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Abstract: Plastic litter is increasingly becoming pervasive in aquatic environments, characterized
by circulatory patterns between different compartments and continual loading with new debris.
Microplastic pollution can cause a variety of effects on aquatic organisms. This review presents
the current knowledge of microplastics distribution and sorption capacity, reflecting on possible
bioaccumulation and health effects in aquatic organisms. A model case study reveals the fate
and toxic effects of glyphosate, focusing on the simultaneous exposure of aquacultured shrimp to
polyethylene and glyphosate and their contact route and on the potential effects on their health and
the risk for transmission of the contaminants. The toxicity and bioaccumulation of glyphosate-sorbed
polyethylene microplastics in shrimp are not well understood, although individual effects have been
studied extensively in various organisms. We aim to delineate this knowledge gap by compiling
current information regarding the co-exposure to polyethylene microplastic adsorbed with glyphosate
to assist in the assessment of the possible health risks to aquacultured shrimp and their consumers.

Keywords: microplastics; sorption capacity; bioaccumulation; combined effects; polyethylene;
glyphosate; shrimp

1. Introduction

Plastic, a versatile and omnipresent organic polymer, is one of most frequently used
materials globally. Over the past seven decades, the global production of plastics steadily
increased almost 250-fold, from 1.5 to 368 million metric tons, emphasizing the importance
of plastic to mankind [1,2]. The consequences of such increase in production have more
recently captured the attention of broader audiences, as studies of its environmental impact
indicated that plastic litter could disturb ecological relationships and interfere with different
ecosystems at multiple scales. For example, plastics can end up in the aquatic environment
via direct pathways as the litter coming off shipping or fishing activities and indirectly
through improper discharge, runoff, current, wind, and wave action [3,4].

The extended presence of plastic litter and its exposure to the elements in the envi-
ronment inevitably leads to its degradation into smaller particles with overall dimensions
of less than several millimeters, termed “microplastics” [5]. Furthermore, the degradation
of primary microplastic particles originally designed for commercial use in personal care
and cosmetics products (PCCPs) [6], in industrial applications [7], or originating from syn-
thetic textiles shedding during laundering [8] leads to the formation of smaller secondary
microplastic particles [9].
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1.1. Distribution, Abundance, and Importance of Microplastics in the Aquatic Environment

There is increasing evidence of ocean-based microplastics present in all marine envi-
ronments, including the deep seas/trenches [10–15]. One of the most commonly reported
polymer types in marine surface water and sediment is polyethylene (PE) [13,16–18]. More-
over, fibers and fragments were noted as prevailing microplastic shapes in the ocean and
sediment [13,19–21]. However, the abundance, size, and concentration of observed mi-
croplastics can vary significantly across different sampling times and regions of the sampled
marine environment [20,22–25].

Although there has been a lot of research on marine microplastic pollution, several
studies have revealed the presence and distribution of microplastics in fresh open waters
comparable to marine ecosystems [26–29]. The contamination with microplastics has been
detected in natural freshwater systems and wastewater treatment plants at various locations
around the European, Asian, North American, and South American continents, albeit at
very diverse concentrations [30–35]. Such variability suggests that a variety of locations,
anthropogenic activities and environments, and sampling strategies were employed [36].
Owing to their long-term persistence and long-range transportation, approximately 1.15 to
2.41 million tons of microplastics are estimated to be annually transported downstream from
their initial sources (mainly wastewater treatment plants) by rivers to seas, with consequences
for the aquatic organisms and environments along their transport routes [28,34,37,38].

Microplastics are thought to be ubiquitous by now, and besides their physical presence
in the environment, other characteristics of these materials such as their toxicity, durability,
and persistence could pose a potential threat to the environment and ecosystems [20,39].
Ingestion of or exposure to microplastics could cause negative consequences to organisms.
The similarity of microplastics’ size, shape, and color to natural sediments and feedstuff can
mislead organisms to ingest microplastics instead of their natural diet. This, in turn, can
cause malnutrition and, in extreme cases, even starvation effects, observed as the altered
growth rate, reduced fitness, and changed behavior of the affected organisms [40–45]. Irreg-
ularly shaped and sharp-edged microplastics could cause abrasion and disrupt the integrity
of gastrointestinal mucosa in living organisms [46]. Further, ingested microplastics may
release different additives used in plastic production due to changes in the digestive tract
(pH, enzymatic actions, etc.), and components such as plasticizers, halogen stabilizers, lu-
bricants, and flame-retardants can be introduced to microplastic-eating organisms, causing
additional harm [47–49]. More importantly, there is increasing evidence that microplastics
can serve as a vehicle or concentrator for certain chemical and biological agents (micropol-
lutants), and their ingestion could facilitate their transfer to organisms and cause adverse
health effects or even death [50–52].

1.2. Aim of the Study

The aim of this narrative or traditional review is to provide an overview of the interac-
tion mechanisms between microplastics and environmental micro-pollutants. Moreover,
the factors affecting the micro-pollutant sorption on microplastics, including the physico-
chemical properties of micro-pollutants and microplastics and environmental conditions,
are considered. The potential combined toxic effects of microplastics and micro-pollutant
mixtures on aquatic organisms are further investigated, and we focus on a summary of
the potential adverse outcomes of glyphosate and its commercial formulations’ exposure
to organisms. The combination effects of polyethylene and glyphosate-based herbicides
(GBHs) on aquacultured shrimp are analyzed and applied to discussions in terms of health
risks, using the relevant theoretical information.

2. Materials and Methods

The narrative review is undertaken to analyze the current knowledge on the topic;
however, the scarcity of available information and evidence presents limitations to the
completeness of the analysis.
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The scientific paper selection process was carried out over approximately six weeks
via the search engines PubMed and Google Scholar. The Boolean operators used were
“AND” and “OR”. The keywords for the research were: “microplastics”, “polyethylene”,
“interaction”, “glyphosate”, “joint”, “combination”, “mixture”, “organisms”, “aquatic”,
and “shrimp”. The following keywords were used with Boolean operators to combine
searches: “microplastics” AND “interaction” OR “joint” OR “combination” OR “mixture”
AND “aquatic”, with no limitation to the publication year. The second search was made:
“glyphosate” AND “organisms” OR “aquatic” OR “shrimp”. Moreover, the third search
was conducted: “microplastics” OR “polyethylene” AND “joint” OR “combination” OR
“mixture” AND “glyphosate” AND “aquatic” OR “shrimp”.

Included in the study were systematic reviews, meta-analyses, randomized controlled
trials, cohort studies, and studies in English. The exclusion criteria were as follows: articles
not related to the topic, full-text not available, and articles in other languages. No time
limits were applied during the screening phase of the scientific articles.

3. Result Statements from the Analysis of the Available Literature
3.1. Microplastics: Delivery Vehicles for Micropollutants in Aquatic Environments

Microplastics can carry and transfer biological and chemical agents from one place to
another, effectively acting as a vehicle and increasing the risks of different micro-pollutants
to reach otherwise unaffected/less affected compartments within the ecosystems and
organisms [53–55]. Some recently observed effects include disruptions to the oceanic
carbon cycle due to the increase in dissolved organic carbon (DOC) [56] or adverse health
effects in several organisms [57,58]. For example, microplastics could serve as the vehicle
of plastic additives including triclosan, polybrominated diphenyl ethers, and nonylphenol
added to polymerize or modify the end use properties of plastics [59,60].

3.1.1. Factors Influencing the Sorption Capacity of Microplastics to Micro-Pollutants

There is an increased risk of the release and transfer of additives from plastics to
the surrounding environment or organisms during the degradation processes or particle
ageing [61]. Due to mechanical, chemical, biological, and/or UV ageing processes, the
microplastic particles’ physicochemical and mechanical properties, texture, and appearance
change over time [62]. These changes were noted as the main causes of the altered sorption
capacity of microplastics to micro-pollutants [63–65]. Microplastic sorption capacity de-
pends on the interaction between microplastics and micro-pollutants in an environment that
increases or decreases their affinities to each other and influences the number of adsorbed
micro-pollutants (Figure 1).

Physical Properties of Microplastics

The physicochemical properties and age of microplastics interrelate in a variety of
complex ways that affect sorption capacity. Color, density, specific surface area, and free
volume are some of the physical properties of microplastics with the potential to affect
their sorption capacity [66]. For instance, lighter-colored microplastics could adsorb lower-
molecular-weight polycyclic aromatic hydrocarbons (PAHs) as well as interact with lower
concentrations of PAHs and polychlorinated biphenyls (PCBs) when compared to darker-
colored microplastics [67,68]. Particle density also plays a role in sorption behavior, as
microplastics with a higher density are capable of adsorbing lower concentrations of PAHs,
PCBs, and phenanthrene compared to lower-density microplastic particles [69–71]. For
example, polyethylene, with its characteristically large specific surface area and free volume,
allowed more micro-pollutants to diffuse into the looser network of its polymer structure,
suggesting a reason for its higher sorption capacity compared to the other microplastic
types [70,72,73].
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Figure 1. Major factors and sub-factors influencing the sorption capacity of microplastics
to micro-pollutants.

Chemical Properties of Microplastics and Micro-Pollutants

Microplastic chemical properties, such as composition, crystallinity, planarity, surface
charge, functional group, and chemical interaction potential, could also be considered as
factors that have an influence on sorption capacity [74–77]. A decrease in crystallinity found
in rubbery plastics with amorphous regions, such as polyethylene, results in increased
hydrophobic organic compounds (HOCs) sorption compared to glassy plastics, such as
polystyrene [78–80]. Further, the chemical properties of micro-pollutants could also play
a significant role in their interactions with microplastics, thereby affecting the sorption
capacity. The varying microplastic sorption capacity for micro-pollutants, hydrophobic
and hydrophilic compounds, and heavy metals is strongly dependent on type of reaction,
including hydrophobicity, partitioning, Van der Waals forces, electrostatic interaction,
π-π interaction, and hydrogen bonding interaction [81].

Age of Microplastics

Microplastic age can be a pivotal attribute of sorption capacity alteration. Ageing
represents the accumulation of changes in microplastics over time, including changes
in physicochemical properties [81]. The increased frequency or induction of oxygen-
containing functional groups (e.g., hydroxyl, carbonyl, and formyl groups) occurs after
the particles’ exposure to ageing [82–84]. It has been reported that oxygen-containing
functional groups, emerging during the microplastic ageing process, could interact with
hydrophilic micro-pollutants by forming hydrogen bonds and increase the affinity between
these chemicals [81,82,85]. The relatively high concentration of heavy metals found on
aged polyethylene compared with the pristine polyethylene terephthalate (PET) can be



Appl. Sci. 2022, 12, 5135 5 of 25

related to the higher partition coefficient, resulting from the different chemical properties
and biofilms [86,87].

Environmental Factors

In the process of determining microplastic sorption capacity, it is important to consider
environmental factors such as surrounding bacteria, pH, salinity, and dissolved organic
matter (DOM). Microplastics may interact with natural organic materials and form a
biomolecular corona, which leads to changes in the microplastics’ surface, thereby affecting
surface charge, aggregation tendency, and sorption capacity [88]. The ability of bacteria to
produce extracellular polymers during biofilm formation in order to facilitate the attach-
ment and matrix development could result in an alteration in the microplastic sorption
capacity with respect to physicochemical properties per se. For example, similar metal
adsorption capacities of different types of microplastics might be related to similar biofilm
distributions on the microplastics, regardless of the salinity conditions of microplastic
deployment sites and the biofilm formation time [89].

In addition to influencing differences in bacterial populations in terms of biofilm
formation, the pH and salinity of marine waters can result in both positive and negative
effects on the micro-pollutant sorption capacity of microplastics. A decrease in seawater
pH in marine environments suffering from increased acidification caused by the uptake of
increasing carbon dioxide from the atmosphere [90] may play the role of proton donor to
the microplastic surface and the increasing cationic characteristics of microplastics. This
change, in turn, can lead to the higher adsorption of anionic micro-pollutants, including
tylosin and perfluorooctanesulfonic acid (PFOS), on cationic-enriched microplastics through
electrostatic interactions [76,91]. pH affects the sorption capacity of trace metals, such as
Cadmium (Cd), Cobalt (Co), Nickle (Ni), Lead (Pb), and Chromium (Cr), on high-density
polyethylene in saltwater via increased competition, decreased chromate ion activity, as
well as complexation and free ion interaction with saltwater cations [92].

Salinity is an environmental factor of considerable importance, influencing the mi-
croplastic sorption capacity in marine systems, as it can affect micro-pollutant solubil-
ity in aqueous phases and micro-pollutant partitioning in other phases [93]. The in-
creased amount of salt dissolved in a body of water enhances the sorption capacity of
microplastics to 3,3′,4,4′-Tetrachlorobiphenyl (PCB77), lubrication oil, and other micro
pollutants [76,94–96]. Conversely, increased salinity was shown to decrease the sorption
capacity of dichlorodiphenyltrichloroethane (DDT) and ciprofloxacin on microplastics
due to cation competition for sorption sites [74,83,97]. However, there were no observed
salinity-related effects on phenanthrene (Phe), as the salt content in water did not affect the
aqueous solubility and pore-filling mechanism of Phe [97].

Dissolved organic matter (DOM) is an important factor in determining microplastics’
sorption capacity due to its diversity of chemical components leading to complex inter-
actions. DOM components such as humic and fulvic acids have been reported to both
increase and decrease sorption capacity in several different studies, indicating complexities
of the interactions that are yet be fully described [98–100]. Fulvic acid negatively affected
the sorption capacity of tetracycline on microplastics, as tetracycline was deemed to sorb
onto DOM rather than microplastics [98]. Likewise, microplastics could adsorb fewer hy-
drophobic organic compounds (HOCs) due to the increasing desorption from the presence
of dissolved organic matter [99]. Yet, the positive effect of the role of dissolved organic
matter bridge formation in the micro-pollutant-microplastic surface complex might be a
reason for the increased sorption capacity of oxytetracycline on aged microplastics [100].
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3.2. Microplastics: The Potential for Microplastic-Sorbed Micropollutant Bioaccumulation in
Aquatic Organisms

The term bioaccumulation refers to the net result of processes by which organisms
uptake substances both directly from the abiotic environment (e.g., air, water, and soil or
sediment) as well as indirectly from dietary sources and then transform and ultimately
eliminate them [101]. In this framework, substances can be various micro-pollutants
adsorbed on microplastics that act as their delivery vehicle to organisms. Once microplastics
have entered the organism, we describe five possible scenarios of interaction between micro-
pollutants and microplastics in terms of sorption and desorption related to micro-pollutant
bioaccumulation in organisms [77,102].

The first scenario assumes that the sorption ability under aquatic conditions and
the desorption ability under the gut conditions of organisms are high. This possibility
could allow microplastics to act as a vehicle with the ability to transfer micro-pollutants
in the organism. The presence of microplastics with high sorption and desorption abil-
ities could enhance the bioaccumulation of venlafaxine in the hepatic tissue of Oriental
weatherfish, Misgurnus anguillicaudatus [103]. Moreover, the rapid desorption of organic
micro-pollutants under gut conditions could increase the bioaccumulation of phenanthrene,
DDT, perfluorooctanoic acid (PFOA), and di-2-ethylhexyl phthalate (DEHP) [104].

The second scenario assumes a high sorption ability in aquatic environments and
a low desorption ability in the body of organisms that could lead to low bioaccumula-
tion. However, the high sorption of micro-pollutants on microplastics may nevertheless
adversely affect the health of organisms. For example, mussels exposed to relatively high
concentrations of fluoranthene sorbed on polyethylene showed low bioaccumulation levels
but an increase in tissue alterations and antioxidant biomarker levels [105].

In the third scenario, the occurrence of low sorption ability in the environment cou-
pled with high desorption ability in the body could also lead to low bioaccumulation. For
example, despite the low PE adsorption capacity and subsequent lower concentrations
of polybrominated diphenyl ethers (PBDEs) and bifenthrin on PE, these chemicals bioac-
cumulate in amphipods and midge Chironomus tepperi, respectively. This contradiction
is explained by PBDEs and bifenthrin having low sorption on polyethylene in aqueous
phases but the ability to be almost completely desorbed from PE microplastics inside the
organisms, therefore allowing for significant bioaccumulation [106,107].

The fourth scenario assumes that the sorption and desorption abilities are low in
both the environment and organism (digestive tract) conditions. This combination is
likely to result in low bioaccumulation, as illustrated by the studies of the exposure of
fluoranthene-sorbed microplastic in mussels (Mytilus spp.) [105].

The fifth scenario considers the high sorption and low desorption abilities of microplastics,
but only inside an organism (internally). Such a variant could assist in the depuration or
removal of micro-pollutants from the affected organism. High sorption could trap and remove
micro-pollutants via excretion, leading to the lower bioaccumulation of micro-pollutants. Such
processes were observed when contaminated polychlorinated biphenyls (PCBs) in feed were
adsorbed to and transferred by virgin polyethylene in simulated gut conditions [108].

Therefore, it is highly likely that a range of potential bioaccumulation outcomes can
be attributed to the physicochemical properties of microplastics (such as sorption and
desorption abilities), the environmental conditions, the exposed organism characteristics,
and the position of an organism in a food chain [97,109–111] (Figure 2).
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Figure 2. Factors influencing the bioaccumulation of micropollutants in an organism from exposure
to microplastics as a vector.

3.3. Joint Effects of Microplastics and Micropollutants

The extent of the accumulation of micro-pollutants by sorption onto microplastics not
only affects their bioaccumulation in aquatic organisms but also influences their bioavail-
ability and toxicity [112,113]. The bioavailability of micro-pollutants is a measure of their
accessibility to biota in the environment, and it is one of the key factors controlling the
uptake of the micro-pollutants adsorbed on microplastics in the bodies of organisms, the
transfer of these micro-pollutants, and the magnitude of the toxic effects on exposed or-
ganisms [114]. In addition to sorption, biomolecular corona formation, the entrapment
of micro-pollutants in flocs, and aggregates of microplastics can cause further alteration
of their bioavailability, resulting in altered toxicity, particularly antagonistic effects, in
affected organisms [88,115]. Different interactive toxic effects occurring in the mixtures
of microplastics and micro-pollutants in organisms were observed (additive, synergistic,
antagonistic, and potentiating), dependent both on the chemical combination and the
measured endpoint [115].

An additive effect is generally considered as the interaction in which two or more
chemicals or actions used in combination produce a total effect equal to the sum of the indi-
vidual effects [116], indicating no direct connection between the two substances or actions,
and defined as non-interaction or inertism [117]. Deviations from the additive effect can
be synergistic or antagonistic [116]. Synergistic interaction between chemicals is indicated
by a significantly stronger observed effect of the chemical mixture than that predicted
from a single chemical, whereas an antagonistic interaction is indicated by a significantly
weaker effect of a mixture than that expected from a single compound [116]. Similar to
the synergistic effect, a potentiating effect occurs when the combined effects of two or
more chemicals are significantly greater than the sum of the effects of individual chemicals.
In addition, potentiation also includes a situation where a chemical that typically has no
observed effects per se could enhance the effects of another chemical, leading to an increase
in the observed effects of the second chemical [118]. The combination of microplastics and
micro-pollutants can exhibit distinct effects under varying conditions and endpoints.

The additive effect on oxidative stress and cellular damage was reported in the gills
of Dicentrarchus labrax juveniles exposed to a combination of microplastics and mercury
at a low concentration. However, different tissues with different physiologic systems and
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functions show heterogeneity in response to the same chemical exposure, and in this study,
synergistic effects could be observed in hepatic tissue [119]. Likewise, the diverse effects
from the exposure to florfenicol and microplastic mixtures in different concentrations could
be detected in Corbicula fluminea. Additive, synergistic, and potentiating effects, i.e., the inhi-
bition of acetylcholinesterase (AChE) activity, the inhibition of feeding, and the reduction of
isocitrate dehydrogenase (IDH) activity, respectively, were documented. Furthermore, the
toxic synergism of the mixtures was observed in the increase in gill glutathione S-transferase
(GST) activity and the foot lipid peroxidation (LPO) level in C. fluminea [120].

The chemistry of functional groups in microplastics influences their micro-pollutant
sorption capacity, which in turn affects the bioavailability and toxicity of micro-pollutants
and implicitly links the altered functional groups of microplastics with changes in micro-
pollutant bioavailability and toxicity. The combination of titanium dioxide nanoparticles
(TiO2 NPs) with neutral and positively charged microplastics, virgin polystyrene, and ami-
nated polystyrene (PS-NH2) displayed the additive toxicity, while the negatively charged
microplastics, carboxylated polystyrene (PS-COOH), exhibited antagonistic toxicity to-
wards Chlorella sp. [121]. On the contrary, another study indicated that PS-NH2 could be
attributed to the antagonistic toxicity of nickel, while PS-COOH could be associated with
the synergistic toxicity of nickel on Daphnia magna [122]. PS-NH2 could also play a role
in the reported antagonism of glyphosate toxicity on Microcystis aeruginosa, as the NH2-
functional group could affect the sorption ability, resulting in the decreased concentration
and bioavailability of glyphosate in the exposure medium [112].

3.4. Fate of Glyphosate in the Environment and Its Toxic Effects on Organisms

As the global population continues to expand, the growing demand for food pro-
duction needs to be supported by an efficient and sustainable agricultural system. The
innovations of efficient herbicides and herbicide-tolerant genetically modified (GM) crops
represent one of the solutions that not only protect plants from weeds but also increase
worldwide crop production, leading to both economic and labor benefits [123,124]. How-
ever, the introduction of GM crops is also causing an increase in herbicide use, leading
to chemical pollution in soil, water, and air [125]. Moreover, an adaptive evolutionary
processes act in weeds develops resistance against herbicides over time, thereby requiring
higher amounts to control resistant weed strains. This implies that having herbicide-
tolerant GM crops nearby would increase the risk of exposure to the higher levels of
herbicides [126–128]. A typical example of herbicide-tolerant GM crops is genetically
modified glyphosate-tolerant plants, which are designed to tolerate glyphosate, an active
ingredient of a broad-spectrum and non-selective organophosphate herbicide.

Glyphosate-based herbicides (GBHs) have become one of most widely applied herbi-
cides worldwide in terms of volume due to their various advantages in terms of utility and
economy [129,130]. Their extensive application in agriculture received considerable atten-
tion in many countries such as Argentina, Brazil, Canada, and the United States of America
due to the intense cultivation of glyphosate-tolerant GM plants [131–136]. GBHs’ overuse
could be confirmed by the residue concentrations of glyphosate and its primary microbial
metabolite product (aminomethylphosphonic acid; AMPA) in Argentina—this being up to
almost 100 mg/kg, which is almost a fivefold increase compared to the maximum residue
limit for soybeans used in feed and food [137,138]. Additionally, a glyphosate residue con-
centration of 1481± 73 µg/L—exceeding the legally permitted maximum contaminant level
(MCL) in drinking water regulated by the European Union, 0.1 µg/L, by approximately
15,000-fold—was reported in natural water in Brazil [139,140]. GBHs are intentionally
applied to the foliar part of undesired plants; however, the uncontrolled application of
GBHs could contaminate soils in and around the treated areas and be transformed into
metabolites by biodegradation, photo-degradation, and complex chemical reactions [141].

AMPA, the main metabolite of glyphosate, can present toxic effects similar to original
compounds [142]. The half-life of glyphosate depends on the physical and chemical
properties of the external environment. In natural freshwater, it is estimated to be more
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than 60 days [143]. In seawater, it could persist for at least 47 days under low-light
conditions at 25 ◦C, increase to 267 days in dark environments at 25 ◦C, and to 315 days in
the dark at 31 ◦C prior to being metabolized by seawater microorganisms [144].

When sprayed GBHs and AMPA enter soils, several transport mechanisms are present
that reduce the spreading of the contamination (Figure 3). GBHs’ molecules could be taken
up by plant tissues, resulting in biotransformation products, particularly AMPA, and their
accumulation in the tissues [145]. In addition, the molecules could be immobilized through
sorption onto soil particles, organic matter, and clay minerals or lost to the atmosphere
through volatilization and vaporization and ultimately redeposited into environments
via drops of rain [146,147]. The molecules that could not bind strongly with, or desorb
from, soil particles tend to leach into groundwater basins or dissolve and suspend in runoff
waters [148–150]. Strongly bound GBH and AMPA molecules could also be moved off site to
waters by water erosion [147]. Aside from the above, the occurrence of GBHs in water could
result from aquatic weed control efforts by which GBHs are intentionally applied directly
to the water, as well as from the disposal of GBH waste into water sources [151,152]. Hence,
the continual use, release, and transfer of GBHs and AMPA into aquatic environments
could result in the prolonged exposure of aquatic organisms to the chemicals through
contaminated feed intake and polluted aquatic habitats, thereby increasing the risk of the
induction of detrimental effects.

Figure 3. Glyphosate fate and transport.
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In general, glyphosate’s mode of action after the absorption of GBHs through foliage is
to inhibit the enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in the shikimic
acid pathway. This inhibition results in the deficiency of essential aromatic amino acids
responsible for protein synthesis, such as phenylalanine, tryptophan, and tyrosine, ulti-
mately leading to the stunted growth, leaf malformation, desiccation, and death of target
plants [153]. This pathway is absent in animals and is considered to contribute to the
nonexistent or low toxicity of glyphosate toward animals [154–156]. Nonetheless, compre-
hensive toxicology investigations in different animal species have illustrated the hazard
potential in various organisms following acute and chronic exposure to glyphosate/GBHs.
Multiple studies confirmed different effects on environmental and animal health such
as: changes in the community structure and diversity in plankton [157,158]; decreased
acetylcholinesterase activity in mussels, shrimp, and fish [159–162]; excessive reactive
oxygen species formation or impaired antioxidant capacity in plankton, worms, mussels,
shrimp, prawns, and fish [159,160,162–168]. Studies also showed histopathological changes
in fish and frogs [166,168–170]; endocrine disruption and reproductive impairment in
plankton and fish [157,171,172]; metabolic alterations in fish and frogs [166,173], behavioral
changes in shrimp, fish, and frogs [168,173–175]; growth and development inhibition and
increased mortality in plankton, shrimp, fish, and frogs [176–180]. This information is
summarized in Table 1.

In human cells, glyphosate and GBHs can act as endocrine disruptors, affecting the
estrogen and androgen pathways [181–183], damaging the neural system, genetic materials,
and ultrastructure of the cells [184–186], and enhancing the proliferation of the breast
cancer cell line [183]. Considering multiple deleterious effects of glyphosate and GBHs,
the International Agency for Research on Cancer (IARC) classified glyphosate into Group
2A, “probably carcinogenic to humans”, in 2017 [187]. Furthermore, adjuvants added in
commercial GBH formulations to increase the efficacy of GBHs could also enhance the
toxicity and/or bioaccumulation of glyphosate, in some cases displaying increased toxicity
compared to the parent material [172,182,188]. In addition, the detection of glyphosate
in worm and fish tissues indicates that there is a risk of glyphosate bioaccumulation at
multiple trophic levels, from producers to consumers [162,163,179], in spite of its high-water
solubility and moderate bioaccumulation potential [189].
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Table 1. Studies of the toxic effects of glyphosate and its commercial formulations on organisms from different trophic levels. CC = community composition, GM =
growth and mortality, RT = reproductive toxicity, MT = metabolic toxicity, OS = oxidative stress, NT = neurotoxicity, GE = gene expression, MM = microbiome
modulation, HT = haemotoxicity, BC = behavior change, GT = genotoxicity, CT = cytotoxicity, HP = histopathology, IT = Immunotoxicity, ET = endocrine toxicity, ↑=
Increased, ↓= Decreased, l = Altered.

Organism Formulation Duration Concentration Endpoints
Studied

Bioaccumulation Effect References

Producers

Bacterioplankton Bacterioplankton
community

96% pure 2-13C-glyphosate 6 days EC: 100 µg/L CC Bacterial richness and diversity ↓ [158]

Zooplankton Daphnia magna Sumin Atut 360 SL 12, 24, 48 h
LC50-12 h: 76.67 mg/L GM Mortality ↑, head width ↓ [178]

LC50-24 h: 36.2 mg/L

LC50-48 h: 21.34 mg/L

Cyclops vicinus LC50-12 h: 207.89 mg/L Mortality ↑, body length ↓
LC50-24 h: 159.8 mg/L

LC50-48 h: 92.93 mg/L

Zooplankton D. magna Eskoba®

15 days

LC50-48 h: 29.48 mg a.e./L GM, CC, RT Mortality ↑, growth and fecundity ↓ [171]
Panzer Gold® LC50-48 h: 2.12 mg a.e./L

Roundup® Ultramax LC50-48 h: 11.68 mg a.e./L

Sulfosato Touchdown® LC50-48 h: 1.62 mg a.e./L

Ceriodaphnia dubia Eskoba® LC50-48 h: 14.49 mg a.e./L

Panzer Gold® LC50-48 h: 0.54 mg a.e./L

Roundup® Ultramax LC50-48 h: 4.84 mg a.e./L

Sulfosato Touchdown® LC50-48 h: 0.31 mg a.e./L

Zooplankton Zooplankton
community

Sulfosato Touchdown® 30 days EC: 2.7 mg/L CC, RT Diversity ↓, time of the first hatching
l, time of the maximum hatching l,
frequency of the hatchings l

[157]

Zooplankton Notodiaptomus carteri Sulfosato Touchdown® 10 days EC: 0.81 mg/L MT, OS Superoxide dismutase (SOD) and
glutathione-S-transferase (GST)
activities ↑

[165]

30 days EC: 0.38 mg/L GM Growth and development ↓

Consumers

Worm Lumbriculus variegatus Glyphosate analytical standard 4 days EC: 0.05 mg/L
OS + SOD and biotransformation enzyme

soluble GST ↑ [163]
Roundup Ultra® EC: 0.05 mg/L

Mussel Limnoperna fortunei Glifosato Atanor® 28 days EC: 6 mg/L active principle
and 2.5% surfactant Impacto®

OS, MT, NT GST and alkaline phosphatase
activities ↑, carboxylesterase activity
↓

[190]
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Table 1. Cont.

Organism Formulation Duration Concentration Endpoints
Studied

Bioaccumulation Effect References

Mussel Mytilus galloprovincialis Glyphosate analytical standard 21 days EC: 10 µg/L GE Energy metabolism and Ca2+

homeostasis l, cell signaling l,
endoplasmic reticulum stress
response l

[191]

Mussel M. galloprovincialis Glyphosate and AMPA
analytical standards

7 and 21 days EC: 100 µg/L GE, MM Physiological homeostasis and
dysbiosis of gut microbiota l

[192]

Mussel M. galloprovincialis Glyphosate and AMPA
analytical standards

7, 14 and
21 days

EC: 100 µg/L OS, NT, HT Hemocyte parameters l, antioxidant
enzyme activity l,
acetylcholinesterase (AChE) activity ↓

[160]

Shrimp Caridina nilotica Roundup® 48 and 96 h LC50-48 h (Neonate): 4.5
mg/L a.e.

GM, BC Mortality ↑, behavior l [174]

LC50-48 h (Juvenile): 9.4
mg/L a.e.

LC50-48 h (Adult): 37.1 mg/L
a.e.

LC50-96 h (Neonate): 2.5
mg/L a.e.

LC50-96 h (Juvenile): 7.0
mg/L a.e.

LC50-96 h (Adult): 25.3 mg/L
a.e.

Shrimp C. nilotica Roundup® 25 days EC: 2.2 mg/L GM Growth rate and feed utilization ↓,
molting frequency ↑

[180]

Shrimp C. nilotica Roundup® 96 h and 21
days

EC-96 h: 4.3 mg/L
NT AChE activity ↓ [161]

EC-21 d: 2.2 mg/L

Shrimp C. nilotica Roundup® 96 h and 21
days

EC-96 h: 4.3 mg/L
OS Lipid peroxidation (LPO) ↑ [167]

EC-21 d: 2.2 mg/L

Shrimp Macrobrachium
nipponensis Roundup® 48 and 96 h

LC50-48 h: 57.684 mg/L GM, HT,
OS, NT, GT

Mortality ↑, total hemocyte count ↓,
SOD and catalase (CAT) levels ↓, total
antioxidant capacity ↓,
malondialdehyde (MDA) ↑,
hydrogen peroxide ↑, protein
carbonyl ↑, AChE activity ↓, MN
frequency of hemocyte ↑, comet ratio
and %DNA in the tails ↑

[159]

LC50-96 h: 11.237 mg/L

Prawn Macrobrachium potiuna Roundup WG® 7 and 14 days EC: 0.0065 mg/L CT Altered ultrastructure of
hepatopancreas and impaired R cells

[193]
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Table 1. Cont.

Organism Formulation Duration Concentration Endpoints
Studied

Bioaccumulation Effect References

Prawn M. potiuna Roundup WG® 7 and 14 days EC: 0.0065 mg/L OS, GE Antioxidant gene expression in
hepatopancreas l

[164]

Fish Clarias gariepinus Delsate® 48 h and
91 days

LC50-48 h: 75 mg/L
GM + Mortality and residues in muscles ↑ [179]

EC-91d: 5, 10, 15 mg/L

Fish Markiana nigripinnis Mixture of pesticides including
glyphosate (Roundup®)

21 days Field pesticide application OS, NT +
Biometric parameters and organismic
indices l, antioxidation enzyme
activities l, oxidative damage, AChE
activity ↓

[162]

Astyanax lacustris

Fish Danio rerio Roundup® GC liquid glyphosate
concentrate 21 days EC: 10 mg/L a.e. RT Embryo mortality ↑, premature

hatching ↑, reproductive gene
expression l, egg ↓

[172]

Glyphosate analytical standard EC: 10 mg/L

Fish Oncorhynchus mykiss Commercial formulation
6, 12, 24, 48,
96 h

EC: 2.5 mg/L HP, BC, OS
Glutathione peroxidase and CAT
activities ↑, antioxidant gene
expression l, swimming performance
↓, histopathological liver damage

[168]

21 days EC: 5 mg/L

Fish Carassius auratis Nongteshi® 90 days EC: 0.2 mmol/L HT, HP, OS,
MT

Blood biochemistry l, renal tissue ↓,
oxidative stress mechanisms l,
metabolisms l

[166]

Fish Cyprinus carpio L. Commercial formulation 168 h LC50-96 h: 520.77 mg/L IT, HP Contents of cytokines l,
histopathological damage

[169]

Frog Rana dalmatina Glyphogan® 21 days EC: 2 mg a.e./L BC Anti-predator behaviors l [175]

Frog Dendropsophus molitor Roundup Active® 30 days EC: 325 µg a.e./L HP Hepatic tissue injuries [170]

Frog Physalaemus cuvieri Glyphosate analytical standard 96 h
LC50-96 h: 115 mg a.e./L

GM Mortality ↑ [177]
Hypsiboas pardalis LC50-96 h: 106 mg a.e./L

Frog Xenopus laevis Roundup®
96 h LC50-96 h: 1.05 mg a.e/L GM Mortality ↑, malformation ↑, growth

↓
[176]

Kilo Max® LC50-96 h: 207 mg a.e./L

Enviro Glyphosate® LC50-96 h: 466 mg a.e./L

Frog Microhyla fissipes KISSUN® 10 days LC50-10 d: 77.5 mg/L GM, BC,
MT

Mortality ↑, growth ↓, swimming
behavior l, metabolism l

[173]

Human Homo sapiens Roundup®
24 h

EC: 2%
ET +/-

Aromatase activity and mRNA levels
l [182]

Glyphosate analytical standard EC: 2%

Human H. sapiens Glyphosate and AMPA
analytical standards

24 h EC: 100 µM NT Neurological damage, glucose
metabolism l

[184]
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Table 1. Cont.

Organism Formulation Duration Concentration Endpoints
Studied

Bioaccumulation Effect References

Human
H. sapiens Glyphosate analytical standards

24 h EC: 0.5 ppm ET, CT Disruption of the androgen receptor
and estrogen receptors, aromatase
transcription and activity l, DNA
damages

[181]
Roundup Express®

Bioforce®

Grands Travaux®

Grands Travaux plus®

Human H. sapiens Glyphosate analytical standards 6 and 24 h EC: 10-12 M ET, GE Human hormone-dependent breast
cancer ↑, expression of the estrogen
receptors α and β l

[183]

Human H. sapiens Glyphosate analytical standards 4 h Exposure concentration:
1000 µM

CT, GT No significant cytotoxicity and
genotoxicity

[186]

Roundup Mega® EC: 250 µM Cell death and DNA damage

Fozat 480® EC: 500 µM

Glyfos® EC: 250 µM

Human H. sapiens Glyphosate analytical standards 48 h EC: 5 mM NT, GE, OS MDA levels ↑, nitric oxide and
reactive oxygen species production ↑,
caspase 3/7 activity ↑, neurological
and apoptotic gene expressions l

[185]

AMPA analytical standards EC: 10 mM

mg/L a.e. = mg/L acid equivalence. EC = effective concentration. LC50 = lethal concentration 50.
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4. A Case Study of Glyphosate Transport via Polyethylene Microplastic Fomites

Shrimp is an economically important aquaculture species, and global farmed shrimp
production was estimated to be over 4.5 million tons in 2021, with a growth rate of al-
most 9% globally [194]. Intensive shrimp production in ponds lined with polyethylene
or polyvinyl chloride liners is commonly used in shrimp culture [195]. The use of lin-
ers supports the effective removal of settled organics during shrimp grow out, the re-
duction of pond cleaning and preparation time, and the prevention of acid-sulfate soils
contamination [196]. Polyethylene microplastic, a polymer commonly found in surface
seawater and sediment [16–18], may enter shrimp farming and the environment through
water runoff, flooding, and winds. The quantification of the release of microplastics
into shrimp environments, however, is uncertain, and qualitative assessment assign-
ing relative ratings of high, medium, or low is needed to address the environmentally
heterogenous levels [197].

Regardless of the characterization of exposure routes, there is solid evidence that
the digestive tracts of commercially harvested shrimp species are contaminated with mi-
croplastics, suggesting that shrimp are routinely exposed to microplastics during their
production cycle [198]. Routine use of the plastic pond liners in farmed shrimp production
and their subsequent degradation into microplastic particles, taken together with envi-
ronmental microplastics exposure, also suggest a high likelihood of microplastic–shrimp
interactions and therefore an increase in the associated risks of a downstream production
chain. In addition to microplastics, the likelihood of shrimp exposure to GBHs is also
high due to their widespread intensive use and environmental persistence, especially in
agricultural areas surrounding shrimp pond farming operations. It has been reported that
GBHs can reach aquatic environments through contaminated feed sources, rainfall, leach-
ing, runoff, and intentional introduction [131–138,143,144,146–152], and this can include
aquaculture establishments.

Consequently, the simultaneous exposure of shrimp to both microplastics and GBHs
may occur in shrimp aquaculture pond environments and lead to toxicological interactions
altering the bioavailability, effects, and bioaccumulation of glyphosate and its metabolites
in aquacultured shrimp. Furthermore, shrimp behavior and physiology play an important
role in the exposure and intoxication of GBHs-sorbed polyethylene microplastics. The
feeding behavior of shrimp as non-selective opportunistic benthic feeders leads to the
ingestion of various particles that accumulate at the bottom of their habitats [199,200]
and can contribute to the risk of consuming GBHs-sorbed polyethylene microplastics in
ponds with polyethylene liners. Furthermore, the physiological processes of shrimp growth
and development, such as the molting cycle, can also be critically linked to GBHs-sorbed
polyethylene microplastics toxicity, as only the intact exoskeleton is acting as a defense
barrier. As demonstrated during the pathogenesis of a white spot syndrome virus (WSSV),
molting can influence the disease susceptibility, and shrimp in the post-molt stages are
more susceptible to WSSV infection via immersion than those in the pre-molt stage [201].
Shrimp during the molting process (ecdysis) have the highest mortality rate, followed by
the animals in the post-molt and pre-molt stages, respectively [202].

When the concurrent presence of polyethylene microplastics and glyphosate in a
shrimp production environment is considered together with the shrimp feeding behavior
and molting cycle processes, two potential exposure routes of shrimp to GBHs–polyethylene
microplastics (GBHs–PE) fomites emerge: oral and water. Oral exposure to GBHs–PE mi-
croplastics from the ingestion of contaminated feed and polluted water is considered an
important hazard. Following the inadequate application of GBHs on plants, glyphosate
residues and their adjuvants in feed ingredients can end up in commercial or self-prepared
shrimp feed. During feeding, those pesticide residues can interact with ubiquitous mi-
croplastics or fragmented pond liners in the water and at the bottom of a pond. Furthermore,
runoff from a field can contain both microplastic polyethylene and GBH residues either
separately or already adsorbed. Their passage through the water column already infiltrated
with microplastics from other sources, including pond liners, further allows for interactions
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and the adsorption of GBHs on PE microplastics. This situation results in the increased
availability of GBHs–PE for shrimp to ingest during their normal feeding behavior [203].
Besides the direct consequences and toxic effects of GBHs–PE microplastics in shrimp,
possible indirect effects along the gastrointestinal tract can also be of significance, such
as interference with the natural shrimp intestinal microbiome and the disturbance of the
microbiome roles in disease protection, improved feed energy utilization via microbial
digestion, and the production of vitamins.

The other possible exposure route is through the water, i.e., the waterborne route.
The waterborne GBHs–PE microplastics in a shrimp farm could originate from different
sources, including the fragmentation and weathering of the deteriorating pond liner, wind,
runoff, and flooding, in combination with glyphosate residues, its metabolites, adjuvants
released from the contaminated feed in water, and GBHs polluted from soil surface runoff
or by leaching. Such GBHs–PE particles may enter shrimp via their gill filaments as well
as their susceptible epidermis during the molting process and spread via the hemolymph
and other tissues, causing alterations in different body systems. Despite the poorly un-
derstood adverse effects of GBHs–PE microplastics on shrimp, many studies illustrating
their adverse effects on other organisms have been reported. Polyethylene microbeads
combined with glyphosate showed a modified toxicological effect on the mortality rate
of Daphnia magna. The different sorption capacities of PE to various glyphosate formu-
lations significantly increased or reduced the mortality rate of Daphnia magna [204]. The
interaction between polyethylene microplastics and GBH decreased lethal concentration
50 (LC50) and increased glutathione S-transferases (GST) activity compared with the direct
negative effects of individual polyethylene microplastics and GBH additions in Scinax
squalirostris [205]. The chronic co-exposure of polyethylene microplastics and glyphosate
to Cyprinus carpio L. caused a decrease in swimming activity, changed the morphological
integrity and dysfunction of the intestinal barriers, altered gut microbiota abundance and
diversity, and modified the metabolic profiles associated with an altered amino acid and
lipid metabolism [206].

Due to our limited knowledge about GBHs–polyethylene microplastics’ fate and
transport in a real environmental matrix and the gaps in our understanding regarding
different adverse outcome pathways in shrimp bodies, it is still difficult to confirm this
new contaminant class as being a serious hazard for shrimp in aquaculture. The lack
of information concerning the toxicity and bioaccumulation of GBHs–PE microplastics
in shrimp requires additional time and effort to assess the health risks to shrimp and
consumers, interfering with providing guidelines for sustainable shrimp production to
reduce the risks of introducing microplastic-pesticide contaminants in the food supply.

5. Conclusions

Global plastic production increased rapidly, and continues to do so, with dramatic
impacts on ecosystems due the uncontrolled deposition of plastic waste and ineffective
plastic waste management. Microplastic-sized fragments of any type of plastic can act
as vehicles for surrounding micro-pollutants and threaten aquatic ecosystems and organ-
isms. An overview of the reported and potential interactions between microplastics and
environmental micro-pollutants, as well as combinations of their toxic effects on aquatic
organisms, is presented. The sorption of micro-pollutants on microplastics and their in-
teraction mechanisms, such as the physicochemical properties of micro-pollutants and
microplastics and the environmental conditions, can change their environmental behaviors,
bioavailability, and effects, resulting in altered outcomes. The possible adverse outcomes
of glyphosate and its commercial formulations (GBHs) are summarized. Moreover, the
case of co-exposure and the combination effects of polyethylene (plastic that is commonly
used as a pond liner in shrimp farms) and GBHs on aquacultured shrimp are analyzed.
Nevertheless, the evaluation of actual risks from the co-exposure of GBHs and polyethylene
to aquacultured shrimp is difficult due to the limited number of non-standardized studies
on the repercussions of GBHs–PE microplastics. Their effects on shrimp are currently
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uncertain. Further research regarding GBHs–PE microplastic toxicity and bioaccumulation
in shrimp is needed to assess the health risks to shrimp and consumers.
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