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Abstract: Cereal grains and tubers are among the highly consumed staple foods globally; however,
due to unfavorable weather conditions and the competition for natural resources, the major staple
cereal crops, such as rice, are under production threat. On the other hand, the overuse of chemical
fertilizers and pesticides to increase crop yield is deteriorating the growing environment for plants
and animals, including humans. As such, sustainable management practices are the key method
that can be employed to increase crop production without harming the environment. Plant growth-
promoting bacteria (PGPB), such as the purple non-sulfur bacteria (PNSB), have recently gained much
attention in crop production due to their ability to accumulate higher-value compounds that are highly
beneficial to crops. Some of the major benefits PNSB holds are that it can fix atmospheric nitrogen,
solubilize phosphate, remediate heavy metals, suppress methane emissions from waterlogged paddy
fields, and assist in carbon sequestration. These benefits allow PNSB to be an important bacterium
for improving plant growth and yield much more sustainably while benefiting the environment. This
review article discusses the beneficial effects of PNSB on rice crop plants through careful screening of
previous work in this area. The review also identifies the research gaps and suggests future research
pathways to make PNSB an important bacteria for sustainable rice crop production. The review
paper aims for the United Nation’s sustainable development goal number two, “Zero Hunger,” target
2.4, indicator 2.4.1, “Proportion of agricultural area under productive and sustainable agriculture”.

Keywords: carbon sequestration; climate change; heavy metals; photosynthetic bacteria; purple
non-sulfur bacteria; sustainable agriculture; zero hunger

1. Introduction

Agriculture in the 21st century is under pressure due to climate change [1] and the
growing world population [2]. According to the United Nations Department of Economic
and Social Affairs, Population Division, the world population, currently standing at around
7.8 billion people, will rapidly increase to about 8.5 billion people by 2030 and approx-
imately 9.7 billion people by 2050 [3]. Such an increase in the future world population
requires expanding food production to meet the growing demand. However, the cur-
rent crop production is already under stress due to climate change [4] and increasing
human activities. Besides increasing carbon dioxide (CO2) levels for photosynthesis [5,6]
and increasing temperatures in temperate regions [6], the increasing temperatures in non-
temperate regions, precipitation frequency and intensity, and extreme weather events will
further impact crop yield by lowering crop growth and development [6,7].

Rice, a globally important cereal crop and staple for half of the world population [8–11],
is among the other important crops that are threatened by the effects of climate change.
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Higher or lower temperatures other than optimum temperature slow down rice’s devel-
opment stage and the time to reach the heading stage [12]. According to Yoshida et al.,
the reproductive stage in rice is highly susceptible to higher temperatures than the vegeta-
tive stage, resulting in lower yields [13]. On the other hand, the soil salinity issue is the
second biggest problem in paddy fields [14] that affects the productivity and growth of
rice crops [15]. Likewise, heavy metal contamination leads to plant stress affecting agro-
nomic traits, such as the number of panicles per plant, grain fertility, grain yield, and grain
size [16–19]. In addition, the overuse of agrochemicals to enhance rice yields leads to soil
acidification, destroys food web systems, contributes to water and air pollution, decreases
soil fertility, and releases greenhouse gases [20–24]. Methane (CH4) is the second most
important greenhouse gas, with a higher warming potential than carbon dioxide. Paddy
fields are the common source of anthropogenic CH4 emissions, accounting for around
10–20% of emissions [25].

Thus, these issues indicate the need for sustainable management practices to enhance
rice production and, at the same time, reduce contribution to climate change. Microorgan-
isms, mainly bacteria, play a vital role in sustainable agriculture with the ability to promote
plant growth, reduce plant stress caused by abiotic and biotic factors, nutrient recycling,
and manage soil fertility, leading to low usage of chemical fertilizers and pesticides that
pose adverse effects on soil or the crops [26]. Purple non-sulfur bacteria are phototropic
microorganisms that can enhance plant growth, boost resistance to environmental stress,
improve the yield and quality of edible parts, alleviate salinity stress, improve plants’
resistance to heavy metal stress, and mitigate greenhouse gas emissions [27]. Therefore,
this review paper discusses the importance of using purple non-sulfur bacteria to increase
rice crop growth and yield sustainably. The article also seeks to identify the research gaps
from previous studies on rice using PNSB and suggest pathways for future research.

2. Purple Non-Sulfur Bacteria (PNSB)

Photosynthetic bacteria (PSB) are procaryotes capable of carrying out photosynthesis
by converting light energy into chemical energy. These photosynthetic bacteria can either
grow in the presence or absence of oxygen (aerobic and anaerobic conditions) and can either
use organic or inorganic substances as an electron donor to fix the atmospheric nitrogen
(N2) and carbon dioxide (CO2) [28] (Figure 1).
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The purple non-sulfur bacteria belong to the anoxygenic group of PSB, and their
major groups include Rhodopseudomonas spp. and Rhodobacter spp. [29]. They are naturally
present in wastewater ponds, lagoons, lakes, sediments, wetland ecosystems, moist soils,
hypersaline systems, and marine ecosystems [30–32]. They possess versatile metabolic
pathways [28] and, therefore, are widely used in the livestock and fisheries industries [33],
in bioremedial methods for heavy metals and sewage [34,35], and in biofuel production
(electricity or photohydrogen) [36]. Studies have also shown that PNSB help boost soil
fertility when applied directly to the soil, whereas PNSB applied to plants help improve
crop growth and yield.

2.1. Plant Growth Promotion and Yield Improvement in Rice by PNSB

Auxins are plant growth hormones that are produced by plants naturally. Indole-
3-acetic acid (IAA) is an auxin that assists in plant development and regulates several
plant growth and behavioral processes throughout the plant’s life cycle [27]. Among other
bacteria, four PNSB strains (KK415, TN110, TN217, and TN414) also produce IAA [37],
which assists in plant growth and development. IAA produced by PNSB helps to activate
cell roots and plant mineral uptake [37], stimulates root formation and seed germination,
enhances fructification and vegetative growth, improves biosynthesis of compounds and
photosynthesis, and assists in coordinating plant growth under stress conditions [38–43].

Few studies were done on rice to examine the potential of PNSB inoculation on crop
growth and yield. A study by Kobayashi & Haque indicated that rice cultivated with
Rhodopseudomonas capsulatus (R. capsulatus) supplied as PNSB powder to soil with 0.5 g
of N, P, and K once during the reproductive phase increases the grain yield of rice [44].
The study indicates that the grain yield increase was due to the production of uracil and
proline by the PNSB, whereas the soil detoxification by the PNSB led to an increase in
soil fertility, thus improving plant growth. Another study on rice using R. capsulatus
and Azotobacter vinelandii (A. vinelandii), with 600 mg and 60 mg protein, respectively, in
hydroponic growing media, shows that the flowering and panicle formation was shortened
to 100 days after germination with increased size and volume of root hairs [45].

Yoshida et al. inoculated R. capsulatus in compost at a final concentration of 109 cells g−1

twice in a field trial, resulting in an increased rice yield and ear number [46]. Soaking rice
seedlings for 30 min in R. capsulatus cell suspension increases dry weight, plant height,
grain yield, and straw and grain nitrogen content [47]. Studies have also shown that inoc-
ulating the R. capsulatus in the roots of rice seedlings in the hydroponic plant production
system increases the shoot dry weight, shoot height, shoot and root nitrogen content, and
root number, and decreases the root length and dry weight [48]. On the other hand, a pot
experiment by Harada et al. shows that inoculation of PNSB into the waterlogged paddy
field soils increases rice grain yield, with the higher grain yield achieved by the combined
application of PNSB and rice straw [49]. When rice seeds were coated with an R. capsulatus
cell suspension (108 CFU ml−1) in 10% (w/v) gum Arabic solution, it led to an increase in
shoot weight and height, straw nitrogen concentration, number of productive tillers, grain
yield, number of grains per panicle, and grain nitrogen concentration [50].

Finally, inoculating PNSB through a foliar application on rice crop plants under field
conditions of a tropical climate significantly improves growth and yield even under cooler
temperatures and low light conditions [6]. This effect was shown in the recent study done
by Shan et al., indicating that the inoculation of R. palustris through foliar application
under field conditions improves rice crop tiller number, leaf chlorophyll content, lodging
resistance, root length, root dry weight, productive tillers per plant, average grain per plant,
grain yield, grain weight, and harvest index.

These studies revealed that PNSB inoculation on plants or soil improves soil fertility
and photosynthesis rates, thereby improving plant growth and yield. However, PNSB
inoculation alone has little to no effect on plant growth and yield, and as such, fertilizer
application is necessary to achieve improved results [50]. Combining R. capsulatus with
chemical nitrogen fertilizers enhances the usage efficiency of synthetic nitrogen fertilizers.
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Likewise, combining Rhodopseudomonas palustris spp (R. palustris) of PNSB with Bacillus
subtilis (B. subtilis) can further enhance rice yields [51] due to the synergetic effects of their
co-inoculation on plant growth. The R. plaustris is an important strain of PNSB that is used
as a biofertilizer [52], while B. subtilis is a biological control agent that protects plants from
phytopathogenic organisms [53]. Their combined effects help to improve the growth of
various crop plants. However, excessive crop yield losses due to abiotic stress are a major
threat to agriculture [54], and findings have shown that the inoculation of PNSB on crops
can help alleviate both plant biotic and abiotic stresses [28].

2.2. PNSB Helps Alleviate Plant Stress in Rice

The production of reactive oxygen radicals higher than the usual amount in plants is a
result of the stresses caused by environmental changes [55–59]. As a plant goes through
abiotic stresses caused by air pollution, drought, extreme temperature change, heavy met-
als, herbicides, nutrient deficiencies, salinity, and UV radiation, they accumulate reactive
oxygen species (ROS) [60–64], which are free radicals and non-radical molecules [65]. These
include hydrogen peroxide (H2O2), hydroxyl radicals (OH), perhydroxyl radical (HO2),
and superoxide radical anions (O2

−) [27,66]. Antioxidant enzymes, such as ascorbate
peroxidase, catalase, glutathione reductase, and superoxide dismutase, detoxify the over-
produced ROS. However, under extreme saline conditions, the antioxidant enzyme activity
is reduced [27], leading to the overproduction of ROS [67] and causing damage to lipids,
proteins, macromolecules, and carbohydrates [66]. Therefore, these antioxidant enzymes
need to be provided to plants externally, or their synthesis needs to be promoted [27] for
direct scavenging of free radicals to increase antioxidative defenses. One of the sustainable
ways to promote plant growth and productivity even under abiotic stress conditions is by
using microbial biostimulants [54].

The 5-aminolevulinic acid (5-ALA) is one of the promising biostimulants [68] and
vital antioxidant promoters [69] that shields the photosynthesis apparatus during stress
conditions [70] by acting as a shielding mechanism against ROS. The 5-ALA boosts the
tolerance of plants toward salinity [71–73], temperature, drought, low-light stress [74],
and biodegradable herbicides [75,76] (Figure 2). On the other hand, as a growth regulator,
5-ALA also regulates plant growth and development at different growth stages [77]. The
exogenous application of 5-ALA also assists in chlorophyll accretion, thereby increasing
photosynthetic activity in plants [72,78]. The 5-ALA is also responsible for enhancing
the production of the essential cofactors of CO2 fixation—ATP and NADPH [70]—and
microorganisms can be an important source of 5-ALA for plant production due to the
higher price of the commercially produced 5-ALA [72]. The PNSB species R. palustris,
Rhodovulum, and R. sphaeroides produce 5-ALA [37,72,79], a plant growth regulator that
assists in plant growth and yield and alleviates various abiotic stresses in plants [80].

Kantha et al. studied rice inoculated with R. capsulatus under salt stress conditions and
concluded that using PNSB product can reduce the inhibition of rice husk carrier and rice
straw and increase root dry weight, root length, shoot dry weight, and plant height [81]. On
the other hand, Kantachote et al. applied 0.75 kg ha−1 of R. palustris spp of PNSB product
fortnightly during the vegetative stage and weekly during the reproductive and maturation
phase of rice, revealing that the PNSB has the potential to mitigate salt stress conditions in
rice and increase the grain yield and grains per panicle [82].

Moreover, toxic molecules such as amines, hydrogen sulfide, etc., found in soil are
metabolized by the PNSB, leading to soil detoxification, thereby helping improve soil
fertility and plant growth conditions [44] (Figure 3). PNSB uses a variety of mechanisms,
such as absorption on extracellular polymeric substances (EPS) bound to the outer surface
of the cells, within cell accumulation, conversion of toxic to non-toxic compounds through
redox transformation, and conjugation in the siderophores, to alleviate stress caused by
heavy metals [37,83–85].
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A study by Nookongbut et al. reveals that the R. palustris spp of PNSB can reduce
arsenic (As) stress in rice crops by reducing As accumulation, leading to an increased shoot
and dry root weight, increase in shoot height, and enhanced photosynthesis rate [84]. The
study also concluded that reducing As accumulation in plants makes it possible for rice
farmers to produce safer rice for consumption from contaminated paddy fields. Another
study showed that the R. palustris spp of PNSB has the potential to immobilize the lead
(Pb) and cadmium (Cd) metals [86], which otherwise, when present in excessive amounts,
can inhibit photosynthesis and respiration, thereby reducing rice crop productivity [87].
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The study by Yoshida et al. showed that R. capsulatus spp of PNSB inoculation increases
rice yield and ear number and can decrease the damage from hydrogen sulfide (H2S) [46].

So far, studies on abiotic stress mitigation using PNSB show impressive results. How-
ever, more work is needed to prove these results under different growing conditions and
soil types. Since rice is grown under field conditions, the performance of this bacteria in
mitigating biotic and abiotic stresses should also be studied under field conditions. PNSB
has also shown other benefits to the environment and human health, such as the potential
to reduce methane (CH4) emissions from the paddy fields, helping ease the problem of
global warming (Figure 3).

2.3. PNSB Inoculation Reduces CH4 Emissions from Rice Fields

Two common problems of waterlogged rice fields (organic or saline) are low productiv-
ity and CH4 emissions [82]. Carbon dioxide (CO2) and CH4 are among the most significant
greenhouse gasses since the 20th century, contributing to global warming and climate
change. As indicated earlier, CH4 holds a 20–25-times greater potential for global warming
than CO2. Waterlogged rice fields are among the most important anthropogenic sources of
CH4, with around 60 Tg of CH4 year−1 contributing to global CH4 emissions [88].

The study by Kantachote et al. showed that applying 0.75 kg ha−1 of R. palustris spp of
PNSB on rice fortnightly during the vegetative stage and weekly during the reproductive
and maturation phase increased not only the grain yield and grains per panicle but also
decreased the CH4 flux [82]. The PNSB competes with the methane-producing bacteria
for a similar substrate and lowers the CH4 emission by suppressing the methanogens
population in the rice field. However, only a single study has been conducted to assess the
effectiveness of PNSB in mitigating the CH4 emission from rice fields; therefore, further
research is needed to verify these results.

3. Research Gap

Even though research on rice using PNSB has been done, the frequency and dosage
of PNSB on rice crop plants are still unclear due to the variations in the results obtained
from various research [27]. For example, inoculation of R. capsulatus with A. vinelandii in
the nutrient solution deficient in nitrogen for rice seedling growth shows normal growth
and panicle and flowering formation in 40% of the plants, indicating bacterial nitrogen
fixation [45]. However, it was clear that R. capsulatus alone cannot support plant growth, as
revealed by the low nitrogen content in plants and 10% panicle formation before harvest.
No such results were obtained in a similar study by Elbadry and Elbanna [48]. In another
example, Harada et al. inoculated R. palustris KN122 in the waterlogged pots containing
rice seedlings with and without using the rice straw, and the results show that the treatment
did not affect the shoot dry weight [49]. However, previous studies have shown that
growth and nitrogenase activity is promoted by including rice straw in the waterlogged
soil of paddy fields [89–91] since it provides a better surface area for bacteria to colonize.
In another study, the total number of tillers and the number of productive tillers were
unaffected when inoculation was done without rice straw; however, the total number of
tillers and productive tillers increased by 10–30% and 15%, respectively, when rice straw
was used.

Moreover, limited studies under field conditions have been conducted to understand
the effectiveness of PNSB inoculation on rice crops. Compost inoculation of R. capsulatus
resulted in increased ear number, rice yield, and decreased damage from hydrogen sulfide
(H2S) [46]. Likewise, soil application of R. palustris fortnightly during the vegetative stage
and weekly during the reproductive phase of the rice crops increased grain yield and grain
per panicle and a decreased CH4 flux under saline conditions [82]. Another study shows
that the seeds were coated with R. capsulatus before transplanting in the field, resulting in
improved shoot height, shoot weight, number of productive tillers, straw, grain nitrogen
content, number of grains per panicle, and grain yield [50]. Each of these field-based
studies used different strains of PNSB, which becomes difficult when comparing the results
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and deciding which species of PNSB are exceptionally effective. On the other hand, these
studies used different sets of parameters for the experiment, which becomes challenging
when comparing results. Therefore, further research under field conditions is greatly
needed to understand the effectiveness of these PNSB strains in successfully developing
biofertilizers for rice crops.

Besides, in recent years, plant diseases, either microbial or viral, have been shown
to cause profound crop losses [27]. PNSB induces systematic resistance against viruses
through the compounds they produce, i.e., 5-ALA, IAA, and siderophores [92]. This effect
was shown in the study that investigated the effectiveness of PNSB in suppressing plant
diseases, such as the tobacco mosaic virus (TMV) in tobacco plants [93]. The research con-
cluded that PNSB, through foliar application, was able to successfully suppress the problem
of TMV in tobacco plants grown under field conditions. From this study, we assume that
PNSB also has the potential to control rice crop diseases when inoculated through foliar
application. However, no such research has been conducted to investigate these effects
under field conditions or controlled environments. As such, further experiments must be
undertaken to recognize the effectiveness of PNSB in controlling rice diseases, which could
help reduce our dependency on chemical pesticides.

Furthermore, studies done to investigate the effectiveness of PNSB in mitigating
abiotic stress, i.e., heavy metal and salinity stress in rice crops, proved successful [72,84].
However, these studies were done in a controlled environment and do not exhibit a clear
picture of the effectiveness of PNSB in mitigating abiotic stress in rice crops under field
conditions. On the other hand, the results of these studies do not agree with each other,
leaving a gap for further investigation. As such, further studies are needed to understand
the effectiveness of PNSB in mitigating abiotic stress in rice crops under field conditions.
Finally, since most of these experiments were done once, there is also a need to repeat these
studies to prove the effectiveness of these results, especially under field conditions (normal
growing conditions for rice crops).

4. Conclusions and Future Research Needs

This review shows an urgent need to increase rice yield due to the higher demand,
which will significantly increase in the coming years with an increase in the global popula-
tion. However, in an era of climate change, it is vital to employ sustainable management
practices to improve rice growth and yield. One of the sustainable ways is to use the PGP
bacteria, such as the PSB, of which the PNSB can be a suitable candidate to help increase
yield by improving soil fertility, alleviating abiotic stresses, and eliminating methane emis-
sions from waterlogged fields. However, the application rate and the application method
of these PNSB for rice production (same for other crops) is still unclear, as shown from the
results (incomparable results) of the previous studies. It is also unclear which species of
PNSB can be used to get the most benefits out in the rice field. Therefore, further research
on application methods, application rate, and suitable PNSB species for successful crop
production needs to be identified to create a suitable biofertilizer to help improve the
growth and yield of crops. Additionally, detailed research needs to be done under field
conditions to recognize the effectiveness of this bacteria in enhancing the productivity of
the field crops, such as rice, which was lacking in previous studies.
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