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Abstract

Background: Next-generation sequencing techniques, such as genotyping-by-sequencing (GBS), provide

alternatives to single nucleotide polymorphism (SNP) arrays. The aim of this work was to evaluate the potential of

GBS compared to SNP array genotyping for genomic selection in livestock populations.

Methods: The value of GBS was quantified by simulation analyses in which three parameters were varied: (i)

genome-wide sequence read depth (x) per individual from 0.01x to 20x or using SNP array genotyping; (ii) number

of genotyped markers from 3000 to 300 000; and (iii) size of training and prediction sets from 500 to 50 000

individuals. The latter was achieved by distributing the total available x of 1000x, 5000x, or 10 000x per genotyped

locus among the varying number of individuals. With SNP arrays, genotypes were called from sequence data

directly. With GBS, genotypes were called from sequence reads that varied between loci and individuals according

to a Poisson distribution with mean equal to x. Simulated data were analyzed with ridge regression and the

accuracy and bias of genomic predictions and response to selection were quantified under the different scenarios.

Results: Accuracies of genomic predictions using GBS data or SNP array data were comparable when large

numbers of markers were used and x per individual was ~1x or higher. The bias of genomic predictions was very

high at a very low x. When the total available x was distributed among the training individuals, the accuracy of

prediction was maximized when a large number of individuals was used that had GBS data with low x for a large

number of markers. Similarly, response to selection was maximized under the same conditions due to increasing

both accuracy and selection intensity.

Conclusions: GBS offers great potential for developing genomic selection in livestock populations because it makes

it possible to cover large fractions of the genome and to vary the sequence read depth per individual. Thus, the

accuracy of predictions is improved by increasing the size of training populations and the intensity of selection is

increased by genotyping a larger number of selection candidates.

Background
Current applications of genomic selection (GS) in live-

stock are typically based on single nucleotide poly-

morphism (SNP) genotypes called from SNP array data.

In practice, combinations of high and low-density SNP

arrays along with imputation are used to reduce the

costs of genotyping [1-3]. These low-cost genotyping

strategies enable increased intensity of selection through

the genotyping of large numbers of selection candidates

or increased accuracy of estimated breeding values

(EBV) by expanding the training population. If datasets

of both phenotyped and genotyped individuals (the

training population) become very large, the predictive

power of GS may be increasingly driven by linkage dis-

equilibrium rather than by linkage information, or, more

usefully, by direct genotyping of causative mutations and

other biologically relevant genomic information [4,5].

Thus, this may provide an opportunity to increase the

power of GS in breeding programs; however, to fully

capitalize on this potential it is necessary to genotype

larger numbers of individuals for a greater fraction of

the genome than what is typically covered by current

SNP arrays.

Use of next-generation sequencing (NGS) techniques

for genotyping could be a viable alternative to current

low-cost SNP array strategies, with the potential to
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increase the fraction of the genome captured in a cost-

efficient manner [6-8]. Genotyping-by-sequencing (GBS)

uses NGS technology to genotype large numbers of indi-

viduals and has the potential to drive the cost per sam-

ple below $10 through intensive multiplexing [9]. It has

been applied with success in plants [7,10] and cattle

[11]. GBS and similar techniques such as RAD-Seq [6]

are reduced representation approaches that use restric-

tion enzymes to target the sequencing effort to a fraction

of the genome. This fraction of the genome can be read-

ily adjusted according to the needs of the project and

can potentially be much greater than the fraction cap-

tured by even the densest SNP arrays currently available

in livestock. Furthermore, unlike SNP arrays that are

typically developed from a limited sample of individuals,

GBS can capture genetic variation that is specific to a

population or family of interest, e.g., [11-14]. However,

compared to genotypes obtained from SNP arrays, the

quality of genotypes obtained with GBS tends to be

lower since it depends on the genome-wide sequence

read depth (x). By increasing x, the proportion of cor-

rectly called genotypes increases but so do the costs.

Since x varies along each sequenced genome, the num-

ber and quality of genotype calls also vary along the gen-

ome of each individual [15-17]. These drawbacks

complicate the use of GBS data, but can be partially

overcome by imputation and error correction methods

[18-20].

GBS has been shown to be useful for GS of advanced

breeding lines of wheat [9] and of double haploid or in-

bred lines of maize [20]. In these applications, read

depth as low as ~1x was sufficient to obtain accurate

EBV without using imputation and error correction

methods. This was in part facilitated by the low levels of

heterozygosity in the individuals analyzed in these stud-

ies. However, the usefulness of GBS for GS in outbred

livestock populations with higher levels of heterozygosity

has not yet been evaluated. Algorithms and software for

imputation and error correction of NGS data in livestock

have yet to be developed to capitalize on their unique

population structure and the available information (e.g.,

pedigree information, large family sizes and close rela-

tives). Therefore, for GBS to be a viable alternative to

current genotyping approaches with SNP arrays in live-

stock, it needs to be competitive in the absence of

imputation and error correction methods.

The objective of this research was to quantify the po-

tential of GBS for GS in outbred populations of livestock

in the absence of imputation and error correction

methods. Specifically, using simulations, the accuracy

and bias of predictions and response to selection were

compared for various genome-wide sequence read

depths (x) and fractions of genome covered. The results

show that the accuracies of EBV obtained with non-

imputed GBS data and of SNP array data were compar-

able when x was as low as ~1x and large fractions of

genome were covered. In addition, decreasing x per indi-

vidual enabled an increase in the response to selection

by increasing both accuracy of prediction and intensity

of selection through exploitation of the trade-off be-

tween the quality of genotyping and the number of indi-

viduals that could be genotyped.

Methods
To test the usefulness of GBS data for GS, the effects of

genome-wide sequence read depth, fraction of the gen-

ome covered, and the size of the training and prediction

sets were quantified using simulation with ten replicates.

The results were represented with a mean over repli-

cates. In addition, individual replicates were presented to

indicate variability of results where feasible. In summary,

the simulations consisted of four steps to generate: (i)

data on whole-genome sequence; (ii) the pedigree struc-

ture for a livestock population; (iii) causative loci affect-

ing phenotypes; and (iv) marker genotypes. These

simulated data were in turn used in the analyses de-

scribed below.

Sequence

Sequence data were generated using the Markovian Co-

alescent Simulator (MaCS) [21] and AlphaDrop [22] for

1000 base haplotypes for each of 30 chromosomes. Each

chromosome was 100 cM long and included 108 base

pairs. Chromosomes were simulated using a per site mu-

tation rate of 2.5 × 10−8, a per site recombination rate of

1.0 × 10−8, and an effective population size (Ne) that var-

ied over time. Based on estimates for the Holstein cattle

population [23], effective population size was set to Ne =

100 in the final generation of simulation, to Ne = 1256

for 1000 years ago, to Ne = 4350 for 10 000 years ago,

and to Ne = 43 500 for 100 000 years ago, with linear

changes in between. The resulting sequences had ap-

proximately 1.7 million segregating sites in total.

Pedigree

After the sequence simulation, several pedigrees of two

generations were simulated. Chromosomes of individuals

in the first generation were sampled from the 1000 sim-

ulated base haplotypes and those in the second gener-

ation were sampled from the parents’ chromosomes by

recombination (crossovers occurred with 1% probability

per cM and were uniformly distributed along the chro-

mosomes). Different pedigrees were simulated by mating

each of the 25 sires with 20 dams (500 dams in total),

with 500, 1000, 5000, 10 000, 20 000, or 50 000 progeny

per generation by varying the number of progeny per

mating.
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Quantitative trait loci and phenotypes

Quantitative trait loci (QTL) were selected as a sample

of 9000 segregating sites in the base population, with the

restriction that 300 were sampled from each chromo-

some. These QTL had their allele substitution effect

sampled from a normal distribution with a mean of 0

and standard deviation of 1.0 divided by the square root

of the number of QTL. QTL and their effects were in

turn used to compute true (simulated) breeding values

to simulate complex trait phenotypes with a heritability

of 0.25.

Marker genotypes

The fraction of genome covered by the different geno-

typing platforms was represented by a variable number

of markers, which was selected as a random sample of

3000 (3 K), 9990 (10 K), 60 000 (60 K), and 300 000

(300 K) segregating sites in the base population, with the

restriction that equal numbers were sampled from each

chromosome. These markers were assumed to be avail-

able for all individuals and their genotypes were called

via processes similar to those used for either SNP arrays

or GBS. With SNP arrays, genotypes were called from

sequence data directly without error. With GBS, geno-

types were called from sequence data based on the

principle and simulation procedure described in the

following.

In the absence of sequencing errors, a single sequence

read of a locus provides discriminative calls for homozy-

gous but not heterozygous genotypes, which can be

called only when multiple sequence reads are available.

Calling a heterozygous genotype in diploids from n se-

quence reads is the same as observing two different out-

comes among n draws from a Bernoulli distribution.

Such an event has a probability of 1-2/2n. The probabil-

ity of calling a heterozygous genotype from n sequence

reads of a locus is therefore equal to 0.00 for n = 1, 0.50

for n = 2, 0.75 for n = 3, 0.875 for n = 4, etc. However,

the number of sequence reads per locus varies along the

genome, thus, for an (average) genome-wide sequence

read depth (x), the realized number of sequence reads

per locus i of an individual j (ni,j) was assumed to be dis-

tributed according to a Poisson distribution with mean

equal to x, i.e., ni;jePoisson xð Þ.

GBS genotypes were called from sequencing data with

the following range of x across the sequenced fraction of

the genome: 0.01x, 0.02x, 0.05x, 0.10x, 0.20x, 0.25x,

0.50x, 1.00x, 1.50x, 2.00x, 3.00x, 4.00x, 5.00x, 10.00x,

and 20.00x. These values represent the average number

of sequence reads at genotyped loci per individual and is

often referred also as “coverage” in the literature, e.g.,

[18]. If one or more reads occurred at a homozygous

locus, the correct homozygous genotype was called, and

if one or more reads occurred at a heterozygous locus,

the heterozygous genotype was at random called with a

probability of 1-2/2n and one of the homozygous geno-

types with a probability of 1/2n. For example, with two

reads at a heterozygous locus, the probability to call each

of the homozygous genotypes was 0.25 and the probabil-

ity to call the heterozygous genotype was 0.50. Uncer-

tainty in the calling of genotypes was neglected, i.e., the

collected data were discrete genotype calls and not geno-

type probabilities or derived allele dosages. It was as-

sumed that all selected SNP sites could be sequenced in

all individuals and that sequencing errors were absent. If

there was no read for an individual at a particular locus,

the genotype was set equal to twice the allele frequency

of the allele coded as 1. Allele frequencies were assumed

known.

Training and prediction sets

Training and prediction sets were extracted to test the

accuracy of EBV using GBS or SNP array genotype data.

The training set comprised all individuals in the first

generation (500, 1000, 5000, 10 000, 20 000, or 50 000

individuals) that were genotyped and phenotyped. The

prediction set comprised a random subset of 500 geno-

typed individuals from the second generation, with the

restriction that all families were equally represented, i.e.,

an equal number of progeny per dam was sampled.

Statistical analysis

Statistical analysis was based on the ridge-regression

model [24-26], as implemented in the software

AlphaBayes2:

yieN μi; σ
2
e

� �
;

μi ¼ αþ
Xp

j¼1

βjxi;j;

βjeN 0; σ2β

� �
;

where yi is the phenotype value of the i–th individual, α

is the intercept, βj and xi,j are the allele substitution ef-

fect and genotype call of the j-th marker, and σ2e and σ2β
are, respectively, variances of residuals and of allele substi-

tution effects. Values of the variance components used in

the simulation were assumed known to minimize

sampling variation. Estimates of allele substitution effects

β̂j

� �
were used to compute individual EBV as

âi ¼
Xp

j¼1
β̂jX ij

� �
. Accuracy of EBV was calculated as the

correlation between the true breeding values (TBV) and

the EBV. Bias of EBV was calculated as the regression of

TBV on the EBV, where the desired value is 1.0 and values
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greater than 1.0 (underestimation of EBV) are preferred to

values less than 1.0 (overestimation of EBV).

Design of the analysis

The simulated data were analyzed in several ways to

quantify the effect of: (A1) using the same x in both

training and prediction sets; (A2) using different x in

training and prediction sets; (A3) reducing x to expand

the training set; and (A4) reducing x to expand the pre-

diction set. For each of these analyses, all marker dens-

ities were used to quantify the effect of the fraction of

genome covered.

(A1) The effect of using the same x in both training

and prediction sets was quantified by training the pre-

diction model on the 1000 individuals with phenotype

and genotype information from the first generation and

predicting EBV of 500 individuals with genotype infor-

mation that were randomly sampled from the second

generation. In this analysis, GBS data with the whole

range of x and SNP array data were tested (see Subsec-

tion “Marker genotypes”).

(A2) The effect of using different x in training and

prediction sets was quantified by using the same setting

as in (A1), except that all combinations of x in training

and prediction sets were analyzed (i.e., 0.01x in the train-

ing set and 0.01x, 0.02x, etc. in the prediction set, etc.).

(A3) The effect of reducing x per individual in order

to expand the training set was quantified by training the

prediction model on different numbers of individuals

with phenotype and genotype information in the first

generation (500, 1000, 5000, 10 000, 20 000, or 50 000

individuals) to predict EBV of 500 individuals with geno-

type information that were randomly sampled from the

second generation. Three different x per individual were

used, such that the total available x of 1000x, 5000x, or

10 000x was spread across all individuals in the training

set and kept constant across all sizes of training sets.

More precisely, with the total of 1000x, 5000x, or 10

000x (Table 1), the training set comprised: (i) 500 indi-

viduals at 2x, 10x, or 20x; (ii) 1000 individuals at 1x, 5x,

or 10x; (iii) 5000 individuals at 0.2x, 1x, or 2x; (iv) 10

000 individuals at 0.1x, 0.5x, 1x; (v) 20 000 individuals at

0.05x, 0.25x, or 0.5x; or (vi) 50 000 individuals at 0.02x,

0.1x, or 0.2x. The prediction set was genotyped either

with SNP arrays, to remove confounding with the qual-

ity of genotyping, or with GBS with the same x as the

training set to maintain consistency.

(A4) The effect of reducing x per individual to expand

the prediction set was quantified by calculating the re-

sponse to selection (in units of standard genetic devia-

tions) using the breeders’ equation, e.g., [27]. It was

assumed that 25 males were selected to become sires of

the next generation from a prediction set of 500, 1000,

5000, 10 000, 20 000, or 50 000 individuals. These indi-

viduals had GBS data with the same x as the training set

in (A3), such that the total available x in the prediction

set was equal to 1000x, 5000x, or 10 000x (Table 1), i.e.,

(i) 500 individuals at 2x, 10x, or 20x; (ii) 1000 individ-

uals at 1x, 5x, or 10x; (iii) 5000 individuals at 0.2x, 1x,

or 2x; (iv) 10 000 individuals at 0.1x, 0.5x, 1x; (v) 20 000

individuals at 0.05x, 0.25x, or 0.5x; or (vi) 50 000 individ-

uals at 0.02x, 0.1x, or 0.2x. Response to selection was

calculated in two ways based on the accuracies obtained

from the various scenarios in (A1) and (A3). Accuracies

from the scenarios in (A1) were used when the training

set (1000 individuals) had SNP array data and the pre-

diction set had GBS data with the same x as training set

in (A3). This set of scenarios was chosen to remove con-

founding with the quality of genotyping in the training

set and to maintain consistency. Accuracies from the

scenarios in (A3) were used when both the training and

prediction sets had the same x. This set of scenarios was

chosen to show the potential of expanding both the

training and prediction sets by reducing x per individual.

Results
(A1) The accuracy of EBV calculated using GBS data

was strongly influenced by both x and marker density

when x was the same in the training and prediction sets,

as well as by the interaction between these two factors

(Figure 1). In general, the accuracy was low at low x and

increased with increasing x. At very low x (e.g., 0.01) the

accuracy was close to 0 and ranged from −0.01 for 3 K

markers to 0.03 for 300 K markers. However, the accur-

acy increased quickly with small increases in x, especially

for the higher marker densities. With 300 K markers,

the asymptote of accuracy (0.54) was obtained with 2.0x

and most of this was obtained with 1.0x (0.53) or 0.5x

(0.51). With 60 K markers, the asymptote of accuracy

(0.53) was obtained with 3.0x and most of this was ob-

tained with 2.0x (0.52) or 1.0x (0.50). With less than

60 K markers, the asymptote was reached at higher x, i.

e. 5.0x for 10 K markers and 10.0x for 3 K markers. At a

sufficiently large x (10x and above), accuracies were

comparable between GBS and SNP array data, i.e. 0.48

with 3 K, 0.52 with 10 K, 0.53 with 60 K, and 0.54 with

300 K markers.

Table 1 Genome-wide sequence read depth (x) per

individual in scenarios with a different total available x

and varying number of individuals

Number of individuals

500 1000 5000 10 000 20 000 50 000

Total x Per individual x

1000 2 1 0.2 0.1 0.05 0.02

5000 10 5 1.0 0.5 0.25 0.10

10 000 20 10 2.0 1.0 0.50 0.20
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Bias of EBV using GBS data was also strongly influ-

enced by x and marker density when x was the same in

the training and prediction sets (Figure 2). In general,

EBV were underestimated (bias greater than 1.0) with

10 K, 60 K, or 300 K markers, and overestimated (bias

less than 1.0) with 3 K markers. Bias was much greater

(as high as 37.1) and highly variable at low x and higher

marker densities, and decreased with increasing x. At a

sufficiently large x (10x and above), biases were compar-

able between GBS and SNP array data, i.e. 0.89 with 3 K,

1.01 with 10 K, 1.06 with 60 K, and 1.07 with 300 K

markers.

(A2) Varying x between the training and prediction

sets revealed several interactions between x and marker

density that impacted the accuracy of EBV (Figure 3).

Increasing x in either the training or the prediction set

increased accuracy. When x was low in the training set,

increasing x in the prediction set improved accuracy

only a little for low marker densities (e.g., with 3 K

markers and 0.1x in the training set and 0.1x or 1.0x in

the prediction set, the respective accuracies were equal

to 0.06 or 0.11) but accuracy improved progressively

more with increasing marker densities (e.g., with 300 K

markers and either 0.1x in the training set and 0.1x or

1.0x in the prediction set, accuracies were equal to 0.35

or 0.48). When x was intermediate or high (~1.0x and

above) in the training set, increasing x in the prediction

set did not improve accuracy for higher marker densities

Figure 1 Accuracy of genomic prediction with GBS data with the same genome-wide sequence read depth or SNP array data in the

training and prediction sets and different marker densities.

Figure 2 Bias of genomic prediction with GBS data with the same genome-wide sequence read depth or SNP array data in training

and prediction sets and different marker densities (values below 0.01 for 3 K markers and low x were omitted due to the log scale).
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(60 K or 300 K), since the asymptote was largely

reached, while there was still some improvement for

lower marker densities. Among the tested combinations

of x in the training and prediction sets, no particular ra-

tio provided substantial benefits, e.g., with 300 K

markers, the accuracy was equal to 0.52 with 0.5x in the

training set and 1.0x in the prediction set and also with

1.0x in the training set and 0.5x in the prediction set

(Figure 3d).

There were also many interactions between x and

marker density in the training and prediction sets for

the bias of EBV (Figure 4). Reducing x in the training or

in the prediction set increased bias. With 3 K markers,

the EBV were progressively more overestimated (bias

less than 1.0) with a lower x in the training set and

there was little variation due to x in the prediction set

(Figure 4a). As marker density increased, EBV were

progressively more underestimated (bias greater than

1.0) with a low x in the training set and there was much

variation due to x in the prediction set (Figure 4b, 4c

and 4d). When x in the training set was low, bias was

large and did not vary much for different x in the pre-

diction set. With 300 K markers, the effect of x on bias

was the largest, with bias as high as 57.9 (Figure 4d).

However, as x increased in the training set, there was a

clear interaction with the x in prediction: increasing x

in training reduced underestimation of EBV only if x

was also increased in the prediction set.

(A3) Keeping the total available x constant and varying

the number of individuals with GBS data in the training

set (and SNP array data for the same markers in the pre-

diction set), accuracies of EBV were generally maximized

by using large training sets that comprised individuals

with a low x, rather than by generating small training

sets that comprised individuals with a high x (Figure 5).

The only exception was with 3 K markers, for which ac-

curacy increased only marginally (with 5000x and 10

000x) or even decreased (with 1000x) when expanding

the training set (Figure 5a). With 300 K markers and 10

000x, accuracy was only 0.45 with 1000 individuals (10x

per individual), but was 0.73 with 10 000 individuals (1x

per individual), 0.78 with 20 000 individuals (0.5x per in-

dividual), and 0.78 with 50 000 individuals (0.2x per in-

dividual) (Figure 5d). With GBS data in both the

training and prediction sets, there was an optimal com-

bination of x and training set size that depended on the

Figure 3 Accuracy of genomic prediction with GBS data with different genome-wide sequence read depths or SNP array data in training

and prediction sets (full red circles show points with equal genome-wide sequence read depth) and different marker densities (a) 3 K

top-left, (b) 10 K, top-right, (c) 60 K bottom-left, and (d) 300 K bottom-right.
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number of markers (Figure 5). Accuracies of EBV were

generally maximized with high marker densities, large

training sets, and large total available x, but not beyond

a certain x per individual. With 300 K markers, asymp-

totes were reached with training sets that comprised 5000

individuals when using 1000x (0.2x per individual), 20 000

individuals when using 5000x (0.5x per individual), or 20

000 individuals when using 10 000x (0.25x per individual)

(Figure 5d). At lower marker densities, asymptotes were

reached with much smaller training sets.

When a fixed total available x was used, so that the

number of individuals in the training set could vary, the

bias of EBV increased with larger sets of individuals with

lower x per individual (Figure 6). However, this increase

was much smaller than when the training set was con-

strained to 1000 individuals (Figure 2). This increase was

greater with higher marker densities and when predic-

tion was based on GBS data (with the same x as the

training set) instead of SNP array data.

(A4) For a fixed x in the prediction set, the highest re-

sponse to selection was obtained by generating large

prediction sets that comprised individuals with high

marker density and low x because the high selection in-

tensity compensated for lower accuracy of EBV (Figure 7

and Figure S1 [see Additional file 1: Figure S1]). Small

prediction sets that comprised individuals with high

marker densities and high quality genotype information

led to much lower responses to selection (Figure 7c and

Figure 7d). At lower marker densities, the differences in

response to selection were smaller or even in favor of

higher quality information, since higher selection inten-

sity could not compensate for lower accuracy (Figure 7

and Figure S1 [see Additional file 1: Figure S1]). If 300 K

markers were used and 10 000x were spread across 500

individuals (20.0x per individual), response to selection

was equal to 1.11 when training was on SNP array data

with 1000 individuals, and equal to 0.73 when training

was on GBS data with the same number of individuals

and x as in the prediction set. Spreading the equivalent

of 10 000x across 50 000 individuals (0.2x per individual)

gave a response to selection of 1.87 when training was

done on SNP array data and a response to selection of

2.56 when training was done on a larger GBS dataset

(Figure 7d).

Figure 4 Bias of genomic prediction with GBS data with different genome-wide sequence read depths or SNP array data in training

and prediction sets (full red circles show points with equal genome-wide sequence read depth) and different marker densities (a) 3 K

top-left, (b) 10 K, top-right, (c) 60 K bottom-left, and (d) 300 K bottom-right (values below 0.01 for 3 K markers and low x were

omitted due to the log scale).
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Discussion
The results of this study show that GBS can be as accur-

ate as SNP array genotyping for GS in livestock popula-

tions and that a high x is not necessarily needed to

obtain high accuracies. With high marker densities, al-

most all of the prediction accuracy that can be obtained

with high-quality SNP arrays of the same density can be

recovered with low x (e.g., 0.5x to 2.0x). Furthermore,

NGS approaches provide the user with the opportunity

to tailor the quantity and quality of the genotype infor-

mation to their requirements and some flexibility re-

garding the number of individuals and genotype quality

in both the training and prediction sets. Expanding the

training set at the expense of reducing the sequencing

depth (and therefore quality of genotyping) for each in-

dividual led to higher overall accuracy of EBV. Expand-

ing the prediction set at the expense of reducing the

quality of genotyping for each individual led to lower

overall accuracy of EBV, but it enabled a higher selection

intensity, which in turn resulted in a higher response to

selection. Thus, from the perspective of maximizing gen-

etic gain in the next generation, the results suggest that

the optimal use of sequencing resources requires an

increase in the number of individuals in both the train-

ing and prediction sets, at the expense of quality of

genotyping. However, at very low x, the resulting EBV

were biased. This was particularly evident for very low x

with high marker densities, which conversely are scenar-

ios that, for a fixed amount of financial resources,

maximize accuracy and response to selection in the next

generation. Biased breeding values may not impact the

response to selection in the next generation, but they

can impact the long-term response to selection when

the value of the breeding value is proportional to the

number of genetic contributions that each individual is

allowed to make to the next generation.

The finding that low-coverage GBS data can lead to

accurate EBV in livestock populations, even in the ab-

sence of imputation, is perhaps surprising given that the

livestock breeding community has placed major em-

phasis on ensuring genotype data is accurate. A possible

explanation for this finding can be illustrated with the

example of 0.1x GBS data used to genotype a training

population. In this example, at each marker locus ap-

proximately 10% of the individuals will have one of their

alleles genotyped. The individual and the allele will be

Figure 5 Accuracy of genomic prediction with GBS data in the expanding training set and SNP array data (solid lines) or GBS data

(dashed lines) in the prediction set and different marker densities (a) 3 K top-left, (b) 10 K, top-right, (c) 60 K bottom-left, and (d)

300 K bottom-right.
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sampled at random and this sampling at each marker

position will be independent. Thus, the sample of indi-

viduals from the population that is used to estimate the

phenotypic effect of an allele will be different at each

locus. If there is a correlation between alleles at adjacent

loci, the sampling of different phenotypes may enable a

statistical algorithm to better separate the effects of

these loci. Thus, on the one hand, it may be possible to

reduce sequencing depth considerably for the construc-

tion of very large training populations before the net

benefit of assembling larger datasets with low-coverage

becomes negative. On the other hand, the quality of

genotyping may be much more important for the predic-

tion set. Although reducing the sequencing depth in the

prediction set can result in greater selection intensity, it

may also be necessary for the genotype of a selection

candidate to be much more accurate than that of a train-

ing individual. This was clearly observed when marker

density was high and with a low x in the training set, i.e.,

prediction accuracy increased greatly when x in the pre-

diction set increased. These results are in line with those

reported for human populations, which show that low-

coverage sequencing (low x) of a large number of

individuals provides more power for complex trait asso-

ciation studies than deep sequencing (high x) of a

smaller subset [15,18,19]. The same conclusion was also

reached for population genomics studies [28], which

showed that it was more advantageous to sequence more

individuals at low-coverage than fewer individuals at

high-coverage, with an optimum obtained at approxi-

mately 1x. Extrapolating all these results to whole-

genome sequencing for GS suggests that low-coverage

sequencing of a large number of individuals could be a

viable alternative to deep sequencing of a limited set of

“key” individuals of a population [4,29].

A drawback of the low-coverage approach is that het-

erozygous loci will often be called as homozygous, which

limits the use of such data for analyzing the dominance

effects. This is not a major limitation for inferring the

additive genetic effects, because randomness in calling

one or the other allele at a locus provides enough

population-wide information to obtain estimates of the

allele substitution effects. However, imputation is ex-

pected to improve the usefulness of low-coverage data

for the analysis of dominance variation by increasing the

amount of genotypic information. This information can

Figure 6 Bias of genomic prediction with GBS data in the expanding training set and SNP array data (solid lines) or GBS data (dashed lines)

in the prediction set and different marker densities (a) 3 K top-left, (b) 10 K, top-right, (c) 60 K bottom-left, and (d) 300 K bottom-right.
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then be used in the analysis either as discrete genotypes

in the case of perfect imputation or as genotype prob-

abilities in the case of imperfect imputation.

This study did not apply imputation algorithms to in-

crease the information content in GBS data, although if

it had there could be much less data missing and the ef-

fective coverage of each marker could be much higher

[18-20]. Increasing the effective coverage could substan-

tially reduce the bias of EBV predicted with low x (e.g.,

0.5x to 2x), which, when coupled with high marker dens-

ities (i.e., 300 K), would result in accurate EBV and high

response to selection in the next generation. In addition,

imputation may lead to high levels of accuracy with

levels of x that are much lower than 0.5x to 2x, perhaps

0.05x to 0.2x. From an imputation perspective, proper-

ties of GBS data differ from those of SNP arrays that

have been commonly used in livestock to date. For ex-

ample, the density of GBS can be very high, but the

information content at each marker position is variable

or even missing due to variable x along the genome. In

addition, some individuals can have mutations in restric-

tion enzyme cut sites, which results in missing genotype

calls due to this rather than due to the stochastic nature

of the sequencing process. In contrast, SNP array geno-

types are called with a high degree of certainty, almost

all of the markers that are missing have a certain struc-

ture (e.g., imputing from 3 K to 60 K will have the same

57 000 markers missing in all individuals), and the dens-

ity from which imputation is to be undertaken is much

lower (e.g., few hundreds or thousands of markers). For

these reasons, the imputation algorithms that have been

designed for application in livestock datasets [30-32] are

not suited to GBS data. Algorithms that have been de-

signed for applications in human genetics tend to be

probabilistic in nature and thus require minor modifica-

tions to be applied to GBS data. However, for classical

imputation in livestock based on low-density SNP array

information, the algorithms that were designed for hu-

man datasets are inferior to those specifically designed

for livestock datasets, e.g., [32]. Unlike imputation algo-

rithms for human datasets, those for livestock datasets

were designed to exploit pedigree information, large

family sizes, and abundant close relatives that are preva-

lent in livestock populations [30-32]. Thus, algorithms

Figure 7 Response to selection with GBS data in the expanding prediction set based on accuracies of genomic predictions when

training on SNP array data with 1000 individuals (solid lines) or when training on GBS data with the same number of individuals and

genome-wide sequence read depth as in the prediction set (dashed lines) and different marker densities (a) 3 K top-left, (b) 10 K top-

right, (c) 60 K bottom-left, and (d) 300 K bottom-right.
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for livestock datasets need to be modified to enable

imputation of low-coverage sequence data and its large-

scale use for GS.

Given that accurate EBV and high response to selec-

tion can be obtained with GBS, it represents an attract-

ive alternative to SNP array technology for animal

breeders if the cost of generating and using such data is

reasonable. Full costs for GBS are difficult to determine

and are continually changing with the rapid progress in

sequencing technologies and few publications provide a

clear breakdown of costs and, in some cases, do not re-

port the full economic impact. Similarly, the cost of SNP

array genotyping declines steadily. A recent study on the

use of GBS in wheat indicated that future costs per indi-

vidual would be as low as $10 [9]. However, current full

costs of GBS are around $30, which is only one third of

the cost of SNP array genotyping for the same number

of markers [11]. These values do not include the add-

itional costs of handling GBS data, which, in the absence

of computationally efficient and standardized pipelines

for livestock data, remains more challenging than that of

SNP array data. Two components underlie the costs of

low-coverage sequencing: sample preparation and actual

sequencing. A recent study on the power of low-

coverage sequencing of human genomes [19] indicated

that the costs of sample preparation currently range

from $15 to $100 per individual and that sequencing

costs reach $133 for 1.0x sequencing of one individual

with a genome size of approximately 3 Gb, which can be

assumed to scale linearly with x (i.e., 0.1x costs $13.3)

and the proportion of the genome sequenced. Therefore,

GBS-like approaches could be even cheaper since they

only sequence a small proportion of the genome. In this

study, the total available x was spread across different

numbers of individuals, which implicitly only includes

the actual sequencing costs and thus, assumes that

sample library preparation costs are negligible. These as-

sumptions are simplistic, but the purpose of this study

was to evaluate the potential of GBS with varying num-

ber of individuals, without putting much consideration

on costs. Development of imputation algorithms specific

to livestock NGS data will substantially reduce sequen-

cing costs per individual and thus the scenarios studied

in this work will become realistic.

There are a number of practical limitations to the GBS

approach in lieu of SNP array genotyping, and simula-

tion studies such as this cannot easily account for these.

First, GBS approaches typically sequence the flanking re-

gions of restriction enzyme cut sites, which is equivalent

to sequencing subsections of the genome taken at ran-

dom. While the proportion of the genome sequenced

can be tailored through the choice of frequent or rare

cutting enzymes, or the use of multiple enzymes, it is a

stochastic process and only a proportion of the

sequenced sites will contain polymorphic markers. There-

fore, to achieve a target marker density, it will be necessary

to sequence many more sites, some of which will be unin-

formative, and this limits the number of samples that can

be multiplexed to achieve a target x. In addition, the

random nature of the sequencing process leads to an un-

even x across sites and across individuals. Despite equal

amounts of input DNA from an individual, there is sub-

stantial fluctuation in x per individual, with knock-on con-

sequences for genotype quantity and quality per individual

[15-17]. However, in spite of these limitations, compared

to SNP arrays, GBS has the benefit that its costs of devel-

opment and of changing the density of the markers are

smaller. There are a wide range of suitable restriction en-

zymes available, which make it possible to sequence differ-

ent proportions of the genome and thus to vary the density

of the resulting data in the population of interest from a

few thousand to potentially millions of markers. This could

be useful when applying GS in populations with a large ef-

fective population size, for example in sheep, goats or beef

cattle, for which a large number of markers is needed to

achieve sufficiently accurate genomic predictions by capit-

alizing more on the linkage-disequilibrium information

versus the linkage information, e.g., [5]. In addition, unlike

the SNPs on arrays, GBS markers do not need to be dis-

covered a priori in limited subsets of individuals and there-

fore do not suffer from the ascertainment bias that affects

SNP arrays, e.g., [11-14], and could provide a way to im-

prove across-breed and multi-breed predictions. Coupled

with the ability to vary sequencing depth per individual,

GBS data has great potential for improving GS.

The impact of sequencing errors was not quantified in

this study. Sequencing errors typically occur at 0.5 to

1.0% per raw base and vary somewhat between sequen-

cing approaches [18,33], e.g., for Illumina, the rate of

sequencing errors is about 0.1% [33]. Sequencing errors

can influence the alignment of reads and genotype

calling and thus the downstream analyses. A common

approach to improve the accuracy of genotype calls is to

use high-coverage sequencing to reduce the effect of

sequencing errors [34-36], e.g., with 30x the accuracy of

genotype calls is more than 99% [34]. However, a large

part of the sequencing errors can also be removed from

low-coverage data by using sequence data pipelines that

trim the ends of sequence reads that tend to have lower

quality, filter out individual base reads with low quality,

and use probabilistic methods to call genotypes on

multiple samples [35]. If low-coverage sequencing is

used on relatives, then the shared haplotypes have effect-

ively larger coverage than individual haplotypes, which

provides additional information to remove errors and

impute missing genotypes [18,19,35].

Applying an error rate of 0.1% to the simulations per-

formed in this study would result on average in 3, 10,
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60, and 300 markers with erroneous base reads per

individual for marker densities of 3 K, 10 K, 60 K, and

300 K, respectively. These errors would add some add-

itional noise to the genotype calls, which were already

quite noisy with low-coverage GBS. Note that at 1x, on

average all heterozygous loci were called as homozygous,

while at 2x, on average half of the heterozygous loci

were called as homozygous. At 0.5x, on average half of

the loci were not called at all and the other half had all

heterozygous loci called as homozygous. With 0.1% erro-

neous base reads, the amount of wrong genotype calls

would not increase drastically and would therefore not

invalidate the main conclusions of this study. A more

efficient approach than calling genotypes would be to

calculate genotype probabilities conditionally on the ob-

served sequence reads from each individual and its rela-

tives and sequence error rates [18,19,35]; this should be

further studied in the future. Another consequence of

sequencing errors is that they increase the uncertainty of

inferred genotype calls or genotype probabilities, which

in turn reduces the signal from the data. However, due

to the largely underdetermined systems with more

correlated markers than phenotyped individuals that

underpin GS, it is essential to increase the number of ge-

notyped and phenotyped individuals, even at the expense

of a lower quality of genomic information. Low-coverage

sequencing approaches such as GBS provide a way to

manage these aspects such that the genetic gain in a

population can be maximized.

Conclusions
In conclusion, NGS techniques used for genotyping such

as GBS have potential advantages for genomic selection

in livestock. Our results show that genomic prediction

using unimputed GBS data gives comparable accuracies

to using SNP array data with the same number of

markers, even if the genome-wide sequence read depth

(x) is as low as ~1x and large numbers of markers are

available. The ability to vary the quality of genotyping

per individual (by varying the sequencing effort) makes

it possible to reduce the cost of genotyping of a large

number of individuals and therefore to increase the ac-

curacy of prediction and selection intensity. Similar

strategies could be developed for low-coverage sequen-

cing of whole genomes. Further developments in se-

quencing and imputation techniques are necessary to

improve the cost effectiveness of such strategies for their

application to real populations.
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