

the AgriSAR campaign by the E-SAR system of DLR over a

time span of four months in summer 2006.

Surprisingly, the results obtained from the five decomposi-

tions are, in general, not significantly deviating from each other,

even when compared to very different fields as corn, rape, or

wheat. The obtained results when compared to the vegetation

ground measurement reflect an overall good performance over

the whole time span. However, looking on the surface models,

it seems that the X-Bragg model has a clear performance

advantage as compared to the Bragg model, particularly over

the corn field, as it partly interprets the strong cross-polarization

component of these fields as soil roughness not as volume.

Having separated volume from dihedral and surface contri-

butions, soil moisture has been inverted from the dihedral and

surface components as both depend on the dielectric properties

of the ground. The performance of the soil-moisture estimation

has been compared against ground measurements over a whole

vegetation-growing period. This is a second unique feature of

this paper.

The comparison of the estimated soil moisture over the

whole vegetation period demonstrated a large variance of the

estimation performance of the dihedral as well as of the surface-

derived soil-moisture component. During the vegetation growth

for all three crop types, the dihedral component has the highest

appearance and the best performance when compared with the

ground measurements.

However, this changes when the crop vegetation gets into

the mature state. Here, the presence of the surface component

increases, leading to a good soil moisture performance. In sum-

mary, it can be stated that, during the vegetation-growing cycle,

the dominance of the scattering mechanisms are changing, and

depending on it, either the dihedral or the surface component is

able to provide reasonable soil-moisture estimates.

The main limitation appears to be the modeling of the

vegetation layer. Simplified scattering models for describing

the complex vegetation structure of agricultural plants are only

a first-order approximation with limited sensitivity. Even by

increasing the complexity of the vegetation models by going

from a random to an oriented volume with variable particle

shape, the overall performance does not change drastically,

indicating an underlying deficiency. In this sense, no preferable

model could be assigned for the decomposition and inversion,

but all selected models are usable depending on the state of the

surface and the crop-development stage.

Nevertheless, the achieved performance allows us to classify

soil moisture into three to five different moisture classes for

each crop type. Based on a mean rmse value of 10 vol% for

all investigated methods, a soil-moisture class with a width

of 20 vol% can be defined. By this, one obtains three soil-

moisture classes in the range of 60 vol% below. By selecting the

appropriate decomposition model, the inversion accuracy can

be further improved, allowing the determination of currently up

to five soil-moisture classes for each crop type. The results mo-

tivate further investigations as they point out that the problem of

soil-moisture estimation from surfaces covered with agriculture

vegetation is far away from being fully understood and assessed

in terms of SAR.
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