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Abstract 

Since the use of finite element (FE) simulations for the dynamic analysis of railway beams on frictionally damped 

foundations are (i) very time consuming, and (ii) require advanced know-how and software that go beyond the 

available resources of typical civil engineering firms, this paper aims to demonstrate the potential of Artificial 

Neural Networks (ANN) to effectively predict the maximum displacements and the critical velocity in railway 

beams under moving loads. Four ANN-based models are proposed, one per load velocity range ([50, 175] ∪ [250, 

300] m/s; ]175, 250[ m/s) and per displacement type (upward or downward). Each model is function of two 

independent variables, a frictional parameter and the load velocity. Among all models and the 663 data points 

used, a maximum error of 5.4 % was obtained when comparing the ANN- and FE-based solutions. Whereas the 

latter involves an average computing time per data point of thousands of seconds, the former does not even need 

a millisecond. This study was an important step towards the development of more versatile (i.e., including other 

types of input variables) ANN-based models for the same type of problem.  

 

Keywords: Railway Beam; Frictionally Damped Foundation; Moving Load; Maximum Displacements; Critical 

Velocity; Artificial Neural Networks. 

1. Introduction 

The study of the dynamic behavior of beams on foundations subjected to moving loads with 

possible applications in high-speed railway track design has been a topic of interest in the 

literature. In particular, the existence of a critical velocity of the load for which the beam's 
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oscillation amplitudes become very large has been demonstrated (Frýba 1972). The 

serviceability of a high-speed railway track depends on the limitation of these dynamic 

amplifications (Madshus and Kaynia 2000, Kaynia et al. 2000), that is, depends on the ability 

of its substructure to dissipate the energy transmitted by the moving loads. This substructure is 

composed of many stones of several sizes and shapes, interacting through surfaces that are 

almost always in persistent frictional contact.  

Since the main mechanism governing the interaction between the infrastructure’s 

constituents is unilateral frictional contact mechanics, a novel non-smooth foundation model, 

which is closer to the true frictional dissipative nature of the ballast than the viscous model, 

was proposed in Toscano Corrêa et al. (2018).  The goal of that study was to generalize, for 

more realistic behaviors, the analyses in Dimitrovová and Rodrigues (2012) and Castro Jorge 

et al. (2015a, b) so that they could be of interest for high-speed railway engineers. Thus, a finite 

element (FE) program was developed within a MATLAB (The Mathworks, Inc 2017) 

environment to analyze the dynamic behavior of a Euler-Bernoulli beam on a foundation 

composed of continuous distributions of linear elastic springs and Coulomb frictional 

dissipators/dampers. This “Winkler-Coulomb”-type foundation is represented in Fig. 1 under 

a simply supported beam. It assumes that, in parallel with a linear elastic Winkler foundation, 

there is a reaction per unit length that, at each cross section of the beam, obeys to Coulomb’s 

friction law: the frictional dissipators apply an instantaneous reaction per unit length 𝑟(𝑥, 𝑡) at 

cross section x and time instant t depending on the sign of the transverse velocity of that cross 

section, i.e. 𝑟(𝑥, 𝑡) ∈ −𝑓𝑢 Sign(𝑤̇(𝑥, 𝑡)) where (i) fu denotes the maximum force per unit length 

that the system of frictional dissipators of the foundation may support, (ii) 𝑤̇(𝑥, 𝑡) is the 

http://doi.org/10.31224/osf.io/m3b7j
http://doi.org/10.31224/osf.io/m3b7j


 

DOI: http://doi.org/10.31224/osf.io/m3b7j 

© 2019 by Abambres M, Corrêa R, Pinto da Costa A, Simões F (CC BY 4.0) 

 
 
 

 
 

3 
Abambres M, Corrêa R, Pinto da Costa A, Simões F (2019). Potential of neural networks for maximum 
displacement predictions in railway beams on frictionally damped foundations. engrXiv (January), 1-62,  
doi: http://doi.org/10.31224/osf.io/m3b7j 

transverse velocity of the cross section, and (iii) Sign(𝑤̇(𝑥, 𝑡)) = 𝑤̇(𝑥, 𝑡)/|𝑤̇(𝑥, 𝑡)| if 𝑤̇(𝑥, 𝑡) ≠ 0 and Sign(𝑤̇(𝑥, 𝑡)) = [−1 , +1]  if  ẇ(𝑥, 𝑡) = 0. The expression of the reaction 

force is an algebraic inclusion (Glocker 2001, Studer 2009), meaning that at the instants of 

vanishing velocity the reaction may belong to an interval and at the instants of velocity sign 

change the reaction per unit length is discontinuous. This reaction is very different from the 

one provided by a continuous distribution of the traditional linear viscous dampers, 𝑟(𝑥, 𝑡) =𝑐 𝑤̇(𝑥, 𝑡), where c is the viscous damping coefficient per unit length. In both cases the reaction 

opposes the velocity but, while viscous damping provides a reaction that is proportional to the 

local velocity itself, the frictional reaction is limited to the interval [– fu, + fu] and is independent 

of the magnitude of the velocity 𝑤̇(𝑥, 𝑡) (see Fig. 2 in Toscano Corrêa et al. 2018). In that study 

a time stepping algorithm specially designed to deal with non-smooth dynamical systems was 

for the first time applied to beams on distributed friction foundations and new conclusions on 

critical velocities, maximal displacements and dynamic amplification factors were drawn. 

 

Fig. 1. Beam on a frictionally damped continuous foundation under a moving load. 

 

Since the FE analyses in Toscano Corrêa et al. (2018) are (i) very time consuming (thus 

unfeasible for fast engineering estimations), and (ii) require advanced know-how and software 

that go beyond the available resources of typical civil engineering firms, this paper aims to 
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demonstrate the potential of Artificial Neural Networks (ANN) to effectively predict the 

maximum displacements in railway tracks on frictional foundations, as function of the 

frictional parameter (fu) and load velocity (v). This is an important step towards the future 

development of much more versatile ANN-based analytical models for the same type of 

problem. The difference will be the inclusion of more independent (input) variables, such as 

the foundation stiffness modulus k, the applied load magnitude F, and geometrical/mechanical 

properties of the railway beam (see Fig. 1).  

2. FE-based model and data gathering 

The authors considered a horizontal simply supported linear elastic Euler-Bernoulli beam (see 

Fig. 1) of 200 m length, cross-sectional area and central moment of inertia respectively equal to 

A and I, mass density  and Young's modulus E. The properties of the beam are summarized in 

Table 1 and correspond to the ones of a UIC60 rail. Previous studies (Dimitrovová and Rodrigues 

2012, Castro Jorge et al. 2015a, b) showed that a 200 m simply supported beam is a good finite 

length model to approximate the behavior of an infinite beam on elastic foundation with a single 

moving load. The beam is supposed to be connected to a fixed foundation bed by a system of 

linear elastic springs, with stiffness per unit length denoted by k, associated in parallel with a 

continuous distribution of friction dampers with a maximum force per unit length fu. A downward 

concentrated force F = 83.4 kN, corresponding to half of the load per axle of a Thalys high speed 

train locomotive, acts on the beam moving from left to right at a constant velocity v (numerical 

results considered v ranging between 50 m/s and 300 m/s at intervals of 5 m/s). The motion of 

the beam is governed by a partial differential inclusion (eq. (2) in Toscano Corrêa et al. (2018)) 
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that is (i) semi-discretized in space, using the finite element method, as a system of ordinary 

differential inclusions (eq. (5) in Toscano Corrêa et al. (2018)), and (ii) integrated in time using 

a special implementation of the Non-smooth Contact Dynamics Method (NSCD) developed by 

Moreau (1994) and Jean (1999), adapted to distributed Coulomb friction. The stiffness modulus 

of the foundation is k = 250 kN/m2 and thirteen different values of the maximum force per unit 

length of the frictional dampers fu (0, 1, 2, 3, 3.5, 4, 5, 6, 7, 7.5, 8, 9 and 10 kN/m) are considered. 

All simulations employed a 200-element uniform mesh and a time step h such that vh = 0.1 m 

(i.e., in each time step the load progresses 10 cm independently of its velocity v). The suitability 

of the mesh refinement and time step was assessed in Toscano Corrêa et al. (2018). The self-

weight of the beam is not considered, as in Toscano Corrêa et al. (2018), in order to allow the 

comparison of results. 

The maximum upward (positive wmax) and downward (negative wmax) transverse 

displacements of the beam under moving load are obtained as function of the frictional 

parameter fu and load velocity v, using the FE program mentioned before. For each pair of fu 

and v values, the computational time to obtain the corresponding upward and downward 

maximum displacements ranged between 4000 and 4800 seconds, when using a computer with 

an Intel® Core™ i5-3470 CPU @ 3.20 GHz, 8 GB of RAM, and a 64-bit Operating System. 

The aforementioned data was then used to feed the neural networks analyzed in this work. 

After some experiments, and aiming to obtain sufficiently accurate (maximum error smaller or 

around 5%) models, it was decided to develop four independent ANN-based models, namely 

for: (i) negative wmax (v = [50, 175] ∪ [250, 300] m/s), (ii) negative wmax (v = ]175, 250[ m/s), 

(iii) positive wmax (v = [50, 175] ∪ [250, 300] m/s), and (iv) positive wmax (v = ]175, 250[ m/s). 
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Each model is described in sub-sections 4.1-4.4, respectively, and characterized by two 

independent (fu, v) and one dependent (positive or negative wmax) variables. The datasets used 

in the development and final testing of each model are available in Authors (2018). 

 

Table 1. Properties of the UIC60 rail (Toscano Corrêa et al. 2018). 

Property Value 

Young's modulus (E) 210 GPa 

Central area moment of inertia (I) 3055 × 10-8 m4 

Cross-sectional area (A) 7684 × 10-6 m2 

Density () 7800 kg/m3 

 

3. Artificial Neural Networks 

3.1 Introduction 

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the 

task of having machines acting humanly could not be accomplished, allows us to ‘teach’ computers 

how to perform tasks by providing examples of how they should be done (Hertzmann and Fleet 

2012). When there is abundant data (also called examples or patterns) explaining a certain 

phenomenon, but the theory behind is poor or absent, machine learning can be a useful tool. The 

world is quietly being reshaped by machine learning, the Artificial Neural Network (also referred 

in this manuscript as ANN or neural net) being its (i) oldest (McCulloch and Pitts 1943) and (ii) 

most powerful (Hern 2016) technique. ANNs also lead the number of practical applications, 

virtually covering any field of knowledge (Wilamowski and Irwin 2011, Prieto et. al 2016). In its 

most general form, an ANN is a mathematical model designed to perform a particular task, inspired 

http://doi.org/10.31224/osf.io/m3b7j
http://doi.org/10.31224/osf.io/m3b7j


 

DOI: http://doi.org/10.31224/osf.io/m3b7j 

© 2019 by Abambres M, Corrêa R, Pinto da Costa A, Simões F (CC BY 4.0) 

 
 
 

 
 

7 
Abambres M, Corrêa R, Pinto da Costa A, Simões F (2019). Potential of neural networks for maximum 
displacement predictions in railway beams on frictionally damped foundations. engrXiv (January), 1-62,  
doi: http://doi.org/10.31224/osf.io/m3b7j 

by the way the brain processes information, i.e. based on its processing units (the neurons). ANNs 

have been employed to perform several types of real-world basic tasks. Concerning functional 

approximation, ANN-based solutions are frequently more accurate than those provided by 

traditional approaches, such as multi-variate nonlinear regression, besides not requiring a good 

knowledge of the function shape being modeled (Flood 2008). 

 

 

Fig. 2. Example of a feedforward neural network. 

 

The general ANN structure consists of several nodes disposed in L vertical layers (input layer, 

hidden layers, and output layer) and connected between them, as depicted in Fig. 2. Associated 

to each node in layers 2 to L, also called neuron, is a linear or nonlinear transfer (also called 

activation) function, which receives the so-called net input and transmits an output (as depicted 

later in Fig. 5). All ANNs implemented in this work are called feedforward, since data presented 

in the input layer flows in the forward direction only, i.e. every node only connects to nodes 

belonging to layers located at the right-hand-side of its layer, as shown in Fig. 2. ANN’s 

computing potential makes them suitable to efficiently solve small to large-scale complex 

problems, which can be attributed to their (i) massively parallel distributed structure and (ii) 
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ability to learn and generalize, i.e., produce reasonably accurate outputs for inputs not used during 

the learning (also called training) phase.  

 

3.2 Learning 

Each connection between two nodes is associated to a synaptic weight (real value), which, 

together with each neuron’s bias (also a real value), are the most common types of neural net 

unknown parameters that will be determined through learning. Learning is nothing else than 

determining network unknown parameters through some algorithm in order to minimize 

network’s performance measure, typically a function of the difference between predicted and 

target (desired) outputs. When ANN learning has an iterative nature, it consists of three phases: 

(i) training, (ii) validation, and (iii) testing. From previous knowledge, examples or data points 

are selected to train the neural net, grouped in the so-called training dataset. Those examples are 

said to be ‘labeled’ or ‘unlabeled’, whether they consist of inputs paired with their targets, or just 

of the inputs themselves; learning is called supervised (e.g., functional approximation, 

classification) or unsupervised (e.g., clustering), whether data used is labeled or unlabeled, 

respectively. During an iterative learning, while the training dataset is used to tune network 

unknowns, a process of cross-validation takes place by using a set of data completely distinct 

from the training counterpart (the validation dataset), so that the generalization performance of 

the network can be attested. Once ‘optimum’ network parameters are determined, typically 

associated to a minimum of the validation performance curve (called early stop – see Fig. 3), 

many authors still perform a final assessment of model’s accuracy, by presenting to it a third 

fully distinct dataset called ‘testing’. Heuristics suggests that early stopping avoids overfitting, 
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i.e. the loss of ANN’s generalization ability. One of the causes of overfitting might be learning 

too many input-target examples suffering from data noise, since the network might learn some 

of its features, which do not belong to the underlying function being modeled (Haykin 2009). 

 

 

Fig. 3. Cross-validation - assessing network’s generalization ability. 

 

3.3 Implemented ANN features 

The ‘behavior’ of any ANN depends on many ‘features’. Fifteen of them were implemented in 

this work (including data pre/post processing ones). For those features, it is important to bear in 

mind that no ANN guarantees good approximations via extrapolation (either in functional 

approximation or classification problems), i.e. the implemented ANNs should not be applied 

outside the input variable ranges used for network training. Since there are no objective rules 

dictating which method per feature guarantees the best network performance for a specific 

problem, an extensive parametric analysis (composed of nine parametric sub-analyses) was carried 

out to find ‘the optimum’ net design. A description of all implemented methods, selected from 

state of art literature on ANNs (including both traditional and promising modern techniques), is 

presented next; Tables 2-4 present all features and methods per feature. The whole work was coded 
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in MATLAB (The Mathworks, Inc. 2017), making use of its neural network toolbox when dealing 

with popular learning algorithms (1-3 in Table 4). Each parametric sub-analysis (SA) consists of 

running all feasible combinations (also called ‘combos’) of pre-selected methods for each ANN 

feature, in order to get performance results for each designed net, thus allowing the selection of the 

best ANN according to a certain criterion. The best network in each parametric SA is the one 

exhibiting the smallest average relative error (called performance) for all learning data.  

 

Table 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 
 

3.3.1 Qualitative Variable Representation (feature 1) 

A qualitative variable taking n distinct ‘values’ (usually called classes) can be represented in 

any of the following formats: one variable taking n equally spaced values in ]0,1], or 1-of-n 

encoding (boolean vectors – e.g., n=3: [1 0 0] represents class 1, [0 1 0] represents class 2, and [0 

0 1] represents class 3). After transformation, qualitative variables are placed at the end of the 

corresponding (input or output) dataset, in the same original order. 
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3.3.2 Dimensional Analysis (feature 2) 

The most widely used form of dimensional analysis is the Buckingham's π-theorem, which  

was implemented in this work as described in Bhaskar and Nigam (1990). 

 

Table 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 

 

Table 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 
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3.3.3 Input Dimensionality Reduction (feature 3) 

When designing any ANN, it is crucial for its accuracy that the input variables are independent 

and relevant to the problem (Gholizadeh et al. 2011, Kasun et al. 2016). There are two types of 

dimensionality reduction, namely (i) feature selection (a subset of the original set of input variables 

is used), and (ii) feature extraction (transformation of initial variables into a smaller set). In this 

work, dimensionality reduction is never performed when the number of input variables is less than 

six. The implemented methods are described next. 

 
Linear Correlation  

In this feature selection method, all possible pairs of input variables are assessed with respect 

to their linear dependence, by means of the Pearson correlation coefficient RXY, where X and Y 

denote any two distinct input variables. For a set of n data points (xi, yi), the Pearson correlation 

is defined by 

( )( )

( ) ( )
1

2 2

1 1

Cov( , )

Var( ) Var( )

n

i i

i
XY

n n

i i

i i

x x y y
X Y

R
X Y

x x y y

=

= =

− −
= =

− −



                ,   (1) 

where (i) Var(X) and Cov(X, Y) are the variance of X and covariance of X and Y, respectively, 

and (ii) 𝑥̅ and 𝑦̅ are the mean values of each variable. In this work, cases where |𝑅𝑋𝑌| ≥ 0.99 

indicate that one of the variables in the pair must be removed from the ANN modeling. The one 

to be removed is the one appearing less in the remaining (𝑋, 𝑌) pairs where |𝑅𝑋𝑌| ≥ 0.99. Once 

a variable is selected for removal, all (𝑋, 𝑌) pairs involving it must be disregarded in the 

subsequent steps for variable removal. 
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Auto-Encoder 

This feature extraction technique uses itself a 3-layer feedforward ANN called auto-encoder 

(AE). After training, the hidden layer output (y2p) for the presentation of each problem’s input 

pattern (y1p) is a compressed vector (Q2 x 1) that can be used to replace the original input layer 

by a (much) smaller one, thus reducing the size of the ANN model. In this work, Q2=round(Q1/2) 

was adopted, being “round” a function that rounds the argument to the nearest integer. The 

implemented AE was trained using the ‘trainAutoencoder(…)’ function from MATLAB’s neural 

net toolbox. In order to select the best AE, 40 AEs were simulated and their performance 

compared by means of the performance variable defined in sub-section 3.4. Each AE considered 

distinct (random) initialization parameters, half of the models used the ‘logsig’ hidden transfer 

functions, and the other half used the ‘satlin’ counterpart, being the identity function the common 

option for the output activation. In each AE, the maximum number of epochs, i.e. the number of 

times the whole training dataset is presented to the network during learning, was defined 

(regardless the amount of data) by  

1

1

3000, 8
max

1500, 8

Q
epochs

Q


=  

 .  (2)

 

Concerning the learning algorithm used for all AEs, no L2 weight regularization was employed, 

which was the only default specification not adopted in ‘trainAutoencoder(…)’. 

 

Orthogonal and Sparse Random Projections 

This is another feature extraction technique aiming to reduce the dimension of input data Y1 

(Q1 x P) while retaining the Euclidean distance between data points in the new feature space. 
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This is attained by projecting all data along the (i) orthogonal or (ii) sparse random matrix A 

(Q1 x Q2, Q2 < Q1), as described by Kasun et al. (2016)

 

 

 

3.3.4 Training, Validation and Testing Datasets (feature 4) 

Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-10, 70-

15-15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training, validation and 

testing examples as percentage of all learning data (P), respectively. Aiming to divide learning 

data into training, validation and testing subsets according to a predefined distribution pt-pv-ptt, 

the following algorithm was implemented (all variables are involved in these steps, including 

qualitative ones after converted to numeric – see 3.3.1): 

1) For each variable q (row) in the complete input dataset, compute its minimum and 

maximum values. 

2) Select all patterns (if some) from the learning dataset where each variable takes either its 

minimum or maximum value. Those patterns must be included in the training dataset, 

regardless what pt is. However, if the number of patterns ‘does not reach’ pt, one should 

add the missing amount, provided those patterns are the ones having more variables 

taking extreme (minimum or maximum) values.  

3) In order to select the validation patterns, randomly select pv / (pv + ptt) of those patterns 

not belonging to the previously defined training dataset. The remainder defines the 

testing dataset. 

It might happen that the actual distribution pt-pv-ptt is not equal to the one imposed a priori 

(before step 1), which is due to the minimum required training patterns specified in step 2. 
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3.3.5 Input Normalization (feature 5) 

The progress of training can be impaired if training data defines a region that is relatively narrow 

in some dimensions and elongated in others, which can be alleviated by normalizing each input 

variable across all data patterns. The implemented techniques are the following: 

 
Linear Max Abs 

Lachtermacher and Fuller (1995) proposed a simple normalization technique given by  

 
1

1

1

( ,:)
{ } ( ,:)   

max ( ,:)
n

Y i
Y i

Y i
=

                ,   (3) 

where {Y1}n (i, :) and Y1 (i, :) are the normalized and non-normalized values of the ith input variable 

for all learning patterns, respectively. Notation ‘:’ in the column index, indicate the selection of all 

columns (learning patterns). 

 
Linear [0, 1] and [-1, 1] 

A linear transformation for each input variable (i), mapping values in Y1(i,:) from [a*, 

b*]=[min(Y1(i,:)), max(Y1(i,:))] to a generic range [a, b], is obtained from 

( ) ( )( )
( )
1

1

,: *
{ ,:  

*
} )

*
(n

Y i a
Y aa

b
bi

a

−

−
−= +

               .   (4) 

Ranges [a, b]=[0, 1] and [a, b]=[-1, 1] were considered. 

 
Nonlinear 

Proposed by Pu and Mesbahi (2006), although in the context of output normalization, the 

only nonlinear normalization method implemented for input data reads  
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  ( ) ( )( ) ( )1

1 1

,
  ,  sign , ( )

10tn

Y i j
Y i j Y i j C i= +

               ,   (5) 

where (i) Y1(i, j) is the non-normalized value of input variable i for pattern j, (ii) t is the number 

of digits in the integer part of Y1(i, j), (iii) sign(…) yields the sign of the argument, and (iv) 

C(i) is the average of two values concerning variable i, C1(i) and C2(i), where the former leads 

to a minimum normalized value of 0.2 for all patterns, and the latter leads to a maximum 

normalized value of 0.8 for all patterns. 

 
Linear Mean Std 

Tohidi and Sharifi (2014) proposed the following technique  

  ( )
( ) ( )

( )

1

1

1 ,:

1

,:

,:
  ,:  

Y i

n

Y i

Y i
Y i





−
=

               ,   (6) 

where 𝜇𝑌1(𝑖,:) and 𝜎𝑌1(𝑖,:) are the mean and standard deviation of all non-normalized values (all 

patterns) stored by variable i.  

 

3.3.6 Output Transfer Functions (feature 6) 

 

Logistic 

The most usual form of transfer functions is called Sigmoid. An example is the logistic 

function given by 

1
( )

1 e s
s −=

+
                .   (7)
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Hyperbolic Tang 

The Hyperbolic Tangent function is also of sigmoid type, being defined as 

e e
( )

e e

s s

s s
s

−

−

−
=

+
       .    (8) 

Bilinear 

The implemented Bilinear function is defined as  

, 0
( )

0, 0

s s
s

s



=  

 

.   (9) 

Identity 

The Identity activation is often employed in output neurons, reading 

( )s s =  

 .   (10) 

 

3.3.7 Output Normalization (feature 7) 

Normalization can also be applied to the output variables so that, for instance, the amplitude of 

the solution surface at each variable is the same. Otherwise, training may tend to focus (at least in 

the earlier stages) on the solution surface with the largest amplitude (Flood and Kartam 1994a). 

Normalization ranges not including the zero value might be a useful alternative since convergence 

issues may arise due to the presence of many small (close to zero) target values (Mukherjee et al. 

1996). Four normalization methods were implemented. The first three follow eq. (4), where (i) [a, 

b] = 70% [φmin, φmax], (ii) [a, b] = 60% [φmin, φmax], and (iii) [a, b] = 50% [φmin, φmax], being [φmin, 

φmax] the output transfer function range, and [a, b] determined to be centered within [φmin, φmax] and 
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to span the specified percentage (e.g., (b-a) = 0.7 (φmax - φmin)). Whenever the output transfer 

functions are unbounded (Bilinear and Identity), it was considered [a, b] = [0, 1] and [a, b] = [-1, 

1], respectively. The fourth normalization method implemented is the one described by eq. (6). 

 

3.3.8 Network Architecture (feature 8) 

 

Multi-Layer Perceptron Network (MLPN) 

This is a feedforward ANN exhibiting at least one hidden layer. Fig. 2 depicts a 3-2-1 MLPN 

(3 input nodes, 2 hidden neurons and 1 output neuron), where units in each layer link only to 

some nodes located ahead. At this moment, it is appropriate to define the concept of partially- 

(PC) and fully-connected (FC) ANNs. In this work a FC feedforward network is characterized 

by having each node connected to every node in a different layer placed forward – any other 

type of network is said to be PC (e.g., the one in Fig. 2). According to Wilamowski (2009), PC 

MLPNs are less powerful than MLPNs where connections across layers are allowed, which 

usually lead to smaller networks (less neurons).  

Fig. 4 represents a generic MLFN composed of L layers, where l (l = 1,…, L) labels a generic 

layer and ‘ql’ a generic node, being q = 1,…, Ql its position in layer l (1 is reserved to the top 

node). Fig. 5 represents the model of a generic neuron (l = 2,…, L), where (i) p represents the 

data pattern presented to the network, (ii) subscripts m = 1,…, Qn and n = 1,…, l-1 are 

summation indexes representing all possible nodes connecting to neuron ‘ql’ (recall Fig. 4), 

(iii) bql is neuron’s bias, and (iv) wmnql represents the synaptic weight connecting units ‘mn’ 

and ‘ql’. Neuron’s net input for the presentation of pattern p (Sqlp) is defined as  
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Q 1

1 1

,
n l

lp

m n

q mnp mnp mnpmnql ql mnql mnqlw b w wS y y y
−

= =

= +    ,   (11) 

where ym1p is the value of the mth network input concerning example p. The output of a generic 

neuron can then be written as 

( )lqlp qlpy S=  ,   (12) 

where φl is the transfer function used for all neurons in layer l (l = 2,…, L). 

 

 

Fig. 4. Generic multi-layer feedforward network. 
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Fig. 5. Generic neuron placed anywhere in the MLPN of Fig. 4 (l = 2,…, L). 

 

Radial-Basis Function Network (RBFN)  

Although having similar topologies, RBFN and MLPN behave very differently due to 

distinct hidden neuron models – unlike the MLPN, RBFN have hidden neurons behaving 

differently than output neurons. According to Xie et al. (2011), RBFN (i) are specially 

recommended in functional approximation problems when the function surface exhibits regular 

peaks and valleys, and (ii) perform more robustly than MLPN when dealing with noisy input 

data. Although traditional RBFN have 3 layers, a generic multi-hidden layer (see Fig. 4) RBFN 

is allowed in this work, being the generic hidden neuron’s model concerning node ‘l1l2’ (l1 = 

1,…,Ql2, l2 = 2,…, L-1) presented in Fig. 6. In this model, (i) 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 (called RBF center) 

are vectors of the same size (𝜉𝑧𝑙1𝑙2 denotes de z component of vector 𝜉𝑙1𝑙2, and it is a network 

unknown), being the former associated to the presentation of data pattern p,  (ii) 𝜎𝑙1𝑙2 is called 

RBF width (a positive scalar) and also belongs, along with synaptic weights and RBF centers, 

to the set of network unknowns to be determined through learning, (iii) 𝜑𝑙2 is the user-defined 

radial basis (transfer) function (RBF), described in eqs. (20)-(23), and (iv) 𝑦𝑙1𝑙2𝑝 is neuron’s 

output when pattern p is presented to the network. In ANNs not involving learning algorithms 
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1-3 in Table 4, vectors 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 are defined as (two versions of 𝑣𝑙1𝑙2𝑝 where implemented 

and the one yielding the best results was selected) 

 

1 2 2 2 1 2 2 2 1 2 2 2 1 2

1 2 2 2 2

1 2 1 2 1 2 1 2
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,   (13) 

whereas the RBFNs implemented through MATLAB neural net toolbox (involving learning 

algorithms 1-3 in Table 4) are based on the following definitions 

1 2 2 2 2

1 2 2 1 2 2 1 2 2 1 2

12
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1( 1) ( 1) ( 1)

1( 1) ( 1) ( 1)
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... ...
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l l l l l z l l l Q l l l

v

w w w

y y y



−

−

− − −

− − −

 =  
 =  

 .   (14) 

Lastly, according to the implementation carried out for initialization purposes (described in 

3.3.12), (i) RBF center vectors per hidden layer (one per hidden neuron) are initialized as integrated 

in a matrix (termed RBF center matrix) having the same size of a weight matrix linking the previous 

layer to that specific hidden layer, and (ii) RBF widths (one per hidden neuron) are initialized as 

integrated in a vector (called RBF width vector) with the same size of a hypothetic bias vector. 

 

3.3.9 Hidden Nodes (feature 9) 

Inspired by several heuristics found in the literature for the determination of a suitable 

number of hidden neurons in a single hidden layer net (Aymerich and Serra 1998, Rafiq et al. 

2001, Xu and Chen 2008), each value in hntest, defined in eq. (15), was tested in this work as 
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the total number of hidden nodes in the model, i.e. the sum of nodes in all hidden layers 

(initially defined with the same number of neurons). The number yielding the smallest 

performance measure for all patterns (as defined in 3.4, with outputs and targets not 

postprocessed), is adopted as the best solution. The aforementioned hntest is defined by 

 

( )( )( )

1 1 1

1

2

1 1 1 2 2

 = [4, 4, 4, 10, 10, 10, 10]
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m
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,   (15) 

where (i) Q1 and QL are the number of input and output nodes, respectively, (ii) P and Pt are 

the number of learning and training patterns, respectively, and (iii) F13 is the number of feature 

13’s method (see Table 4). 

 

 

Fig. 6. Generic hidden neuron l1l2 placed anywhere in the RBFN of Fig. 4 (l2 = 2,…, L-1). 
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3.3.10 Connectivity (feature 10) 

For this ANN feature, three methods were implemented, namely (i) adjacent layers – only 

connections between adjacent layers are made possible, (ii) adjacent layers + input-output – 

only connections between (ii1) adjacent and (ii2) input and output layers are allowed, and (iii) 

fully-connected (all possible feedforward connections). 

 

3.3.11 Hidden Transfer Functions (feature 11) 

Besides functions (i) Logistic – eq. (7), (ii) Hyperbolic Tangent – eq. (8), and (iii) Bilinear – eq. 

(9), defined in 3.3.6, the ones defined next were also implemented as hidden transfer functions. 

During software validation it was observed that some hidden node outputs could be infinite or NaN 

(not-a-number in MATLAB – e.g., 0/0=Inf/Inf=NaN), due to numerical issues concerning some 

hidden transfer functions and/or their calculated input. In those cases, it was decided to convert 

infinite to unitary values and NaNs to zero (the only exception was the bipolar sigmoid function, 

where NaNs were converted to -1).  Another implemented replacement was to convert possible 

Gaussian function’s NaN inputs to zero.  

 

Identity-Logistic 

In Gunaratnam and Gero (1994), issues associated with flat spots at the extremes of a 

sigmoid function were eliminated by adding a linear function to the latter, reading  

1
( )

1 e s
s s −= +

+
 

.   (16) 
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Bipolar   

The so-called bipolar sigmoid activation function mentioned in Lefik and Schrefler (2003), 

ranging in [-1, 1], reads  

1 e
( )

1 e

s

s
s

−

−

−
=

+
        .   (17) 

Positive Saturating Linear 

In MATLAB neural net toolbox, the so-called Positive Saturating Linear transfer function, 

ranging in [0, 1], is defined as   

1, 1

( ) , 0 1

0, 0

s

s s s

s




=  
 

 

.   (18) 

Sinusoid 

Concerning less popular transfer functions, reference is made in Bai et al. (2014) to the 

sinusoid, which in this work was implemented as  

( ) sin
2

s s
  =  

          .   (19)

 

Radial Basis Functions (RBF) 

Although Gaussian activation often exhibits desirable properties as a RBF, several authors 

(e.g., Schwenker et al. 2001) have suggested several alternatives. Following nomenclature used 

in 3.3.8, (i) the Thin-Plate Spline function is defined by 

( ) ( )
2 1 2 1 2

2

ln ,l l l p l ls s s s v = = −  ,   (20) 
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(ii) the next function is employed as Gaussian-type function when learning algorithms 4-7 are 

used (see Table 4) 

( )
2 1 2 1 2 1 2

20.5 2
,e s

l l l p l l l l
s s v  −= = −  ,   (21) 

(iii) the Multiquadratic function is given by 

( )
2 1 2 1 2 1 2

2
2,

l l l p l l l l
s s s v  = = − +  ,   (22) 

and (iv) the Gaussian-type function (called ‘radbas’ in MATLAB toolbox) used by RBFNs 

trained with learning algorithms 1-3 (see Table 4), is defined by 

( )
2 1 2 1 2 1 2

2
,e

l l l p l l l l

s
s s v  −= = −  ,   (23) 

where || … || denotes the Euclidean distance in all functions.  

 

3.3.12 Parameter Initialization (feature 12) 

The initialization of (i) weight matrices (Qa x Qb, being Qa and Qb node numbers in layers 

a and b being connected, respectively), (ii) bias vectors (Qb x 1), (iii) RBF center matrices (Qc-

1 x Qc, being c the hidden layer that matrix refers to), and (iv) RBF width vectors (Qc x 1), are 

independent and in most cases randomly generated. For each ANN design carried out in the 

context of each parametric analysis combo, and whenever the parameter initialization method 

is not the ‘Mini-Batch SVD’, ten distinct simulations varying (due to their random nature) 

initialization values are carried out, in order to find the best solution. The implemented 

initialization methods are described next.  

 

http://doi.org/10.31224/osf.io/m3b7j
http://doi.org/10.31224/osf.io/m3b7j


 

DOI: http://doi.org/10.31224/osf.io/m3b7j 

© 2019 by Abambres M, Corrêa R, Pinto da Costa A, Simões F (CC BY 4.0) 

 
 
 

 
 

26 
Abambres M, Corrêa R, Pinto da Costa A, Simões F (2019). Potential of neural networks for maximum 
displacement predictions in railway beams on frictionally damped foundations. engrXiv (January), 1-62,  
doi: http://doi.org/10.31224/osf.io/m3b7j 

Midpoint, Rands, Randnc, Randnr, Randsmall 

These are all MATLAB built-in functions. Midpoint is used to initialize weight and RBF center 

matrices only (not vectors). All columns of the initialized matrix are equal, being each entry equal 

to the midpoint of the (training) output range leaving the corresponding initial layer node – recall 

that in weight matrices, columns represent each node in the final layer being connected, whereas 

rows represent each node in the initial layer counterpart. Rands generates random numbers with 

uniform distribution in [-1, 1]. Randnc (only used to initialize matrices) generates random numbers 

with uniform distribution in [-1, 1], and normalizes each array column to 1 (unitary Euclidean norm). 

Randnr (only used to initialize matrices) generates random numbers with uniform distribution in [-1, 

1], and normalizes each array row to 1 (unitary Euclidean norm). Randsmall generates random 

numbers with uniform distribution in [-0.1, 0.1]. 

 
Rand [-Δ, Δ] 

This function is based on the proposal in Waszczyszyn (1999), and generates random numbers 

with uniform distribution in [-Δ, Δ], being Δ layer-dependent and defined by 

1/ , < 
 =    

0.5 , = 

aQ

b
Q b L

 
b L






 ,   (24) 

where a and b refer to the initial and final layers integrating the matrix being initialized, and L 

is the total number of layers in the network. In the case of a bias or RBF width vector, Δ is 

always taken as 0.5.    

 

http://doi.org/10.31224/osf.io/m3b7j
http://doi.org/10.31224/osf.io/m3b7j


 

DOI: http://doi.org/10.31224/osf.io/m3b7j 

© 2019 by Abambres M, Corrêa R, Pinto da Costa A, Simões F (CC BY 4.0) 

 
 
 

 
 

27 
Abambres M, Corrêa R, Pinto da Costa A, Simões F (2019). Potential of neural networks for maximum 
displacement predictions in railway beams on frictionally damped foundations. engrXiv (January), 1-62,  
doi: http://doi.org/10.31224/osf.io/m3b7j 

SVD  

Although Deng et al. (2016) proposed this method for a 3-layer network, it was implemented 

in this work regardless the number of hidden layers.  

 
Mini-Batch SVD  

Based on Deng et al. (2016), this scheme is an alternative version of the former SVD. Now, 

training data is split into min{Qb, Pt} chunks (or subsets) of equal size Pti = max{floor(Pt / Qb), 

1} – “floor” rounds the argument to the previous integer (whenever it is decimal) or yields the 

argument itself, being each chunk aimed to derive Qbi = 1 hidden node.  

 

3.3.13 Learning Algorithm (feature 13) 

The most popular learning algorithm is called error back-propagation (BP), a first-order 

gradient method. Second-order gradient methods are known to have higher training speed and 

accuracy (Wilamowski 2011). The most employed is called Levenberg-Marquardt (LM). All these 

traditional schemes were implemented using MATLAB toolbox (The Mathworks, Inc 2017).  

 
Back-Propagation (BP, BPA), Levenberg-Marquardt (LM)  

Two types of BP schemes were implemented, one with constant learning rate (BP) –

‘traingd’ in MATLAB, and another with iteration-dependent rate, named BP with adaptive 

learning rate (BPA) – ‘traingda’ in MATLAB. The learning parameters set different than their 

default values are: 

(i) Learning Rate = 0.01 / √𝑐𝑠, where cs is the chunk size, as defined in 3.3.15. 

(ii) Minimum performance gradient = 0.  
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Concerning the LM scheme – ‘trainlm’ in MATLAB, the only learning parameter set 

different than its default value was the abovementioned (ii).  

 
Extreme Learning Machine (ELM, mb ELM, I-ELM, CI-ELM) 

Besides these traditional learning schemes, iterative and time-consuming by nature, four 

versions of a recent, powerful and non-iterative learning algorithm, called Extreme Learning 

Machine (ELM), were implemented (unlike initially proposed by the authors of ELM, connections 

across layers were allowed in this work), namely: (batch) ELM (Huang et al. 2006a), Mini-Batch 

ELM (mb ELM) (Liang et al. 2006), Incremental ELM (I-ELM) (Huang et al. 2006b), Convex 

Incremental ELM (CI-ELM) (Huang and Chen 2007).   

 

3.3.14 Performance Improvement (feature 14) 

A simple and recursive approach aiming to improve ANN accuracy is called Neural 

Network Composite (NNC), as described in Beyer et al. (2006). In this work, a maximum of 

10 extra ANNs were added to the original one, until maximum error is not improved between 

successive NNC solutions. Later in this manuscript, a solution given by a single neural net 

might be denoted as ANN, whereas the other possible solution is called NNC. 

 

3.3.15 Training Mode (feature 15) 

Depending on the relative amount of training patterns, with respect to the whole training 

dataset, that is presented to the network in each iteration of the learning process, several types 

of training modes can be used, namely (i) batch or (ii) mini-batch. Whereas in the batch mode 

all training patterns are presented (called an epoch) to the network in each iteration, in the mini-
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batch counterpart the training dataset is split into several data chunks (or subsets) and in each 

iteration a single and new chunk is presented to the network, until (eventually) all chunks have 

been presented. Learning involving iterative schemes (e.g., BP- or LM-based) might require 

many epochs until an ‘optimum’ design is found. The particular case of having a mini-batch 

mode where all chunks are composed by a single (distinct) training pattern (number of data 

chunks = Pt , chunk size = 1), is called online or sequential mode. Wilson and Martinez (2003) 

suggested that if one wants to use mini-batch training with the same stability as online training, a 

rough estimate of the suitable learning rate to be used in learning algorithms such as the BP, is 

ηonline /√𝑐𝑠, where cs is the chunk size and ηonline is the online learning rate – their proposal was 

adopted in this work. Based on the proposal of Liang et al. (2006), the constant chunk size (cs) 

adopted for all chunks in mini-batch mode reads cs = min{mean(hn) + 50, Pt}, being hn a vector 

storing the number of hidden nodes in each hidden layer in the beginning of training, and mean(hn) 

the average of all values in hn.  

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) maximum 

error, (ii) percentage of errors greater than 3%, and (iii) performance, which are defined next. 

All abovementioned errors are relative errors (expressed in %) based on the following 

definition, concerning a single output variable and data pattern, 

100 qp qLp

qp

qp

d y

d
e

−
=

                               ,   (25) 
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where (i) dqp is the qth desired (or target) output when pattern p within iteration i (p=1,…, Pi) 

is presented to the network, and (ii) yqLp is net’s qth output for the same data pattern. Moreover, 

denominator in eq. (25) is replaced by 1 whenever |dqp| < 0.05; dqp in the nominator keeps its 

real value.  This exception to eq. (25) aims to reduce the apparent negative effect of large 

relative errors associated to target values close to zero. Even so, this replacement may still lead 

to (relatively) large solution errors while groundbreaking results are depicted as regression 

plots (target vs. predicted outputs).     

 

3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (25), among all output 

variables and learning patterns. 

 

3.4.2 Percentage of Errors larger than 3% 

This variable measures the percentage of relative errors (see eq. (25)) that are larger than 

3%, among all output variables and learning patterns. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the average 

relative error, as defined in eq. (25), among all evaluated output variables and data patterns 

(e.g., training, all data).  
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3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, involving 

low- to high-dimensional problems and small to large volumes of data. Due to paper length limit, 

validation results are not presented herein but they were made public online (Researcher 2018). In 

spite of the successful validation, several improvements have been implemented since the initial 

use of the software in first author’s research projects. 

 

4. Results and Proposed ANN-based Models 

Aiming to reduce the computing time by cutting in the number of combos to be run – note that 

all features combined lead to hundreds of millions of combos, the whole parametric simulation was 

divided into nine parametric sub-analyses (SAs), where in each one feature 7 only takes a single 

value. This measure aims to make the performance ranking of all combos within each SA analysis 

more ‘reliable’, since results used for comparison are based on target and output datasets as used 

in ANN training and yielded by the designed network, respectively (they are free of any 

postprocessing that eliminates output normalization effects on relative error values). Whereas (i) 

the 1st and 2nd SAs aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), 

while adopting a single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 

7}, F7: 1, F9: 1, F10: 1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tables 2-4) – SA 1 involved 

learning algorithms 1-3 and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs 

combined all possible methods from features 3, 4, 6 and 7, and concerning all other features, 

adopted the methods integrating the best combination from the aforementioned first SA, (iii) the 
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8th SA combined all possible methods from features 11, 12 and 14, and concerning all other 

features, adopted the methods integrating the best combination (results compared after 

postprocessing) among the previous five sub-analyses, and lastly (iv) the 9th SA combined all 

possible methods from features 9, 10 and 15, and concerning all other features, adopted the methods 

integrating the best combination from the previous analysis. The microprocessors used for ANN 

simulations have the following features: OS: Win10Home 64bits, RAMs: 48.0 / 128 GB, Local 

Disk Memory: 1 TB, CPUs: Intel® Core™ i7 8700K @ 3.7-4.7 GHz / i9 7960X @ 2.8-4.2 

GHz. The datasets used in the development and final testing of all ANN models are available 

in Authors (2018). In what follows, the parametric analysis results and the proposed ANN-

based models are presented for each of the four problems addressed, namely: (i) negative wmax 

(v = [50, 175] ∪ [250, 300] m/s), (ii) negative wmax (v = ]175, 250[ m/s), (iii) positive wmax (v = [50, 

175] ∪ [250, 300] m/s), and (iv) positive wmax (v = ]175, 250[ m/s). It is important to note that, in 

this manuscript, whenever a vector is added to a matrix, it means the former is added to all 

columns of the latter (valid in MATLAB). 

 

4.1 Negative wmax (v = [50, 175] ∪ [250, 300] m/s) 

ANN feature methods used in the best combo from each of the abovementioned nine 

parametric SAs are specified in Table 5 (see Tables 2-4). Table 6 shows the corresponding 

relevant results for those combos and the 481-point final testing dataset (which includes 

the ANN learning/development dataset), namely (i) maximum error, (ii) percentage of 

errors larger than 3%, (iii) performance (all described in sub-section 3.4, and evaluated for 

all learning data), (iv) total number of hidden nodes in the model, and (v) average 
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computing time per example (including data pre- and post-processing). All results shown 

in Table 6 are based on target and output datasets computed in their original format, i.e. 

free of any transformations due to output normalization and/or dimensional analysis.  

Summing up the ANN feature combinations for all parametric SAs, a total of 219 combos 

were run for this problem.   

 

Table 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 5 7 1 1 1 1 3 2 5 1 3 

3 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3 

4 1 2 6 2 5 1 2 1 1 1 3 2 3 1 3 

5 1 2 6 4 5 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 2 5 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 4 5 3 5 1 1 1 3 2 3 1 3 

8 1 2 6 4 5 3 5 1 1 1 3 5 3 1 3 

9 1 2 6 4 5 3 5 1 3 3 3 5 3 1 3 

 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting 

the lowest maximum error (SA 7 – a Neural Network Composite (NNC)). Aiming to allow 

implementation of this model by any user, all variables/equations required for (i) data 

preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in the 

following sub-sections. The proposed model is an NNC made of 7 ANNs with architecture 

MLPN and a distribution of nodes/layer equal to 2-8-1 for every network. Concerning 

connectivity, all networks are partially-connected, and the hidden and output transfer 

functions are all Hyperbolic Tangent (eq. (8)). All networks were trained using the LM 

algorithm. After design, the average NNC computing time concerning the presentation of a 

http://doi.org/10.31224/osf.io/m3b7j
http://doi.org/10.31224/osf.io/m3b7j


 

DOI: http://doi.org/10.31224/osf.io/m3b7j 

© 2019 by Abambres M, Corrêa R, Pinto da Costa A, Simões F (CC BY 4.0) 

 
 
 

 
 

34 
Abambres M, Corrêa R, Pinto da Costa A, Simões F (2019). Potential of neural networks for maximum 
displacement predictions in railway beams on frictionally damped foundations. engrXiv (January), 1-62,  
doi: http://doi.org/10.31224/osf.io/m3b7j 

single example (including data pre/postprocessing) is 3.12E-05 s; Fig. 7 depicts a simplified 

scheme of each NNC network. Finally, all relevant performance results concerning the 

proposed NNC are illustrated in sub-section 4.1.4. 

 

Table 6. Performance results for the best design from each parametric SA and for the final testing dataset 
(includes the ANN learning/development dataset): ANN and NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 5.6 1.0 3.7 8 7.95E-05 

2 15.3 2.3 20.4 40 2.89E-05 

3 5.7 1.0 3.7 8 2.88E-05 

4 6.3 0.9 3.5 8 2.91E-05 

5 5.7 1.0 2.7 8 3.64E-05 

6 5.3 1.0 4.8 8 4.86E-05 

7 6.1 1.0 4.6 8 2.75E-05 

8 7.5 1.0 4.4 8 4.66E-05 

9 3.2 0.6 0.2 9 4.36E-05 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 - - - - - 

2 - - - - - 

3 - - - - - 

4 - - - - - 

5 - - - - - 

6 - - - - - 

7 2.7 0.4 0.0 8 3.12E-05 

8 5.8 0.8 2.3 8 4.89E-05 

9 - - - - - 

 

 

 

Fig. 7. Proposed NNC made of 7 partially-connected MLPNs – simplified scheme. 
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4.1.1 Input Data Preprocessing 

For future use of the proposed NNC to simulate new data Y1,sim (a 2 x Psim matrix) concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied 

to the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 

and 5 (respectively 2, 6 and 5 – see Table 2). Next, the necessary preprocessing to be applied 

to Y1,sim, concerning features 2, 3 and 5, is fully described.  

 
Dimensional Analysis and Dimensionality Reduction 

Since no dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out, one has 

   1, 1, 1,. . . .

after after

sim sim simd r d a
Y Y Y= =  

.   (26) 

 
Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛𝑎𝑓𝑡𝑒𝑟
 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟𝑎𝑓𝑡𝑒𝑟
, and they have the same size, reading 

 

   ( )1, 1, .
 =  - (:,1)  ./ (:,2)

5000 3166.27801301405
     

161.527777777778 82.2184600671207

INP INP

INP

after after

sim simn d r
Y Y





=





 

,  (27) 

where one recalls that (i) INP(:, j) represents column j of matrix INP, and (ii) operator ‘./’ 

divides row i in the numerator by INP(i, 2).  
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4.1.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after (a 2 x Psim matrix), the next step 

is to present it to the proposed NNC to obtain the predicted output dataset {Y3,sim}n
after (a 1 x Psim 

vector), which will be given in the same preprocessed format of the target dataset used in 

learning. In order to convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis), some postprocessing might be 

needed, as discussed in 4.1.3. Next, the mathematical representation of the proposed NNC is 

given, so that any user can implement it to determine {Y3,sim}n
after

 , thus contributing to diminish 

the generalized opinion that ANNs are ‘black boxes’: 

     
6

(0) ( )3, 3
1

3, ,

after af

sim sim sim

ter after

n n n i
i

Y Y Y
=

= +   

,  (28) 

being 

 ( )
  ( )
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3

1 2( )
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22( ) 2( )

3 3( )
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afterT
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after T

i ii n im
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
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,  (29) 

where i = 0,…, 6 and 

2 3

e e
( )

e e

s s

s s
s 

−

−

−
= = =

+
 

,  (30) 

and arrays Wj-s(i) and bs(i) are stored online in Developer (2018a), aiming to avoid an overlong 

article and ease model’s implementation by any interested reader. 
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4.1.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed NNC, {Y3,sim}n
after (a 1 x 

Psim vector), to its original format (Y3,sim), i.e. without the effects of dimensional analysis and/or 

output normalization (possibly) taken in target dataset preprocessing prior training, one has 

 3, 3, = 
sim s

a e

im

ft r

n
Y Y

  ,   (31)

 

since no output normalization nor dimensional analysis were adopted in the proposed model.  

 

 

Fig. 8. Regression plot for the proposed NNC. 
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4.1.4 Performance Results 

Finally, the results yielded by the proposed NNC for the 481-point final testing dataset (which 

includes the ANN learning/development counterpart), in terms of performance variables defined 

in sub-section 3.4, are presented in this sub-section in the form of two graphs: (i) a regression 

plot (Fig. 8), where network target and output data are plotted, for each data point, as x- and y- 

coordinates, respectively – a measure of quality is given by the Pearson Correlation Coefficient 

(R), as defined in eq. (1); and (ii) a plot (Fig. 9) indicating (for all data) the (ii1) maximum 

error, (ii2) percentage of errors larger than 3%, and (ii3) average error (called performance).   

 

 

Fig. 9. Maximum and average (performance) errors for the proposed NNC. 
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4.2 Negative wmax (v = ]175, 250[ m/s) 

ANN feature methods used in the best combo from each of the abovementioned nine parametric 

SAs are specified in Table 7 (numbers represent the method number as in Tables 2-4). Table 8 

shows the corresponding relevant results for those combos and the 208-point final testing dataset 

(which includes the ANN learning/development dataset), namely (i) maximum error, (ii) 

percentage of errors larger than 3%, (iii) performance (all described in sub-section 3.4, and 

evaluated for all learning data), (iv) total number of hidden nodes in the model, and (v) 

average computing time per example (including data pre- and post-processing). All results 

shown in Table 8 are based on target and output datasets computed in their original format, 

i.e. free of any transformations due to output normalization and/or dimensional analysis.  

Summing up the ANN feature combinations for all parametric SAs, a total of 204 combos 

were run for this problem.   

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error (SA 9 - a Neural Network Composite (NNC)). Aiming to allow 

implementation of this model by any user, all variables/equations required for (i) data 

preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in the following 

sub-sections. The proposed model is an NNC made of 3 ANNs with architecture RBFN and a 

distribution of nodes/layer given by 2-3-3-3-1 for every network. Concerning connectivity, all 

networks are partially-connected (see Fig. 10), and the hidden and output transfer functions are 

all Gaussian RBF (eq. (23)) and Hyperbolic Tangent (eq. (8)), respectively. All networks were 

trained using the LM algorithm. After design, the average NNC computing time concerning the 

presentation of a single example (including data pre/postprocessing) is 7.87E-05 s.  Fig. 10 
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depicts a simplified scheme of each NNC network. Finally, all relevant performance results 

concerning the proposed NNC are illustrated in sub-section 4.2.4.  

 

Table 7. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 5 1 1 2 1 1 11 2 3 1 3 

2 1 2 6 2 3 7 1 2 1 1 9 2 5 1 3 

3 1 2 6 1 5 1 1 2 1 1 11 2 3 1 3 

4 1 2 6 1 5 1 2 2 1 1 11 2 3 1 3 

5 1 2 6 3 5 1 3 2 1 1 11 2 3 1 3 

6 1 2 6 1 5 7 4 2 1 1 11 2 3 1 3 

7 1 2 6 1 5 3 5 2 1 1 11 2 3 1 3 

8 1 2 6 1 5 3 5 2 1 1 11 2 3 1 3 

9 1 2 6 1 5 3 5 2 3 2 11 2 3 1 3 

 

 

Fig. 10. Proposed NNC made of 3 partially-connected RBFNs – simplified scheme. 

 

4.2.1 Input Data Preprocessing 

For future use of the proposed NNC to simulate new data Y1,sim (a 2 x Psim matrix) concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied 

to the input dataset. That is defined by the methods used for ANN features 2, 3 and 5 
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(respectively 2, 6 and 5 – see Table 2). Next, the necessary preprocessing to be applied to Y1,sim 

is fully described.  

 

Table 8. Performance results for the best design from each parametric SA and for the final testing dataset 
(includes the ANN learning/development dataset): ANN and NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 10.7 2.8 38.9 8 1.68E-04 

2 102.8 16.7 69.7 50 5.50E-05 

3 12.1 3.1 43.3 8 5.26E-05 

4 12.0 3.1 44.7 8 4.11E-05 

5 20.7 3.0 38.5 8 8.19E-05 

6 22.8 3.0 40.9 8 3.84E-05 

7 18.7 2.7 32.7 8 4.47E-05 

8 14.2 3.0 39.4 8 5.63E-05 

9 11.4 1.8 13.9 9 5.10E-05 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 - - - - - 

2 - - - - - 

3 - - - - - 

4 - - - - - 

5 12.0 2.5 29.8 8 1.16E-04 

6 8.0 1.0 6.3 8 6.63E-05 

7 8.4 1.8 20.2 8 5.52E-05 

8 - - - - - 

9 5.2 1.1 4.8 9 7.87E-05 

 

 
Dimensional Analysis and Dimensionality Reduction 

Since no dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out, one has 

   1, 1, 1,. . . .
   

after after

sim sim simd r d a
Y Y Y= =  

.   (32)
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Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛𝑎𝑓𝑡𝑒𝑟
 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟𝑎𝑓𝑡𝑒𝑟
, and they have the same size, reading 

   ( )1, 1, .
INP INP

IN

 =  - (:,1)  ./ (:,2)

5000 3171.29986868837
    

212.5 23.1146212230639
P

after after

sim simn d r
Y Y

 
=  

 

 

,  (33) 

where one recalls that operator ‘./’ divides row i in the numerator by INP(i, 2).  

 

4.2.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after (a 2 x Psim matrix), the next step 

is to present it to the proposed NNC to obtain the predicted output dataset {Y5,sim}n
after (a 1 x Psim 

vector), which will be given in the same preprocessed format of the target dataset used in 

learning. To convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis), some postprocessing might be 

needed, as described in 4.2.3. Next, the mathematical representation of the proposed NNC is 

given, so that any user can implement it to determine {Y5,sim}n
after

 : 

            
2

(0) ( )5, 5
1

5, ,

after af

sim sim sim

ter after

n n n i
i

Y Y Y
=

= +   

,  (34) 

where (i = 0, 1, 2)  
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,  (35) 

and (i) p=1,…, Psim, l1=1,2, 3, (ii) operator ‘.x’ multiplies every element in row s of the first array 

by element s of second array (a vector), yielding an array of the same size of the first, and (iii) 

( ) 2

2 3 4

5 5

e

e e
( )

e e

s s

s s

s
s

s





  


−

−

−= = = =

−
= =

+

 

.  (36)

 

Arrays Wj-s(i) and bs(i) are stored online in Developer (2018b). 

 

4.2.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed NNC, {Y5,sim}n
after (a 1 x 

Psim vector), to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or 

output normalization (possibly) taken in target dataset preprocessing prior training, one has 
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 5, 5, = 
sim s

a e

im

ft r

n
Y Y  

,   (37) 

since no output normalization nor dimensional analysis were adopted in the proposed model.  

 

 

Fig. 11. Regression plot for the proposed NNC. 

 

4.2.4 Performance Results 

Finally, the results yielded by the proposed NNC for the 208-point final testing dataset (which 

includes the ANN learning/development counterpart), in terms of performance variables defined 
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in sub-section 3.4, are presented in this sub-section in the form of two graphs: (i) a regression 

plot (Fig. 11), where network target and output data are plotted, for each data point, as x- and y- 

coordinates, respectively; and (ii) a plot (Fig. 12) indicating (for all data) the (ii1) maximum error, 

(ii2) percentage of errors larger than 3%, and (ii3) average error (called performance).   

 

 

Fig. 12. Maximum and average (performance) errors for the proposed NNC. 

 

4.3 Positive wmax (v = [50, 175] ∪ [250, 300] m/s) 

ANN feature methods used in the best combo from each of the abovementioned nine parametric 

SAs are specified in Table 9 (numbers represent the method number as in Tables 2-4). Table 10 

shows the corresponding relevant results for those combos and the 481-point final testing dataset 
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(which includes the ANN learning/development dataset), namely (i) maximum error, (ii) 

percentage of errors larger than 3%, (iii) performance (all described in sub-section 3.4, and 

evaluated for all learning data), (iv) total number of hidden nodes in the model, and (v) average 

computing time per example (including data pre- and post-processing). All results shown in Table 

10 are based on target and output datasets computed in their original format, i.e. free of any 

transformations due to output normalization and/or dimensional analysis.  Summing up the ANN 

feature combinations for all parametric SAs, a total of 219 combos were run for this problem.   

 

Table 9. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 3 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 2 7 1 2 1 1 9 2 5 1 3 

3 1 2 6 3 3 1 1 1 1 1 3 2 3 1 3 

4 1 2 6 3 3 1 2 1 1 1 3 2 3 1 3 

5 1 2 6 1 3 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 4 3 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 4 3 7 5 1 1 1 3 2 3 1 3 

8 1 2 6 4 3 7 5 1 1 1 1 2 3 1 3 

9 1 2 6 4 3 7 5 1 3 3 1 2 3 1 3 

 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error (SA 9). Aiming to allow implementation of this model by any user, all 

variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data 

postprocessing, are presented in the following sub-sections. The proposed model is a single MLPN 

with 5 layers and a distribution of nodes/layer given by 2-3-3-3-1. Concerning connectivity, the 

network is fully-connected, and the hidden and output transfer functions are all Logistic (eq. (7)) 

and Identity (eq. (10)), respectively. The network was trained using the LM algorithm (1500 
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epochs). After design, the average network computing time concerning the presentation of a single 

example (including data pre/postprocessing) is 2.49E-05 s; Fig. 13 depicts a simplified scheme of 

some of network key features. Finally, all relevant performance results concerning the proposed 

ANN are illustrated in sub-section 4.3.4. 

 

Fig. 13. Proposed 2-3-3-3-1 fully-connected MLPN– simplified scheme. 

 

Table 10. Performance results for the best design from each parametric SA and for the final testing 
dataset (includes the ANN learning/development dataset): ANN and NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 7.4 0.5 7.1 8 2.58E-05 

2 8.2 0.7 8.5 60 3.43E-05 

3 6.7 0.6 7.7 8 4.52E-05 

4 6.9 0.5 7.5 8 2.70E-05 

5 7.0 0.5 7.3 8 2.62E-05 

6 6.2 0.5 8.3 8 2.65E-05 

7 6.7 0.5 6.7 8 3.72E-05 

8 6.4 0.5 7.5 8 2.91E-05 

9 3.7 0.2 0.8 9 2.49E-05 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 - - - - - 

2 - - - - - 

3 - - - - - 

4 6.9 0.4 5.8 8 2.87E-05 

5 - - - - - 

6 3.7 0.2 0.2 8 3.29E-05 

7 6.4 0.5 6.7 8 4.16E-05 

8 6.2 0.5 7.1 8 2.98E-05 

9 - - - - - 
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4.3.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (a 2 x Psim matrix) concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied 

to the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 

and 5 (respectively 2, 6 and 3 – see Table 2). In what follows, the necessary preprocessing to 

be applied to Y1,sim is fully described.  

 
Dimensional Analysis and Dimensionality Reduction 

Since no dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out, 

one has 

   1, 1, 1,. . . .

after after

sim sim simd r d a
Y Y Y= =  

.   (38)

 

Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛𝑎𝑓𝑡𝑒𝑟
 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟𝑎𝑓𝑡𝑒𝑟
, and they have the same size, reading 

   ( )1, 1, .
 = (:,1) + .x  - (:,3) ./

-1 1 0 10000

-1 1 50 300

(:,2) - (:,1)

(:,4) - (:,3

INP INP

INP

INP INP

INP INP )

after after

sim simn d r
rab den

den

Y Y

rab



=
=


 
 

=  

,   (39) 

where one recalls that operator ‘.x’ multiplies component i in vector rab by all components in 

row i of subsequent term (analogous definition holds for ‘./’).  
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4.3.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after (a 2 x Psim matrix), the next step 

is to present it to the proposed ANN to obtain the predicted output dataset {Y5,sim}n
after (a 1 x Psim 

vector), which will be given in the same preprocessed format of the target dataset used in 

learning. In order to convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis), some postprocessing might be 

needed, as described in 4.3.3. Next, the mathematical representation of the proposed ANN is 

given, so that any user can implement it to determine {Y5,sim}n
after: 

 ( )
 ( )
 ( )

   ( )

1 2

3 1 3

1,

1,

1,

5,

2 3 2

4 1 4 2 4 2 3 4 3

1 5 2 5 2 3 5 3 4 5 41,
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3 3

4 4

5 5

afterT

n

afterT T

n

after

sim

sim

sim

s

T T T
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, (40) 

where 

2 3 4

5 5

1
( )

1 e

( )

s
s

s s





  


−= = = =

+
= =

 

.  (41) 

Arrays Wj-s and bs can be found online in Developer (2018c). 

 
4.3.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after (a 1 x 

Psim vector), to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or 

output normalization (possibly) taken in target dataset preprocessing prior training, one has 
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 5, 5, = 
sim s

a e

im

ft r

n
Y Y  

,   (42) 

since no output normalization nor dimensional analysis were adopted in the proposed model.  

 

 
Fig. 14. Regression plot for the proposed ANN. 

 

4.3.4 Performance Results 

Finally, the results yielded by the proposed ANN for the 481-point final testing dataset (which 

includes the ANN learning/development counterpart), in terms of performance variables defined 

in sub-section 3.4, are presented in this sub-section in the form of two graphs: (i) a regression 
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plot (Fig. 14), where network target and output data are plotted, for each data point, as x- and 

y- coordinates, respectively; and (ii) a plot (Fig. 15) indicating (for all data) the (ii1) maximum 

error, (ii2) percentage of errors larger than 3%, and (ii3) average error (called performance).  

 

 

Fig. 15. Maximum and average (performance) errors for the proposed ANN. 

 

4.4 Positive wmax (v = ]175, 250[ m/s) 

ANN feature methods used in the best combo from each of the abovementioned nine parametric 

SAs are specified in Table 11 (numbers represent the method number as in Tables 2-4). Table 12 

shows the corresponding relevant results for those combos and the 208-point final testing dataset 

(which includes the ANN learning/development dataset), namely (i) maximum error, (ii) 

percentage of errors larger than 3%, (iii) performance (all described in sub-section 3.4, and 

evaluated for all learning data), (iv) total number of hidden nodes in the model, and (v) average 
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computing time per example (including data pre- and post-processing). All results shown in Table 

12 are based on target and output datasets computed in their original format, i.e. free of any 

transformations due to output normalization and/or dimensional analysis.  Summing up the ANN 

feature combinations for all parametric SAs, a total of 219 combos were run for this problem.   

 

Table 11. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 5 7 1 2 1 1 9 2 5 1 3 

3 1 2 6 1 5 1 1 1 1 1 3 2 3 1 3 

4 1 2 6 2 5 1 2 1 1 1 3 2 3 1 3 

5 1 2 6 3 5 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 1 5 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 1 5 7 5 1 1 1 3 2 3 1 3 

8 1 2 6 1 5 7 5 1 1 1 1 2 3 1 3 

9 1 2 6 1 5 7 5 1 3 3 1 2 3 1 3 

 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error (SA 9 - a Neural Network Composite (NNC)). Aiming to allow 

implementation of this model by any user, all variables/equations required for (i) data 

preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in the following 

sub-sections. The proposed model is an NNC made of 4 ANNs with architecture MLPN and a 

distribution of nodes/layer given by 2-3-3-3-1 for every network. Concerning connectivity, all 

networks are fully-connected, and the hidden and output transfer functions are all Logistic (eq. 

(7)) and Identity (eq. (10)), respectively. All networks were trained using the LM algorithm. After 

design, the average NNC computing time concerning the presentation of a single example 

(including data pre/postprocessing) is 4.08E-05 s; Fig. 16 depicts a simplified scheme of each 
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NNC network. Finally, all relevant performance results concerning the proposed NNC are 

illustrated in sub-section 4.4.4.  

 

Table 12. Performance results for the best design from each parametric SA and for the final testing 
dataset (includes the ANN learning/development dataset): ANN and NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 20.3 2.5 31.3 8 1.16E-04 

2 135.1 10.3 61.5 50 4.17E-05 

3 20.3 2.5 31.3 8 4.16E-05 

4 23.7 2.6 30.8 8 4.23E-05 

5 19.4 2.6 29.8 8 4.16E-05 

6 20.3 2.9 35.1 8 3.50E-05 

7 18.3 2.7 32.7 8 3.66E-05 

8 21.3 2.7 34.1 8 5.32E-05 

9 8.8 0.8 5.8 9 3.55E-05 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 - - - - - 

2 - - - - - 

3 - - - - - 

4 - - - - - 

5 - - - - - 

6 18.9 0.9 5.8 8 4.13E-05 

7 19.1 1.2 10.6 8 4.16E-05 

8 18.4 1.5 17.3 8 5.70E-05 

9 5.4 0.4 1.9 9 4.08E-05 

 

 

 

Fig. 16. Proposed NNC made of 4 fully-connected MLPNs – simplified scheme. 
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4.4.1 Input Data Preprocessing 

For future use of the proposed NNC to simulate new data Y1,sim (a 2 x Psim matrix) concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied to 

the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 and 

5 (respectively 2, 6 and 5 – see Table 2). Next, the necessary preprocessing to be applied to Y1,sim 

is fully described.  

 
Dimensional Analysis and Dimensionality Reduction 

Since no dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out, one has 

   1, 1, 1,. . . .
   

after after

sim sim simd r d a
Y Y Y= =  

.   (43) 

 
Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛𝑎𝑓𝑡𝑒𝑟
 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟𝑎𝑓𝑡𝑒𝑟
, and they have the same size, reading 

   ( )1, 1, .
 =  - (:,1)  ./ (:,2)

5000 3171.90409844877
     

214.666666666667 22.2385441413878

INP INP

INP

after after

sim simn d r
Y Y





=





 

,  (44) 

where one recalls that operator ‘./’ divides row i in the numerator by INP(i, 2).  

 
4.4.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after (a 2 x Psim matrix), the next step 

is to present it to the proposed NNC to obtain the predicted output dataset {Y5,sim}n
after (a 1 x Psim 
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vector), which will be given in the same preprocessed format of the target dataset used in 

learning. In order to convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis), some postprocessing might be 

needed, as described in 4.4.3. Next, the mathematical representation of the proposed NNC is 

given, so that any user can implement it to determine {Y5,sim}n
after: 

     
3

(0) ( )5, 5
1

5, ,

after af

sim sim sim

ter after

n n n i
i

Y Y Y
=

= +   

,  (45) 

being 
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3( ) 1 3( ) 2 3( ) 2( )

4( ) 1 4( ) 2 4( ) 2( ) 3 4( ) 3( )

1 5( ) 2 5( ) 2( ) 3(5, ) 1,
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3 3( )
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sim

sim

sim

afterT

i n

afterT T

i i i in

afterT T T

i i i i i in

after afterT T

i isim ii simn n

i i

i

i

Y

Y

Y

Y

Y W b

Y W W Y b

Y W W Y W Y b

W W YY W









−
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, (46) 

where i = 0,…, 3 and 

2 3 4

5 5

1
( )

1 e

( )

s
s

s s





  


−= = = =

+
= =

 

.  (47) 

Arrays Wj-s(i) and bs(i) are stored online in Developer (2018d). 

 

4.4.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed NNC, {Y5,sim}n
after (a 1 x Psim 

vector), to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or output 

normalization (possibly) taken in target dataset preprocessing prior training, one has 
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 5, 5, = 
sim s

a e

im

ft r

n
Y Y  

,   (48) 

since no output normalization nor dimensional analysis were adopted in the proposed model.  

 

 
Fig. 17. Regression plot for the proposed NNC. 

 

4.4.4 Performance Results 

Finally, the results yielded by the proposed NNC for the 208-point final testing dataset (which 

includes the ANN learning/development counterpart), in terms of performance variables defined 

in sub-section 3.4, are presented in this sub-section in the form of two graphs: (i) a regression 
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plot (Fig. 17), where network target and output data are plotted, for each data point, as x- and y- 

coordinates, respectively; and (ii) a plot (Fig. 18) indicating (for all data) the (ii1) maximum error, 

(ii2) percentage of errors larger than 3%, and (ii3) average error (called performance).  

 

 

Fig. 18. Maximum and average (performance) errors for the proposed NNC. 

 

5. Critical velocities and maximum displacements predictions 

Eleven pairs of curves were obtained as output of the ANN-based models described in sub-

sections 4.1-4.4. Each pair presents the maximum negative (downward) and positive (upward) 

displacement predictions as function of load velocity (from 50 to 300 m/s in intervals of 5 m/s) 

for different values of the maximal distributed friction force fu, as depicted in Fig. 19 (two plots 

are presented for the sake of legibility). Note that the classic Winkler foundation case 

corresponds to the frictionless case (fu = 0). Comparing the homologous curves in Fig.19 and 
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Fig. 8(a) in Toscano et al. (2018), a very good visual agreement between the ANN-based 

predictions and the results of the mechanical model is observed. For a precise comparison, the 

obtained target (FE-based) and output (ANN-based) values can be found in Authors (2018). 

The set of curves shows that the increase of the maximum frictional force per unit length 

(fu) leads, as expected, to the reduction of the displacement peaks.  The existence of a critical 

velocity, that is, a velocity that induces the beam’s highest displacements, is also clear in Fig. 

19. It is observed that, for small values of fu, the value of the critical velocity is just slightly 

affected, whereas for larger frictional forces that value clearly rises.  

 

  
(a) (b) 

Fig. 19. Maximum upward and downward ANN-based displacements for a frictionally damped beam 

as function of the load velocity: (a) fu = 0, 2, 4, 6, 8 and 10 kN/m, (b) fu = 1, 3, 5, 7 and 9 kN/m. 
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5. Discussion 

In future publications it will be guaranteed that the validation and testing data subsets will 

be composed only by points where at least one variable (does not have to be the same for all) 

takes a value not taken in the training subset by that same variable. Based on very recent 

empirical conclusions by Abambres, the author believes it will lead to more robust ANN-based 

analytical models concerning their generalization ability (i.e. prediction accuracy for any data 

point within the variable ranges of the design data). 

6. Final Remarks 

This paper demonstrated the potential of Artificial Neural Networks (ANN) to effectively 

predict the maximum displacements and the critical velocities in railway beams under moving 

loads. Four ANN-based models were proposed, one per load velocity range ([50, 175] ∪ [250, 

300] m/s; ]175, 250[ m/s) and per displacement type (upward or downward). Each model is 

function of two independent variables, a frictional parameter and the load velocity. Among all 

models and the 663 data points used, a maximum error of 5.4 % was obtained when comparing 

the ANN- and FE-based solutions. Whereas the latter involves an average computing time per 

data point of thousands of seconds, the former does not even need a millisecond. More versatile 

ANN-based analytical models for the same type of problem may follow from this study by 

including more independent variables, such as the foundation stiffness modulus, the applied 

load magnitude, and the geometrical/mechanical properties of the railway beam.  
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