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Abstract Key studies supported by species-level data

collection have provided early indications of the potential

implications of unmitigated change for the ecosystems and

biodiversity of southern Africa. These suggest a significant

threat to biodiversity, both from changing bioclimatic

suitability and changing atmospheric CO2 level that seems

to affect the competitive balance between woody and

herbaceous plants in the dominant savanna biome of this

region. Modeling efforts suggest significant implications of

unmitigated climate change for this region, but assump-

tions underpinning methods such as bioclimatic modeling

must be recognized, some of which might lead to over

estimates of the rate and extent of the potential impacts.

General trends and level of coincidence between various

types of studies do support a high degree of concern for a

substantial portion of southern African biodiversity under

unmitigated climate-change scenarios. The most significant

changes in ecosystem structure (both increases and

decreases in woody plant cover), and associated faunal

diversity changes, are projected in the dominant savanna

vegetation type in this region, while the most significant

biodiversity loss is projected for the winter rainfall region.

Follow-up work to detect early signs of climate change

identify regions of high- and low-potential impacts, and

experimental work to test some important hypotheses

relating to the future evolution of climate-change impacts

across the region are very few and urgently required.

Keywords Bioclimatic modeling � Conservation �
Extinction risk � Fynbos � Savanna � Succulent karoo

Introduction

Southern Africa is home to an appreciable portion of global

biodiversity (Cowling et al. 1996; Myers et al. 2000), and

many of its ecosystems retain relatively intact species

assemblages across all trophic levels (Scholes and Biggs

2005). The region possesses an established network of

protected areas that contribute both to conservation targets

and to nature-based tourism (Brooks et al. 2001; Rodrigues

et al. 2004). However, rising pressures on biodiversity are

resulting from local and regional development pathways

and direct extractive resource use (Scholes and Biggs

2004). It is now increasingly appreciated that anthropo-

genic climate changes are likely to progressively cause

impacts on Africa and its biodiversity and that these will

generally be negative from both ecological and economic

perspectives (IPCC 2007a).

Southern Africa’s natural biomes (Rutherford 1999) are

overwhelmingly dominated by C4 grasslands with varying

cover of woody elements (Bond et al. 2005), either shrubs

(in the case of the Nama-Karoo Biome) or trees, which

include evergreen or drought-deciduous fine-leaved and

broad-leaved forms, in Savanna and Forest Biomes. The

natural geographic distribution of these biomes and local-

to-regional dominance of dominant plant growth forms is

determined largely by interactions between climate and

disturbance regime. Below *10�S latitude, maximum
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Université Joseph Fourier, Grenoble, France

123

Reg Environ Change

DOI 10.1007/s10113-010-0191-8



woody plant cover, for example, is strongly rainfall con-

trolled below *500 mm mean annual rainfall (MAR),

somewhat affected by disturbance regime within MAR

limits of 650 ± 134 mm MAR and strongly disturbance

determined above *800 mm (MAR) (Fig. 1, from Sank-

aran et al. 2005). Projecting climate change impacts in this

region therefore requires an understanding of climate-

disturbance interactions and their implications for assem-

blages of species (such as mammal browsers or grazers)

that may be dependent on both climate and vegetation

structure (habitat).

Global change pressures (land use, atmospheric com-

position CO2, nitrogen deposition, climate, and biotic

exchange) were summarized by Sala et al. (2000) and

have been generally confirmed for Africa (Scholes and

Biggs 2004; Hassan et al. 2005). Among leading pressures

identified internationally, recent analyzes for southern

Africa confirm an increasing prevalence of invasive spe-

cies, primarily plants (Richardson et al. 2000), which

poses challenges to conservation efforts in certain regions.

By contrast, the pervasive stress of nitrogen pollution

common in the northern Hemisphere (Sala et al. 2000) is

not a significant current threat in the region. Climate

change is increasingly viewed as a significant threat to

African biodiversity (e.g., Meadows 2006), particularly to

endemic species (Hannah et al. 2005; Malcolm et al.

2006).

Early signs of anthropogenic climate change are

emerging in southern Africa, especially in temperature

records (Pollack et al. 1998; Hulme et al. 2001; Schulze

2005), but unlike the northern Hemisphere, very little

information exists on observed responses of organisms,

species, and ecosystems to climate-change trends. Such

detection may be difficult to achieve, as biologic activity in

this region is controlled mainly by water availability

(Hawkins et al. 2003; Nemani et al. 2003), not minimum

temperature as is the case in Northern Hemisphere latitudes

where copious evidence reveals these emerging responses

to recent climate change (IPCC 2007a). Water availability

is a far more stochastic driver of ecological response and

less amenable to analyzes of long-term trends and therefore

less accessible to biologic impacts and their attribution

(e.g., Root et al. 2005).

Furthermore, fire regime is an important determinant of

ecosystem structure and function in this region (Bond and

Van Wilgen 1996; Bond et al. 2003b; Bond and Keeley

2005), introducing further stochasticity and tightly linked

species population-level responses. The region is also

characterized by climate variability on a range of temporal

scales (Tyson and Preston-Whyte 2000), driven most

Fig. 1 a Geographic

distributions of mean annual

rainfall-controlled (‘stable’) and

disturbance-controlled

(‘unstable’) savannas in

southern Africa. Vertical

hatching = ‘unstable’ savannas

([784 mm MAR); cross-

hatching = transition between

‘stable’ and ‘unstable’ savannas

(516–784 mm MAR); gray

shading = ‘stable’ savannas

(\516 mm MAR) (from

Sankaran et al. 2005).

b Projected ‘‘appreciable

changes’’ in terrestrial

ecosystem vegetation structure

by 2100 relative to 2000 as

simulated by Dynamic Global

Vegetation Model LPJ (Sitch

et al. 2003) for the IPCC SRES

A2 emission scenarios

(HadCM3-projected climate)

(Lucht et al. 2006; Schaphoff

et al. 2006). ‘‘Appreciable

changes’’ exceed a structural

change over at least 20% of the

area of a simulated grid cell

(adapted from IPCC 2007a)
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notably by ENSO forcing (Diaz et al. 2001; Glantz 2001).

All of these characteristics are likely to obscure clear and

unambiguous detection of systematic species responses to

climate trends. Nonetheless, since the late 1970s, signifi-

cant drying and warming trends have been noted in the

southern African subregion (Hulme 1996; Hulme et al.

2001) and strong contemporaneous warming trends have

been noted in south western and central regions of South

Africa (Warburton et al. 2005).

Several recent analyses suggest that projected climatic

and atmospheric change may induce significant spatial

shifts in optimal bioclimatic conditions for southern Afri-

can species (Rutherford et al. 2000; Erasmus et al. 2002;

Thuiller et al. 2006a) and may alter controls on ecosystem

structure and function (Bond and Midgley 2000; Hulme

et al. 2001; Bond et al. 2003a; Woodward and Lomas 2004;

Thuiller et al. 2006c). Recent work in this field has been

underpinned by increasing availability of geospatial data

and a growing understanding of the driving forces behind

ecosystem function (Bond et al. 2003b; Woodward and

Lomas 2004; Bond and Keeley 2005). However, significant

uncertainties remain at many levels, including those relat-

ing to climate projections, and species, habitat, and eco-

system responses (Midgley and Thuiller 2005; Neilson

et al. 2005). This paper briefly reviews recent projections

of climate-change impacts on southern African ecosystems

and biodiversity at three main organizational levels—

biome and ecosystem level, individual species geographic

range, and species physiologic response.

Climate-change projections for southern Africa

Rainfall gradients across much of southern Africa are

thought to be strongly influenced by sea surface tempera-

ture (SST) contrasts between the southern Atlantic and

Indian Oceans and their interaction with the near-

meridional position of the inter-tropical convergence zone

(Stokes et al. 1997). While West African and Sahelian

rainfall fluctuations may be of long duration, those in

southern Africa vary on a relatively short-time scale of

between 2 and 5 years, broadly congruent with fluctuations

in ENSO (Tyson and Gatebe 2001) and SST variability

(Nicholson 2001). Rainfall in the region has shown few

systematic trends during the twentieth century as a whole

(Tyson and Gatebe 2001), though the 1950s were generally

wetter, and rainfall has decreased consistently every decade

since (Nicholson 2001), with some evidence for an increase

in extreme rainfall events (Mason 1996). Drought extremes

in Africa during the latter twentieth century are not

unprecedented in the past two centuries (Nicholson 2001).

Analyses of temperature trends for South Africa clearly

show regions of consistent and significant warming during

the last two decades of the twentieth century (Warburton

et al. 2005).

A compilation of seven GCM rainfall projections for the

twenty-first century suggests a general summer drying

trend (*10–30% by 2080) in parts of southern Africa, and

some rainfall increases in eastern tropical latitudes, under

high fossil fuel emission scenarios, but there is a wide

range of inter-model variability (Hulme et al. 2001).

More recent projections summarized for the Intergov-

ernmental Panel on Climate Change fourth assessment

report (IPCC AR4) show a lack of agreement on the sign of

rainfall change over much of southern Africa (IPCC

2007b). Downscaling using both statistical and dynamical

methods reveals an emerging consensus for annual rainfall

changes of 10% or less, slightly increased in MAR for

some of the summer rainfall regions of southern Africa

toward the end of this century, but decreased rainfall in the

winter rainfall zone of the southern Cape, and western

summer rainfall areas (Hewitson and Crane 2006;

Engelbrecht et al. 2009). The few studies available under-

sample the full range of IPCC AR4 scenarios. Overall water

balance changes have been projected to reduce perennial

drainage and river flow substantially in southern Africa by

2070–2099 (De Wit and Stankiewicz 2006). Mean annual

temperature increases of up to almost 5�C have been pro-

jected for the interior of southern Africa by as soon as 2050

(Hulme et al. 2001), but IPCC AR4 suggest a range of

between 2.5 and 5.5�C by the end of this century, with

maximum warming centered on Botswana (IPCC 2007b).

Biome and ecosystem level responses

Responses at biome and ecosystem scales have been

addressed using two main approaches, the increasingly

sophisticated DGVM (Dynamic Global Vegetation Model)

ecosystem-level approach (e.g., Cramer et al. 2001; IPCC

2007a) and the correlative bioclimatic envelope approach

(Box 1981). The bioclimatic approach is considered

questionable at this level due to its many assumptions (e.g.,

unchanging species interactions, exclusive climate control

of ecosystem distribution, equilibrium between ecosystem

distribution and current climate), but nonetheless provides

useful insights into initial risk assessment, hypothesis

generation, and design of monitoring programs.

Bioclimatic approaches applied to biomes of South

Africa were among the first local studies to raise concerns

about the potential loss of bioclimatic niche space in that

country (Rutherford et al. 2000). This approach revealed

the potential loss of up to 65% of the area representing

current optimal bioclimatic conditions for ‘‘sensitive’’

South African biomes, namely the Fynbos and Succulent

Karoo (Rutherford et al. 2000). These studies assumed
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earlier IS92a greenhouse gas scenarios and used older

generation GCMs, such as HadCM2 (Perks et al. 2000).

Follow-up studies using more recent climate simulations

from HadCM3 based on IPCC TAR development scenarios

and employing more sophisticated statistical methods, such

as Generalized Additive Modeling (Guisan and Zimmer-

mann 2000; Guisan and Thuiller 2005), have confirmed the

essential conclusions of earlier biome-level work that

endemic species rich biomes, such as the Succulent Karoo

could show significant reduction in range of several tens of

percent (Midgley and Thuiller 2007), though the spatial

locations of persisting bioclimatic conditions may be

somewhat revised. A study of the impacts of anticipated

climate change on South African forest types suggests

shifts in altitudinal and latitudinal range that will be con-

strained by current fragmentation of natural habitats (Eeley

et al. 1999).

Hulme (1996) explored the impact of three climate

scenarios for 2050 (core, dry, and wet) based on IPCC FAR

methods (Carter et al. 1994), and employing the BIOME

DGVM (from more recent climate future simulations, e.g.,

De Wit and Stankiewicz 2006, it seems that the ‘‘wet’’

scenario is least likely to develop, and results for this are

therefore not considered here). This study found that the

impacts of climate changes alone (excluding the effects of

CO2 fertilization and associated gains in vegetation water-

use efficiency) caused an expansion of arid vegetation

types (mainly thorn-scrub savanna) by up to 30%, at the

expense of the Grassland type. However, with CO2 fertil-

ization effects included, mesic and tree-dominated Sea-

sonal Forest vegetation more than doubled their extent at

the expense of arid vegetation types.

A more recent study of Namibian ecosystems using the

Sheffield DGVM and HadCM3 climate simulation under

an SRES A2 scenario (Thuiller et al. 2006b) also found a

strong sensitivity of vegetation structure and function to

CO2 enrichment, with NPP reductions due to climate

change almost negated by CO2 fertilization, and a strong

increase in the success of C3 forms at the expense of C4

grasses. These findings are generally supported by DGVM

simulations summarized in the IPCC AR4 (IPCC 2007a),

which reveal that the most appreciable ecosystem structural

change in southern Africa under an A2 scenario occurs in

savannas and these range from both increases and decrea-

ses in woody plant cover (Fig. 1b).

The role of atmospheric CO2 enrichment in grasslands

and savannas could well be exacerbated by the mechanisms

that maintain the current balance between grasses and

trees. A key mechanism that prevents tree domination of

savannas is mediated by grass fires that kill tree saplings,

which are unable to gain sufficient carbon under low CO2

conditions to recover from fire damage—but could well do

so as CO2 rises (Bond and Midgley 2000; Bond et al.

2003a). Despite this clear CO2 sensitivity of southern

African ecosystems, its regional and possibly global

importance, and the uncertainties associated with it, no

empirical field experiment exists in southern Africa to

confirm or refute it. Greenhouse and early field-based

studies have confirmed positive CO2 impacts on grassland

water-use efficiency (Wand et al. 2000, 2002; Motete et al.

2005; Stock et al. 2005), and a recent greenhouse study

shows significant CO2 dependence of the resprouting

capacity of savanna trees (Kgope et al. 2010).

Patterns of increased woody plant cover have been

recorded in South African savanna systems under diverse

management regimes that now strongly implicate rising

atmospheric CO2 as a driver of this critical switch in

ecosystem structure (Wigley et al. 2010). Studies on the

impacts of such a thickening of woody cover show sub-

stantive impacts on animal diversity. Sirami et al. (2009)

showed that savanna thickening is likely to lead to a loss in

bird species richness at the landscape scale, and Munti-

fering et al. (2006) showed that wild habitat for cheetah is

significantly degraded by woody plant thickening.

Application of hydrologic modeling approaches sug-

gests strong reductions in surface water flows across

southern Africa (De Wit and Stankiewicz 2006), with

likely significant negative impacts on endemic biodiversity

that are as yet unquantified—especially for wetland envi-

ronments such as the Okavango swamp system (Haman-

dawana et al. 2008) whose feeder river could lose as much

as 30% of its flow by 2050. Biophysical approaches applied

to modeling dune field stability show a substantial risk of

increasing dune mobility in the currently vegetated dunes

of the Kalahari (Botswana and northern South Africa) by

between 2050 and 2070 (Thomas and Leason 2005), with

negative implications for subsistence livelihoods and bio-

diversity in this semi-arid region that hosts important

protected areas.

Studies of interacting changes of vegetation cover on

southern African climate are few—however, large-scale

African tropical deforestation is simulated to alter rainfall

patterns over much of the region due to climate telecon-

nections (Semazzi and Song 2001), with rainfall increases

projected, with the exception of Mozambique where

reductions are simulated.

Species-level physiologic responses

Work on species-level responses to climate change factors

is lacking in Africa, despite its high concentration of

endemic species. What little has been done has focused on

plant species and generally confirms findings from other

continents. Dominant C4 grassland species responses to

elevated CO2 show increased water-use efficiency (Wand
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et al. 2000, 2002) that concur with widely reported

responses (Midgley et al. 1999) and may scale up to impact

on grassland water balance under field conditions (Stock

et al. 2005). However, C4 species grown in elevated CO2

also show species-specific shifts in phenology (Motete

et al. 2005) and increases in biomass (Wand et al. 2000)

that concur with findings from short grass prairie in North

America (Morgan et al. 2001). CO2 work on woody shrub

species from nutrient-limited Mediterranean-type environ-

ments reveals muted growth responses (Midgley et al.

1999), while savanna tree saplings from resource-rich

environments show significant growth and carbon status

stimulation (Kgope et al. 2005, 2010). Succulent species

that dominate the species-rich desert environments of the

Succulent Karoo show a sensitivity to extended drought

that contrasts with high drought tolerance of desert scle-

rophylls (Midgley and van der Heyden 1997), and succu-

lents also appear susceptible to daytime warming-induced

mortality (Musil et al. 2005).

Geographic range and species population level

responses

A growing body of work has attempted to project the

potential response of wild species and biodiversity to

anthropogenic climate change in southern Africa. This

work has generally relied on the niche-based modeling

approach (Guisan and Zimmermann 2000; Guisan and

Thuiller 2005), which is supported by some excellent

regional, national, and continental databases of species

geographic distributions, climatic and human-use data sets.

Apart from well-recognized limitations of this modeling

approach (Guisan and Thuiller 2005), many such studies

have attempted to account for uncertainties due to model

variation and migration potential (Broennimann et al.

2006) and often make projections of impacts assuming

both instantaneous (full) migration, and no migration

(Bomhard et al. 2005).

Early work of Hulme (1996), as previously discussed,

used IPCC First Assessment Report (AR4) methods (Carter

et al. 1994) to develop climate scenarios and identified a

prevalence of range size decreases over range increases by

2050 for 44 African ungulates, with negative effects con-

centrated in the high-altitude grasslands and interior sav-

annas of South Africa. Projections for South African fauna

based on HadCM2 climate scenarios for CO2 doubling

showed a strong contraction of the ranges of animal spe-

cies, including mammals, birds and reptiles, onto higher-

altitude grasslands and toward more humid and cooler

regions of South Africa (eastward shift) in response to

regional warming (Erasmus et al. 2002), and the potential

local extinction of many species in lower-lying regions.

More recent modeling of bird species ranges using Had-

CM3 scenarios has also revealed range contraction in

endemic species of South Africa (Simmons et al. 2004),

though this appears less significant for arid-system gener-

alist species.

A comprehensive study of census records (1977–1996)

for 11 ungulate species in South Africa’s Kruger National

Park showed severe population declines in seven species

that could not be explained by ENSO forcing and its effects

on annual rainfall (Ogutu and Owen-Smith 2003) but were

correlated with an extreme reduction in dry season rainfall,

interpreted as a possible fingerprint of regional climate

change. This study noted that boundary fencing restricts

potential range shifts by large mammals such as these in

response to climatic variation and future climate change—

and is a concern as model projections suggested local near-

extirpation of three ungulate species under recurring dry

summer conditions (Ogutu and Owen-Smith 2003).

In a study of 227 mammal species throughout the whole

African continent, using HadCM3 climate scenarios, Thu-

iller et al. (2006a) found substantial shifts in geographic

range, with a westward shift of species in the tropics and an

eastward shift in the temperate zone, probably in response

to aridification. A large fraction of species was also pro-

jected to become ‘‘critically endangered’’ or ‘‘extinct’’ by

2080, namely up to 40% with null migration, and up to

20% with full migration. These authors also noted that

considerable change in species composition in response to

climate change might occur across the region over this time

frame. However, predictions of faunal responses to climate

must be tempered by the finding that vegetation is, on its

own, highly explanatory of animal species distributions

(Andrews and O’Brien 2000); therefore, a better estimate

of climate change effects will require the development of

more inclusive explanatory models (climate, human-use

impacts, and vegetation).

Studies on insect species are very few, but these may

serve as sensitive indicators of climate change, as shown by

Botes et al. (2006), who found that ant assemblage struc-

ture in the Cape Floristic Kingdom responded to site

temperature characteristics which, together with area and

vegetation variables, contributed significantly to species

mix in major vegetation types and biomes on a bioclimatic

gradient. Ant community change in response to climate

change might also cause vegetation change, especially due

to their importance in seed dispersal and regeneration of

local plant species endemics.

Work on plant species ranges is currently further

developed than that of animals and has been carried out for

a much larger number of species. Much of this work

(though not all) has focused on southern African biodi-

versity hotspots (sensu Myers et al. 2000) namely the Cape

Floristic Region and the Succulent Karoo Biome. These
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mainly winter rainfall regions represent a unique climate in

the region and occupy only a small fraction of its land

surface, yet may be important indicators of climate change

due to incipient shifts in regional weather patterns such as

the latitudinal position of rain-bearing westerly frontal

systems.

Early work based on conservative climate scenarios of

increased temperature but no change in precipitation, and

using Bioclim-type modeling, provided first-cut indications

of the potential climate change impacts on plant diversity

within South Africa’s protected area network (focusing on

larger wildlife reserves) (Rutherford et al. 1999). Results

indicated mixed impacts, with more than one-third of the

species analyzed for one reserve indicated to become

locally extinct with climate change, while another reserve

in the same region had less than 1% local extinctions. This

difference seemed to depend strongly on the different

bioclimatic tolerances of species typical of each reserve.

Potential species immigrations required to balance pro-

jected extinctions with climate change were surmised to

exceed the migration potential of local species, and thus a

net decrease in plant diversity was projected.

In the Cape Floristic Region iconic species groups,

notably the Proteaceae, have been used to infer climate-

change impacts on diversity (Midgley et al. 2003) and even

to begin designing conservation responses (Hannah et al.

2005; Williams et al. 2005) and early-warning monitoring

systems (Midgley et al. 2002). A comparison of biome- and

species-level modeling approaches to estimate species

extinction risk (using HadCM2 scenarios for CO2 doubling)

found that only 10% of endemic Proteaceae species had

ranges restricted to the 51–65% of the biome lost under

climate change, while range contractions and dislocations

(no overlap between current and future modeled range) in up

to one-third of species were spread throughout the biome

(Midgley et al. 2002). Projected species range changes could

also be sufficient to detect climate-change impacts within

10 years, allowing effective testing of model projections

using targeted vulnerable species (Midgley et al. 2002).

In only one case has sufficient evidence been collected

to suggest a species range shift response to recent climate

change in southern Africa. The desert tree succulent Aloe

dichotoma (quiver tree) shows unsustainable mortality in

the warmer parts of its range in Namibia, but high rates of

recruitment and population expansion in the cooler parts of

its range in South Africa (Foden et al. 2007).

Impacts of climate change (HadCM2 scenarios for CO2

doubling) and land transformation on species in regions of

high risk of biome loss (Midgley et al. 2003) used 28

Proteaceae species to show that most species experienced

potential range contractions (17 of 28), of which five

showed range elimination, but several species (11 of 28)

showed potential range expansions. For species whose

ranges contracted, current land transformation had less

impact on future potential ranges than did climate change,

because ranges tended to shift to higher altitudes with less

land transformation pressure. Indeed, climate change has

been shown to be potentially more important in increasing

the risk status of endemic Protea species than projected

land transformation over a short a time as two decades

(Bomhard et al. 2005). These studies also reveal a sub-

stantial need for migration to allow the persistence of

species, and efforts to address this need by designing

effective links between protected areas using corridors

have shown that this might be achievable (Williams et al.

2005), though highly dependent on climate scenario and

thus currently risky for conservation implementation.

Modeling of 975 endemic plant species of a range of life

forms over a far broader region of southern Africa, using

HadCM3 scenarios (Broennimann et al. 2006), showed that

the endemic flora of southern Africa on average could be

reduced by about 40% in habitat-specific species richness

even under the most optimistic SRES scenario (B1). Spe-

cies and life form vulnerability to climate change could be

partly explained by species’ geographic distribution along

climatic and biogeographic gradients, niche breadth, or

proximity to physical barriers preventing migration and

suggested promises for estimating species vulnerability.

A continent-wide study at rather coarse resolution using

HadCM3 scenarios of potential geographic shifts of 5,197

African plant species (McClean et al. 2005) shows sub-

stantial shifts for most species and widespread changes in

species composition. Range size reductions or shifts were

projected for 81–97% of the species modeled, with

25–42% projected to lose all suitable range by 2085.

However, studies such as this, and others reviewed here,

underscore the assumptions implicit in bioclimatic (niche-

based) modeling that might lead to overestimates of the

impacts of climate change on species persistence and

community change. This shortcoming requires that ongo-

ing monitoring programs are designed to test the evolution

of the early impacts of climate change to allow confirma-

tion of this threat and to improve the modeling approaches.

Conclusions

Despite a fairly low overall investment in detecting and

modeling projected climate change impacts across southern

Africa, key studies supported by a long history of careful

species-level data collection have provided early indica-

tions of the potential implications of unmitigated change for

the ecosystems and biodiversity of the subcontinent. These

first-cut assessments have been important, especially given

the growing realization that significant concentrations of

species are found in regions already threatened by human
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development (biodiversity hotspots), and the direct depen-

dence of many human livelihoods on diversity. These

assessments, conducted at broad regional scales, suggest a

significant threat to biodiversity across many taxonomic

groupings both from changing bioclimatic suitability that to

some extent control species geographic ranges and com-

munity composition, and changing atmospheric CO2 level

that might affect the competitive balance between woody

and herbaceous elements of a region that is covered to a

large extent by mixed tree-grass ecosystems. The most

significant changes in ecosystem structure (both increases

and decreases in woody plant cover), and associated faunal

diversity changes, are projected in the dominant savanna

vegetation type in this region, while the most significant

biodiversity loss is projected for the winter rainfall region.

While modeling efforts have raised the alarm about the

implications of unmitigated climate change for this region,

assumptions underpinning methods such as bioclimatic

modeling must be recognized, some of which might lead to

over estimates of the rate and extent of the potential impacts.

Nevertheless, the general trend and level of coincidence

between various types of studies would support a high degree

of concern for a substantial portion of southern African

biodiversity under unmitigated climate-change scenarios.

Follow-up work to detect early signs of climate change,

identify regions of high- and low- potential impacts, and

experimental work to test some important hypotheses relat-

ing to the future evolution of climate-change impacts across

the region is very few and urgently required.

A focus on climate change impacts at population

demographic level is virtually absent in southern Africa.

There is very little evidence available to assess whether the

early phases of anthropogenic climate change are affecting

the biota of wild species and conserved nature areas in

various and significant ways. Nature conservation agencies

seem relatively unprepared and lack a strategic manage-

ment response to the possible consequences of climate

change, though records from extensive monitoring efforts

could yield important insights (and have in a few cases). It

seems unlikely that natural adaptation responses by biota

beyond some level of geographic range shift in vagile

organisms are likely, and thus conservation adaptive

strategies require urgent attention, especially with regard to

raising the level of protection for threatened species outside

of official conserved areas, in order to minimize ancillary

stresses on populations beleaguered by climate change.
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