
POTENTIAL OPERATORS AND CONSERVATIVE SYSTEMS* 
Giovanni Romano** 

S O M M A R I O :  Si applica la teoria degli operatori potenziali 
negli spazi di Hilbert per formulare una definizione rigorosa 
di carico conservativo. 

Ci~ consente di dimostrare in modo corretto una ben nota con- 
dizione di conservativita usualmente introdotta ton una argo- 
mentazione inesatta. 

I risultati generali ottenuti sono applicati al caso particolare 
di carico-pressione. 

L'analisi ~ condotta nel campo delle grandi deforma~oni ot- 
tenendo una condizione generale, necessaria e sufficiente, affinch~ 
il carico-pressione sia conservativo. 

S U M M A R Y :  The theory of potential operators in Hilbert 
spaces is applied to a rigorous definition of conservative loading. 

This approach allows correct proof of a well-known condition 
of conservativeness, usually introduced with a misleading argu- 
ment. The special case of pressure loading is then examined as 
an application of the previous results. The analysis is performed 
in the large (finite deformations) getting a general condition for 
the conservativeness of pressure loading, not previously found to 
the author's knowledge. 

Introduction.  

Conservative systems play a specially important role 
among mechanical systems in general and the energetic 
approach provides a simple and fascinating interpretation 
of  their behaviour. However, in spite of  its basic interest, 
the notion of  conservativeness has been often introduced 
in an intuitive form in the context of  continuum mechanics. 

This circumstance has often caused the related topics 
to be treated in a restrictive and sometimes misleading way. 
A rigorous approach to the subject is presented in this 
paper. 

It  is founded upon the mathematical theory of  potential 
operators that is the natural extension to the continuum 
of the well-known theory of  differential forms of  ordinary 
calculus. The basic definitions and results of  the theory 
of  potential operators are reported in the special case of  
real Hllbert spaces that suffices for the usual purposes 
and allows us to simplify the exposition. The usual definition 
of  potential operator is slightly generalized to include the 
important case of  non-homogeneous boundary conditions. 
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The general theory is then applied to the definition of  
conservative loading. 

A necessary and sufficient condition is found to be the 
selfadjointness of  the Fr~chet differential of  the load ope- 
rator. I t  is worth noting that this condition has often been 
referred to in the literature on the linear theory of  elastic 
stability but its proof has been attributed, with a misleading 
argument, to a recourse to the well-known Betti reciprocity 
theorem of  classical elasticity [2]. 

The special case of pressure loading is then examined 
in full generality getting, as an application of  the previous 
results, a necessary and sufficient condition for its conser- 
vativeness. 

It is the first example, to the author's knowledge, of 
such an analysis performed "in thc large" (finite deforma- 
tions). For the sake of completeness an appendix provides 
some results of surface deformation theory that are uscd 
in the paper. 

1. Potential Operators. 

In this section we shall briefly present the fundamental 
results of  potential operators theory in real Hilbert spaces. 

We would point out that an analogous theory can be 
developed in (more general) Banach spaces, but restriction 
to the special case of  real Hilbert spaces suffices for our 
purposes and greatly simplifies the presentation. 

It  may be noticed moreover that from a rigorous point 
of view some of  our assumptions could here and there be 
relaxed to some extent but again this would result in a 
formally more involved treatment of  the subject. However, 
this paper is not addressed to mathematicians, who may 
find elsewhere [1] a more general and thoroughly deve- 
loped theory, but is intended to carry over into the engi- 
neering fidd some useful concepts and results of  the ma- 
thematical theory of  potential operators. 

a) Basic Definitions. 

Let H be a real Hilbert space. The scalar product of  two 
elements wiU be denoted by: 

(u, w)  u, w E H  

Let A be an operator defined on a subset D c H. 
We shall assume that D is a coset of  a subspace HD of 
H, i. e.: 

V u ,  w ~ D  ~ u - - w E  H ~ .  
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In  the sequel we shall denote by: 

A ' ( u ) h  u ~ D h ~ Ho 

the Fr6chet differential (1) of  A at the point  u with incre- 
ment h. 

We give the following: 

Definition. 

_An operator A is said to be potential on D if  there exists 
a Frechet differentiable functional ~ on D such that: 

~'(u)h = ( A ( u ) ,  h) V u E D, h ~ Ho.  

We shall briefly write A = grad ~. 
A will be cal~ed the gradient of  ~ and ~ the potential 

of  A on D, 
This definition is a slight generalization of  the usual one 

which requires the linearity of D. 
Allowance for the nonlinearity of  D is basic in most 

applications to include the case of  non homogeneous 
boundary conditions. 

b) Basic Theorems. 

If  the domain D of the operator A is simply connected 
the following theorem gives a necessary and sufficient 
condition for the operator A to be potential on D. 

Theorem 1.1. 

Let A be a continuous operator defined on an simply 
connected domain D_c H. In order that A be a potential 
operator on D it is necessary and sufficient that the curvi- 
linear integral 

(A (u ) ,  ,¢,~> (1.2') 

be equal to zero around any closed curve which lies in D. 
Evidently this last condition is equivalent to saying that 
the cu~vilinear integral: 

f L ( A ( u ) ,  du) (1.2") 

is path independent, i. e. for any curve L lying in D, it  
does not  depend on the shape of  the curve but  only on 
its endpoints. 

I f  each of  the conditions (1.2) is satisfied the potential 
of  A is uniquely determined, to within an additive con- 

stant, and is given by: 

~ ( u ) =  ~(u0) + f ~ ( A ( u 0  + t ( u - - u 0 ) ) ,  ( u - -  uo)) dr. (1.3) 

I f  the domain D is linear, taking u0 = 0, (1.3) may be 
simplified to: 

£ ~(u) = ~(0) + (A(tu), u) dr. (1.4) 

I f  operator A is supposed to be Fr6chet differentiable 
on D a convenient test for the potentialness of  A is given 
by the following: 

Theorem 1.2. 

Let A be a Fr~chet differentiable operator on the simply 
connected domain D c H. For A to be potential on D 
it is necessary and sufficient that: 

( A ' ( u ) h l ,  h.o) = ( A ' ( u ) h 2 ,  h i )  

u ~ D  h t ,  h o ~ H o  

(1.5) 

i. e. that its Fr~chet derivative be a symmetric operator. 
I t  is worth noting that a linear operator is potential 

if  and only i f  it  is selfadioint, since it coincides with its 
Fr&het  derivative. I f  L is a linear selfadjoint operator on 
D c H its potential will then be given by: 

£ ~(u) = ~(u0) + (L(u0 + / ( u - -  u0),  ( u - -  u 0 ) )  dt = 

= ¢(u0) + + (L(u - -  u0), (u - -  u0)) + (Lu0,  u - -  u0) 

which, if D is linear, may be simplified to: 

1 ( L u ,  u)  
~(u) = ~(0) + T -  (1.6) 

It  is interesting to show how the condition (1.5) reduces 
to a familiar form when the space is Euclidean (finite 
dimensional). 

In  fact let {et} i = 1, 2 . . . .  , n be an orthonormal basis 
in the Euclidean vector space E , ,  and set(2): 

h l  = ~ l l e l  

b2 ~ ~2~ek 

k, i = 1, 2, ..., n 

then condition (1.5) may be written as: 

( A ' ( u ) a l ~ e , ,  , ~ e A - ) =  ( A  (u)a2, A- a l~ei ) .  (1.7) 

By the arbitrariness of  the components cq, and ct2A- 
condition (1.7) reduces to: 

( A ' ( u ) e ~ ,  e~:)~-~ ( A ' ( u ) e k ,  e , ) .  (1.8) 

Now setting A(u)  = A~(u)¢j and u =  utel and noting that: 

(1) We recall that an operator A is said to be Fr~chet 
differentiable at u e D if there exists a linear operator A'(u) 
such that 

A(u + h ) -  A(u) = A'(u)h + ~(u, h) 

with 
II c~ (u, h)It 

l im - -  0 V h e Ho 
Ijhll~0 [[ h l[ 

there I]" II is the norm induced by the scalar product. 

0Aj(u) 
A ' ( u ) e l =  Ouf e~ 

we have: 

.0AKu) 
( A ' ( u ) e f ,  ek> = K ~ ej ,  e~) = - -  

0Ak(u) 
Out 

(t) We adopt the usual summation convention with respect 
to repeated indices (Einstein convention). 
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so that condition (1.5) becomes: 

0A,(u) = 0Ak(u) i, k = 1, 2, ..., n 
Ou~ Ou~ 

that is the usual condition of  zero rotation of  the vector 
field A(u).  

2. Conservative loading. 

We shall now apply the previous theory to give an 
appropriate definition of  conservative loading and to 
formulate the necessary and sufficient condition for a 
load to be conservative. To this end let us first introduce 
some background notions. 

Let us consider a body B embedded in the Euclidean 
point space and denote by B x the domain occupied by 
B in the configuration X and by OB x its boundary. 

Let us choose a reference configuration k and denote 
by x and X respectively the position vectors of  the same 
particle of B in the configurations X and k (Fig. 1). 

con[iguration k 

~ B k  configuration Z 

o ~  aax 
Fig. 1. 

ORk. 

u asslgned 

! 
~' 08kp • 

Fig. 2. 

Now if we denote by: 

V - W  

the scalar product between two vectors of the 3-dimensional 
Euclidean vector space, we may introduce an Hilbert 
space on the set L~(OBkv) of square integrable vector 
functions on OBhv defined by: 

v = v(X) X E OB~ 

with the scalar product: 

(v, w) = fOBk~ V . wars. (2.2) 

Let us now introduce the load operator p defined on 
the set D of  admissible displacement functions, L e. sa- 
tisfying (2.1") 

pk = p ( u ) .  

Since it is trivially verified that the condition of  linearity 
of the set Ho  is satisfied, we may give the following: 

The displacement vector from k is then defined by: 

U : x - - X .  

If we denote by t x the tractions in the configuration X 
we define the equivalent tractions tk per unit area in the 
reference configuration by: 

faPx txds = fOpk tkds 

where OP is the boundary of  an arbitrary part P of B. 
Now let {0B1,1,, OBk,, } be a partition of  the boundary 

of  B. Mixed boundary conditions of  place and traction 
are defined if we assign the traction t~ on OBk~, and the 
displacement u on OBk,, i. e. (Fig. 2): 

tk = pk(X, t) X ~ OBkv 

u = ~(X, t) X ~ OBku. 

In the sequel we shall be interested in the special case 
in which the tractions on OBkv depend directly only on 
the displacements (positional loading): 

te = pt~[u(X, t)] X E 0B~a0 (2.1') 

u = ~(X, t) X ~ OBku. (2.1") 

Definition 2.1. 

A load distribution p(u) is said to be conservative if the 
work done by the load distribution vanishes around any 
closed curve in the space of  admissible configurations (de- 
fined by the displacement function u). In mathematical 
terms this condition is written as: 

(p(u),  du) = 0 (2.3) 

where the curvilinear integral can be taken around any 
closed curve in the domain of  p, i. e. in the set D of  ad- 
missible displacement functions. 

Condition (2.3) may alternatively expressed stating that 
the operator p(u) is potential on D. 

The functional P (defined to within an additive constant) 
such that: 

p = grad P 

will be called the load potential. 
I f  we assumep(u) to be Fr~chet differentiable, a necessary 

and sufficient condition for the existence of  the load po- 
tential will be: 

t* 
| o ~  p ' (u)h l  • h2ds= Jask~ p '(u)h2 • hzds 

u ~ D  h~, h 2 ~ H o .  

(2.4) 
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I f  the symmetry condition (2.4) is satisfied the potential 
will be: 

= V(uo) + [ dt [ p(u0 + t ( u -  u0)). ( u -  uo)d, 
a 0 aOB kp 

(2 .5)  

which in the case of  linearity of  D may be simplified to: 

appendix we have: 

p (u)u = p(e,~evqrF~:rUj.qnv)e, 

where: 

n k  ~ n p e ~  . 

(3.3) (3) 

P(u)  = P(O) -~ f l i t  f p ( t u )  • U d r .  ( 2 . 6 )  
o 0 dDB kp 

It is apparent here that the equivalence between the sym- 
metry condition (2.4) and the defining condition (2.3) 
is a general mathematical result. 

And yet surprisingly in the literature on the theory 
of  linear elastic stability this equivalence has been attri- 
buted to the same argument that proves the well-known 
Betti reciprocity theorem of classical elasticity [2]. This 
seems to be a major shortcoming of  the lack of  a rigorous 
approach to the theory of  conservative systems. 

Fig. 3. 

The symmetry condition (2.4) may now be written as: 

f0 - f0 . e ~l ~e~qr F tcrUt ,qu _~. e t l t~4vqr F A.rUl ,qutn~ds 
ekp Bkp 

3. A special case: Pressure loading. n t t  U ', E HD 

As an example of  application of  the previous theory 
we shall now derive the necessary and sufficient condition 
for the conservativeness of  a special, interesting case of 
loading, i. e. pressure loading. 

Let us first state: 

Definition 3.1. 

A surface load distribution is said to be a pressure loading 
if its intensity is constant during the deformation of the 
body while its direction remains parallel to the unit normal 
to the boundary surface (assumed to be regular). 

Let us consider a closed curve C on 0Bxv and denote 
its interior by 0Bxw (Fig. 3). We shall consider the pressure 
loading defined, in the generic configuration X by: 

px(x) = pnx(x ) x ~ OBx~ 
(3.1) 

p x ( x )  = 0 x ~ abe--  OBx~ 

and hence: 

' "  

e~jkem,-F~r(UjU~ ).q nv ds = 0 .  (3.4) 
Bkp 

Now since emrFer, q ----- e~r(der + uk,r),q = 0 condition 
(3.4) becomes: 

= 0 
Bkp 

and in vector notation: 

fa  rot [Fr(u ' × u")] • n ,  ds = 0 
B klo 

where u '  × u" denotes the vector product of u '  by u".  
Hence by Stokes' formula: 

where nx(x ) is the unit normal to cgBx~ at x and p is a con- 
stant that measures the intensity of  the load distribution. 

Now by a formula of  surface deformation theory (for- 
mula (4.7) of  the appendix): 

f0Bx nxds = fon~ a~ det F nMs (3.2) 

where the tensor F is the deformation gradient from k 
to X and nk the unit normal to the surface aBk in the 
reference configuration k. 

By (3.2) the load distribution in the reference confi- 
guration k equivalent to (3.1) on aBkve will be: 

p ,  = p(u) = paedet F nk.  

Let us now evaluate the Fr&chet differential of  p(u) 
along a direction u* E H n .  I f  we choose an orthonormal 
basis {e~} in the Euclidean space by formula (4.5) of  the 

~ FT(u' × u") • ,  d l  = 0 (3.5) 
O 

where x is the unit vector tangent to the closed curve C. 

The simplest case in which (3.5) is satisfied is when 
on the dosed curve C the displacement u is assigned and 
hence u '  = u " =  0. 

Condition (3.5) is quite general and to the author's 
knowledge has not been found before. Two special cases 
of  0.5)  have been given by Pearson [3] and Bolotin 121, 
the former for infinitesimal deformations and the latter 
for pressure loading on shells. 

I f  we consider the case of  hydrostatic pressure, i. e. 
pressure loading on the whole surface OBk with constant 
intensity, the load potential assumes a particularly simple 
form. 

(2) The comma (,) as usual, denotes the derivative operator. 
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P(u) = f2 art f a . ,  p~r  det F ( t u ) n k .  u & =  

= p  f2dt  f , ,  V . { (O~de tF)~ 'u}dv=  

= p f~ dt [ L ,  TR{(O, detF(tu)) '~Tu} dv + 

Now ff we set: 

0x ~x 
X~----- Or/= x a =  a ,  f l =  1 ,2  

by the chain rule of  differential calculus we have: 

,q  = FX~ (4A) 

where F is the deformation gradient from k to X- 
The area of  the surface S ,  will be given by: 

+ fak {V • 0r  det F ( t u )} .  u dr. (3.6) (4) 

Now the last integral in (3.6) is equal to zero since: 

1 ~qr, F 1 ~, ~, 0 ~ 7 . 0 F d e t F = ~ e o k e  ( .qV.r), ~e* = 

by the symmetry of  the second derivatives of the displa- 
cement components. Finally noting that: 

~Tu = -fit- F( tu)  

we have: 

T R l [ & ~ d e t F ( t u ) ] T ~ F ( t u l l  = d - ~  det F( tu)  

and hence: 

p(u)=p f2 dt fn" d det F ( tu l  dv = 

= p f~u {det F(u)  - -  det F(0)} dv = p { W  x - -  Yk} 

where Y x and Y~ denote respectively the volume occupied 
in the current and in the reference configurations. 

fsk ds = f f  [det (X~ • Xp)]t d~d~l~ = 

= fflix  × X=lldV dV= (4.21 

where a dot ( • ) is the symbol for the scalar product in 
the Euclidean vector space, IlvlJ is the norm of  the vector 
v and the vector product has been denoted by x .  Moreover 
we have explicitly: 

Xl  • Xl  Xl  • X~ 

det (X= • Xa) ---- i 
X2 • X l  X9 • X21 

i. e. the Gram determinant of  the vectors Xl and X2. 
and the equality in (4.2) follows from the well-known 
formula: 

det (X=. X. )  = llX~ × X,ll~. 

Now the unit normal to S~ is given by 

X~xX~ 
= llX  × X=ll" (4"31 

I f  we set V = X ~ x  X~, v = x ~ x x ~  and choose 
an arbitrary basis in the Euclidean space we have: 

1 ~ q r 
W~ = T ~ x ~  x ~  (4.4) 

A p p e n d i x .  

Surface Deformation. 

Let us consider a body B in the Euclidean space and 
choose an arbitrary regular surface Sk in the reference 
configuration k. Let the parametric equations of  St be: 

X = X(~l ,  ~7~). 

In an arbitrary configuration X of  B the deformed 
surface will be represented by: 

x = x(~1, ~).  

(4) The V denotes the symbolic derivative operator defined 
with reference to the basis eU by: 

~ , / ¢e :  l: 

where , g is the covariant derivative operator. 
Hence V a denotes the gradient of vector a as a function 

of X and V . a  and V . T  the divergence of the vector a 
and tensor T respectively. The symbol TR ¢A} denotes the 
trace of the tensor A and A T the transpose of  A. 

where e~p is the alternating tensor on the surface [4]. 
From (4.4) it follows that: 

e "  X : X r .  = v ,  . 

Now we have: 

v+ = T e°ee x 'x#  2 

1 - e,jkdq"F~.~F.~rV~, (4.5) 
2 

and 

2 " " " 

= x : . , c ;  det  F = x% det F 
2 

and in vector notation: 

Fr(xx x x2) = (Xl × X=) det F 
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whence, by (4.2) and (4.3): 

~ x n x d s =  ~ (det F)F-Vnads 

or, noting that (s): 

a r  det F = (det F)F -T, 

fsx nxds= fs (OFdet F)nM s 

(4.6) 

(4.7) 

(6) A proof of (4.6) may be found in Ref. [5]. Received 29 December 1971. 
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