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Abstract. Apoptosis is characterized by the pro-
grammed activation of specific biochemical pathways
leading to the organized demise of cells. To date,
aspects of the intracellular signaling machinery in-
volved in this phenomenon have been extensively
dissected and characterized. However, recent studies
have elucidated a novel role for changes in the
intracellular milieu of the cells as important modu-
lators of the cell death program. Specially, intracel-
lular ionic homeostasis has been reported to be a
determinant in both the activation and progression of
the apoptotic cascade. Several apoptotic insults trig-
ger specific changes in ionic gradients across the
plasma membrane leading to depolarization of the
plasma membrane potential (PMP). These changes
lead to ionic imbalance early during apoptosis. Sev-
eral studies have also suggested the activation and/or
modulation of specific ionic transport mechanisms
including ion channels, transporters and ATPases, as
mediators of altered intracellular ionic homeostasis
leading to PMP depolarization during apoptosis.
However, the role of PMP depolarization and of the
changes in ionic homeostasis during the progression
of apoptosis are still unclear. This review summarizes
the current knowledge regarding the causes and
consequences of PMP depolarization during apop-
tosis. We also review the potential electrogenic ion
transport mechanisms associated with this event,
including the net influx/efflux of cations and anions.
An understanding of these mechamisms could lead to
the generation of new therapeutic approaches for a
variety of diseases involving apoptosis.
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Introduction

Programmed cell death or apoptosis, is a genetically
encoded pathway that enables cells to undergo a
highly regulated and organized death in response to
specific signals. Apoptosis is involved in several
physiological and pathophysiological states of the
organism. For example, apoptosis is critical for the
maintenance of normal tissue homeostasis (cell
number) and is involved in the removal of cells during
tissue development and remodeling, as well as during
cell senescence and organism aging. Moreover,
apoptosis occurs as a consequence of distinct
pathologies, and its deregulation can lead to auto-
immune, cancer and neurodegenerative diseases. This
process is a ubiquitous, evolutionary highly con-
served, cell death program that requires the specific
activation of several signaling cascades, which ulti-
mately lead to distinct biochemical and morphologi-
cal alterations in the cell. These changes occur in
different and sequentially organized stages. Early
stages of apoptosis are characterized by the activation
of caspases and endonucleases, phosphatidylserine
externalization, cell shrinkage and nuclei condensa-
tion. Advanced stages of the cell death program are
typified by plasma membrane blebbing or apoptotic
body formation, DNA degradation, and finally cell
fragmentation (Bortner & Cidlowski, 2002; Green,
2003).

The signaling machinery involved in apoptosis
has been extensively studied and characterized. Re-
cent studies have demonstrated a role for changes in
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the intracellular milieu of cells as important modu-
lators and/or regulators of the cell death program.
Changes in the intracellular ionic homeostasis of
apoptotic cells have now been reported to occur in a
variety of experimental paradigms. Moreover, it has
been demonstrated that changes in the intracellular
ionic homeostasis are important regulators for the
progression of apoptosis (Yu, Canzoniero & Choi,
2001; Rizzuto et al., 2003; Bortner & Cidlowski,
2004). Recently, plasma membrane potential (PMP)
depolarization has been reported to occur during
early stages of apoptosis, but its consequences on the
progression of the cell death program are less
understood.

Ionic Homeostasis and Generation of Plasma

Membrane Potential (PMP) in Cells

Ionic homeostasis is probably the most ancient of all
the homeostatic mechanisms implicated in the main-
tenance, not only of cell physiology, but also of
normal organ and body functions. In biological sys-
tems ions are not uniformly distributed, thus, con-
centrations in one compartment differ from those in
other compartments. Major ionic gradients across the
plasma membrane include sodium (Na+), potassium
(K+), calcium (Ca2+) and chloride (Cl)). In both
prokaryotic and eukaryotic cells, lipid membranes
function as permeability barriers selective to ions,
providing a mechanism for the steady-state mainte-
nance of highly asymmetric concentrations of the
major cations and anions across both plasma mem-
branes and intracellular organelles. Thus, if there
were no maintenance mechanisms, the concentrations
of these ions inside and outside the cells would
equilibrate, with deleterious effects on the overall cell
homeostasis.

The maintenance of ionic concentration gradi-
ents involves both active and passive transport pro-
cesses across the plasma membrane (Figure 1). Active
transport of ions is mediated by proteins in the
plasma membrane capable of pumping ions from one
side of the membrane to the other against their con-
centration gradient. These mechanisms require en-
ergy from the hydrolysis of ATP (for the case of
ATPases), or can use the driving force of another ion
(coupled transporters). The Na+-K+ pump (or AT-
Pase) is the primary ion transport mechanism in-
volved in the maintenance of both Na+ and K+

concentration gradients across the plasma mem-
brane. This pump is electrogenic and extrudes three
Na+ for every two K+ pumped into the cell. Ion
concentration gradients can also be maintained by
their passive flux across the plasma membrane
determined by the selective and distinct permeability
of the membrane to various ions. The distinct per-
meability of the plasma membrane to different ions

gives an electrical polarity across the lipid bilayer or
membrane potential at rest that is present in all cell
types. Most cell types have high resting permeability
to K+, which together with the outwardly directed
K+ gradient makes the interior of the cell electrically
negative to the external solution. Thus in most cases
PMP values are close to those of the actual Nernstian
K+ potential. These permeability pathways are
mediated by ion channels, and the movement of ions
through these membrane pores does not require en-
ergy consumption but depends on the electrochemical
gradient of each ion species (Wright, 2004).

The movement of ions across the plasma mem-
brane results in changes in electrical potential across
the membrane. Such voltage changes have been re-
ported to be primary signals that convey biological
messages within the cell. Changes in the PMP occur
during the normal physiology of the cells. Ion con-
centration gradients, ion transport activity and PMP
reflect a triad whose regulation is critical for most
homeostatic cellular functions. For example, the
electrochemical gradient energy across the plasma
membrane influences the transport of a vast array of
nutrients in the cells and is the driving force in the
movement of salt and water across cell membranes
and between organ-based compartments. It is also
essential in the signaling processes associated with
coordinated movements of cells and organisms and is
the basis of cognitive processes. In contrast, deregu-
lated ionic imbalances are associated with patholog-
ical consequences, since ionic disturbances occur
during apoptosis, ischemia and several channelopa-
thies (Ronquist & Waldenstrom, 2003).

Changes in Cell Ionic Homeostasis and PMP During

Apoptosis

Changes in the PMP of the cells reflect movement of
ions across the plasma membrane. Thus, the PMP is a
consequence of the alteration in the distribution of
ions. Alterations in the transmembrane gradients of
several ions have been reported to influence the cell
death program. Plasma membrane depolarization has
been reported to occur in response to different
apoptotic stimuli including receptor-induced, stress-
induced and drug-induced apoptosis (Dallaporta et
al., 1999; Detre et al., 2005; Bortner, Gomez-Angelats
& Cidlowski, 2001; Mann et al., 2001; Mann &
Cidlowski, 2001; Borzi et al., 2002; Dussmann et al.,
2003b; Nolte et al., 2004; Scoltock & Cidlowski, 2004;
Esteves et al., 2005). For example, increasing con-
centrations of Fas ligand result in concurrent in-
creases in the number of cells that have a depolarized
PMP (Fig. 2). Interestingly, a PMP hyperpolariza-
tion phenotype has been reported as one of the
mechanisms by which Bcl-2 promotes apoptosis
resistance (Gilbert et al., 1996; Williams et al., 2000);
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however, the role of PMP depolarization during
apoptosis remains elusive. It is still unclear whether it
is just an epiphenomenon associated with the ionic
imbalance that occurs during apoptosis, or if there is
a specific signaling role for the ionic changes associ-
ated with PMP depolarization during apoptosis.
According to the electrochemical gradients across the
plasma membrane of cells (Fig. 1), PMP depolariza-
tion can only arise from the net electrogenic inflow of
Na+ and Ca2+ cations and / or the outflow of
intracellular anions like Cl) or other intracellular
organic anions (OA)). Plasma membrane potential
depolarization during apoptosis has been associated
with intracellular cation overload (Bortner et al.,
2001; Mann et al., 2001; Nowak, 2002; Dussmann et
al., 2003b; Nolte et al., 2004; Waring, 2005). This
overload reflects an early rise in Na+ and Ca2+ that
may account for the observed cellular depolarization
(Fig. 3). Additionally, anion efflux has also been re-
ported to mediate PMP depolarization during apop-

tosis (Nolte et al., 2004). Several reports have
suggested the participation of a wide variety of ion
transport proteins on the net intracellular cation
overload and/or anion efflux associated with PMP
depolarization during apoptosis, and are reviewed in
the following section.

Ion Transport Pathways that Mediate Cation Overload

During Apoptosis

PLASMA MEMBRANE ATPASES

The P-type ATPases comprise a nearly ubiquitous ion
pump family with catalytic activities involved in di-
verse cellular homeostatic processes including the
maintenance of osmotic balance and intracellular ionic
composition (Apell, 2003). Twomembers of this group
have been reported to be involved in the changes in
intracellular cation overload that might be associated
with PMP depolarization during apoptosis.

Fig. 1. Ionic homeostasis and generation of plasma membrane

potential (PMP) in the cells. The electrical gradient in the cells or

PMP at rest arises mainly from two physiological parameters: 1)

the presence of large gradients for K+ and Na+ across the plasma

membrane; and 2) the relative permeability of the plasma mem-

brane to those ions. The maintenance of the gradient distribution

of ions in the cells, and thus of the PMP, involves both active and

passive transport mechanisms across the plasma membrane. From

this, the Na+)K+ pump (or ATPase), which is the main ion

transport mechanism involved in the maintenance of both Na+

and K+ concentration gradients, and the high permeability to K+

driven by the presence of background or leak conductances, med-

iated by the recently described K2P K+-channels (Kim, 2005), are

the major determinants of PMP at rest (A). In a typical mammalian

cell, major ionic gradients across the plasma membrane (B) are

those of sodium (Na+), potassium (K+), calcium (Ca2+) and

chloride (Cl-). Most biological membranes are, to varying degrees,

permeable to K+ and Cl) ions. On the other hand, there is a

reduced Na+ and Ca2+ permeability of most plasma membranes.

The distinct permeability of the plasma membrane to different ions

gives an electric polarity across the lipid bilayer. (C) Other trans-

port mechanisms including ATPases (like the Ca2+-pump PMCA),

transporters coupled to the driving force of another ion (like the

Na+/Ca2+ exchanger NCX), the HCO3)Cl
) exchanger, and the

Na+)K+)Cl) and K+)CI) cotransporters) and ion channels

(voltage-gated, ligan-gated or stress-activated ion channels) can

also contribute to PMP at rest (by their tonic activity) or modulate

it during different processes by their activation upon different

stimuli. Due to the outwardly directed K+ and inwardly directed

Na+ gradients maintained by the activity of the Na+)K+ ATPase,

and high resting permeability to K+, the interior of the cell is

electrically negative in relation to the external solution, thus in

most cases PMP values are close to those of the actual Nernstian

K+ potential (around � )70 mV).
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Plasma membrane Ca2+)ATPase (PMCA)

Plasma membrane Ca2+-ATPases are a subfamily of
P-type ATPases, that extrude ionic Ca2+ across the
plasma membrane against its electrochemical gradi-
ent (Lehotsky et al., 2002). Recent reports have
shown a downregulation of the PMCA expression
and activity during different pathological situations
leading to apoptosis (Garcia et al., 2001). Further-
more, antisense-knockdown of the PMCA induces
apoptosis in muscle cells (Sasamura et al., 2002).
Overexpression of PMCA or its stimulation by
growth factors has also been reported to protect cells
from apoptosis (Garcia et al., 2001; Peluso, 2003).
Interestingly, the PMCA is cleaved by caspase 3
during apoptosis, which impairs intracellular Ca2+

homeostasis and results in a further Ca2+ overload

(Paszty et al., 2002; Schwab et al, 2002; Chami et al.,
2003).

Sodium-Potassium Pump (Na+)K+ ATPase)

Alterations in the ionic gradient distribution of Na+

and K+ are early hallmarks of initial stages of the
apoptotic program. Several reports have associated
these phenomena with a reduction in the Na+)K+

ATPase activity during apoptosis (Tang, Cheng &
Lin, 1996; Nobel et al., 2000; Bortner et al., 2001;
Mann et al., 2001; Nowak, 2002; Orlov et al., 2003;
Wang et al., 2003a, 2003b; Yu, 2003a; Arrebola et al.,
2005). Accordingly, inhibition of the Na+/K+ AT-
Pase with cardiac glycosides has been widely reported
to induce PMP depolarization paralleled by cell tox-
icity and cell death (Chatterjee & Roy, 1965; Mason

Fig. 2. Plasma membrane potential (PMP) depolarization is an

early hallmark during apoptosis. Changes in the PMP were mea-

sured by flow cytometry using DiBAC4(3). DiBAC4(3) is a nega-

tively charged oxonal dye that freely crosses the plasma membrane.

As the cell depolarizes more of this dye can enter the cell resulting

in an increase in fluorescence. Fas ligand (FasL)-induced PMP

depolarization was analyzed by fluorescence-activated cell sorting

analysis, FACS, using a BD LSR II flow cytometer and BD

FacsDiva Software (Becton Dickinson, San Diego, CA) for data

analysis. Thirty minutes prior to each time of examination, Jurkat

cells were preloaded with DiBAC4(3) at a final concentration of 150

nM, and the incubation was continued at 37�C, 7 % CO2 atmo-

sphere. Immediately prior to flow cytometry examination, propi-

dium iodide (PI) was added, and cells with increased PI

fluorescence (i.e., loss of plasma membrane integrity) were dis-

carded. Cells were analyzed at a cell density of 5 · 105 cells/ml, and

in all cases, ten thousand cells were analyzed. DiBAC4(3) was ex-

cited using an Argon 488 laser and the fluorescence was detected

with a 530/30 detector. For PI, cells were excited with an Argon

488 nm laser and emission was acquired with a 695/40 detector. A

depolarized PMP is reflected by the appearance of a different

population of cells with increased DiBAC4(3) (green) compared to

control cells’ fluorescence (red). Frequency histograms of Di-

BAC4(3) fluorescence (upper panels) show that FasL induced the

appearance of a population of cells with a depolarized PMP

respective to control cells, in a concentration-dependent manner.

We also analyzed the changes in DiBAC4(3) fluorescence in con-

tour plots (lower panels) against changes in cell size. Cell size was

determined as changes in the forward scatter pattern by exiting the

cells with an Argon 488 nm laser. The forward-angle light scatter

relates to cell diameter, i.e., cell shrinkage is reflected as a decrease

in the amount of forward scatter light. We observed that the cells

with a depolarized PMP (green) had a slight decrease in cell size

reflected as a decrease in their forward scatter properties. The

center of the quadrants is used as a reference for the mean Di-

BAC4(3) fluorescence and forward scatter signal of control cells.
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et al., 1971; Watabe et al., 1996; Olej et al., 1998;
Kawazoe et al., 1999; Stelmashook et al., 1999;
McConkey et al., 2000; Omar, Senatorov & Hu,
2000; Chueh et al., 2001; Kurosawa et al., 2001;
Hennion et al, 2002; Schmiedt et al., 2002; Xiao et al.,
2002a, 2002b; Huang et al., 2004; Esteves et al., 2005;
Lang, Schulte & Schmiedt, 2005), or to enhance
apoptosis induced by different stimuli in various
model systems (Thevenod & Friedmann, 1999; Nobel
et al., 2000; Penning et al., 2000; Verheye-Dua &
Bohm, 2000; Bortner et al., 2001; Xiao et al., 2002a;
Orlov et al., 2003; Esteves et al., 2005). Alterations in
the expression and activity of the Na+-K+ ATPase
have also been widely reported to occur during the
pathogenesis of cardiovascular, neurological, renal
and metabolic diseases, as well as during heavy metal-
induced toxicity (Patrick & Hilton, 1979; Lees, 1991;
Rose & Valdes, 1994; Chauhan, Lee & Siegel, 1997;
Mishra & Delivoria-Papadopoulos, 1999; Thevenod
& Friedmann, 1999; Ziegelhoffer et al., 2000; Kumar
& Kurup, 2002; Rodrigo et al., 2002; Yu, 2003a;
Cimen et al., 2004).

Recent reports have shown that degradation of
the Na+-K+ ATPase occurs during apoptosis in-
duced by death receptor activation (Bortner et al.,
2001), glucocorticoids (Mann et al., 2001), and
staurosporine (Dussmann et al., 2003a). Interestingly,
apoptotic-resistant phenotypes of bcl-2–overexpress-
ing cells (Gilbert et al., 1996; Gilbert & Knox, 1997),
and of progesterone receptor-(Gonzalez Deniselle
et al., 2002) and angiotensin receptor-mediated neu-
roprotection (Grammatopoulos et al., 2004), have
been associated with an elevated Na+-K+ ATPase
activity. The mechanisms and signals by which
apoptosis modulates ATPase activity are still unclear.
Since apoptosis is generally recognized to require
intracellular ATP for its progression, increases in
the intracellular ATP concentration occur under
these circumstances (Eguchi et al., 1999; Nicotera &
Melino, 2004; Zamaraeva et al., 2005). Thus, energy
failure can likely be discarded as one of the mecha-
nisms. Recent reports suggest the role of caspases
(Mann et al., 2001; Dussmann et al., 2003a), protein
kinases (Nowak, 2002; Wang & Yu, 2005), and

Fig. 3. Fas ligand (FasL)-induced apoptosis increases the intra-

cellular concentration of sodium (Na+) and calcium (Ca2+) of

cells. For the intracellular Na+ and Ca2+ measurements, cells were

preloaded at 37�C, 7 % CO2 atmosphere with 5 lM (1 h) of SBFI-

AM (Na+ fluorophore), or 2 lM (30 min) Fluo3-AM (Ca2+ flu-

orophore) prior to the time of examination. Fas ligand-induced

changes in the intracellular concentration of these cations were

analyzed by FACS. Immediately prior to flow cytometry exami-

nation, PI was added. For SBFI, cells were excited with a UV 350/

360 laser and emission was acquired with a 440/40 detector. For

Fluo3, cells were excited with an Argon 488 nm laser and emission

was acquired with a 530/30 detector. Changes in the concentration

of these cations are reflected by the appearance of different popu-

lations of cells with differences in SBFI or Fluo3 fluorescence,

reflecting changes in the intracellular concentration of this ion.

Frequency histograms of the fluorescence of these dyes show that

an initial stage of FasL-induced apoptosis is characterized by an

increase in the concentration of both Na+ and Ca2+ in the cells.

This is reflected by the appearance of a population of cells with an

increase in the concentration of these cations (blue population)

compared to control cells (green population). A second population

of cells (yellow) with a dramatic loss of intracellular cations, con-

sists of cells in a late stage of the apoptotic program.
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reactive oxygen/nitrogen species (Chakraborti et al.,
1998; Cimen et al., 2004; Rodrigo et al., 2002; Sen et
al., 2004; Thevenod & Friedmann, 1999; Wang et al.,
2003a) in the modulation of Na+-K+ ATPase
expression and activity during apoptosis. But func-
tional studies are needed to characterize the precise
signaling pathways.

ION CHANNELS

Ion channels are integral membrane proteins that
provide pores for the passive diffusion of ions across
biological membranes that result in trans-membrane
currents, thus being the main source of electrogenic
ion flux pathways. They are normally classified
depending on the ion species involved or according to
their regulation of the gating or activation process.
Ion channels participate in membrane potential
maintenance, transduction of chemical signals to
electric stimuli, and generation, coordination and
propagation of electrical currents in excitable tissues.
Other physiological functions ascribed to ion chan-
nels include the regulation of cell volume and pH,
regulation of transepithelial transport of salt and
water, hormone secretion and cell proliferation
(Wehner et al., 2003; Wang, 2004). Recent studies
have demonstrated the participation of several ion
channels in apoptotic cell death (Lang et al., 2003a;
Storey et al., 2003; Yu, 2003b; Okada et al., 2004;
Wang, 2004; Remillard & Yuan, 2004). Additionally,
deregulation of ion channel expression and function
leads to diverse pathological conditions or channel-
opathies (Jentsch, Hubner & Fuhrmann, 2004;
Waxman, 2001).

Voltage-gated Ion Channels

Voltage-gated Na+ channels (VGNC) have been
widely studied in nerve and muscle cells where they
mediate regenerative cell membrane depolarization
and conduction of electrical signaling, and its dereg-
ulation has been associated with the appearance of
hyperexcitability-derived diseases. They are also ex-
pressed in non-excitable cells including fibroblasts,
osteoblasts, lymphocytes, glia, and metastatic cancer
cells of epithelial origin, although their functions are
less understood (Diss, Fraser & Djamgoz, 2004). The
role of VGNC in apoptosis was suggested first by the
observation that the VGNC activator, veratridine,
induced apoptosis in neurons independently of the
activation of voltage-gated Ca2+ channels (VGCC)
(Dargent et al., 1996; Ulbricht, 1998; Koike &
Ninomiya, 2000; Koike et al., 2000). These data im-
plied a primary role of Na+ overload in the induction
of apoptosis by PMP depolarization, although the
mechanisms by which veratridine-induced Na+

overload induces apoptosis are still unclear. Other

studies have also suggested a synergistic action of
Ca2+ influx, reactive oxygen species generation, and
p53 activation on veratridine-induced apoptosis that
might further regulate the activation of the mito-
chondrial pathway of apoptosis and execution casp-
ases (Callaway et al., 2001; Jordan et al., 2003;
Banasiak, Burenkova & Haddad, 2004; Gomez-Laz-
aro et al., 2005). Several VGNC blockers have been
reported to reduce brain damage and cell death
during ischemia, hypoxia and traumatic brain injury
(Taylor & Meldrum, 1995; Carter, 1998; Small,
Morley & Buchan, 1999; Goldin, 2001; Banasiak
et al., 2004) as well as to protect against apoptosis
induced by ouabain (Xiao et al., 2002b) and death-
receptor activation (Bortner & Cidlowski, 2003).

The voltage-gated family of Ca2+ channels
(VGCC) is comprised of a large group of structurally
related heterooligomers that couple cell excitability to
intracellular signaling by permitting Ca2+ ions to
enter thus producing transient intracellular Ca2+

signals (Miller, 2001). Thus, VGCC have also been
implicated in initiating intracellular Ca2+-dependent
events, such as contraction, secretion, synaptic
transmission and gene expression. Voltage-gated
Ca2+-channels have been shown to be activated
during neurodegenerative disease- or aging- induced
apoptosis (Mason et al., 1999; MacManus et al.,
2000; Ho, Ortiz & Shea, 2001; Yagami et al., 2002,
2004; Otori et al., 2003; Ma et al., 2005), as well as
during excitotoxicity- and ischemia-induced cell
death (Kobayashi & Mori, 1998; Read, McCall &
Gregg, 2002). Voltage-gated Ca2+ channel antago-
nists have been widely reported to prevent Ca2+

overload and apoptosis. Additionally, other types of
apoptotic stimuli including cytokine withdrawal
(Wang et al., 1999), lipid oxidation (Ares et al., 1997),
cytotoxic agents (Kim et al., 2000a; Barone et al.,
2004; Tanaka et al., 2004; Barone, Aguanno &
D�Agostino, 2005) and phospholipase activation
(Yagami et al., 2003b, 2003c, 2005) have also been
shown to activate several types of VGCC whose
inhibition protects from the progression of cell death.
Apoptosis has also been correlated with the overex-
pression of the L-type VGCC alpha(1) subunits (Ba,
Pang & Benishin, 2004; Grassi et al., 2004). The
activation of VGCC during apoptosis has been
associated with either changes in PMP, protein kinase
activation or the generation of reactive oxygen spe-
cies (MacManus et al., 2000; Cano-Abad et al., 2001;
Yagami et al., 2003a; Ba et al., 2004; Grassi et al.,
2004; Waring, 2005).

Non-selective Cation Channels

Non-selective cation channels are a diverse group of
ion channels characterized by their relatively low
selectivity between cation species. Their activity is
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modulated by various extracellular and intracellular
signals. These nonselective cation channels are gated
by diverse mechanisms, which can include voltage,
cyclic nucleotides, ligands, reactive oxygen species
and stretch. They contribute to depolarization of the
membrane and in most cases to an increase in the
intracellular Ca2+ concentration. The activation of
NSCC in apoptosis has been widely reported in
different cell types under various apoptotic stim-
uli (Gutierrez et al., 1999; Kim et al., 1999, 2006;
Manion et al., 2000; Tapia-Vieyra & Mas-Oliva,
2001; Estacion & Schilling, 2002; Lang et al.,
2003a,b,c; Jeulin, Dazy & Marano, 2002; Sook Han
et al., 2003; Mukherjee et al., 2002; Sudhandiran &
Shaha, 2003; Lang et al., 2004a,b; Lee, 2004; Mahta
& Shaha, 2004). However, the molecular identities of
the channels involved seem to vary in each case and
usually according to the cell type studied.

The transient receptor potential (TRP) channels
regulate the plasma membrane permeability of cells to
a variety of ions in response to a wide diversity of
stimuli. With the exception of the Ca2+-selective me-
lastatin TRP channels (TRPM) and two members of
the vanilloid receptor family of calcium-permeable
channels (TRPV5 and TRPV6), which show a high
selectivity for Ca2+, TRP channels are non-selective
cation influx channels. TRP channels are activated by
a variety of stimuli including intra- and extracellular
ligands or signaling molecules, Ca2+-store depletion
and mechanical or thermal stress. Thus, their activity
has recently been shown to be involved in different
physiological processes such as capacitative or store-
operated Ca2+ entry (SOCE), sensory- and mechano-
transduction (Voets & Nilius, 2003; Putney, 2005).
Recent reports have also underlined the role of TRP
channel activation in the induction of apoptosis.
Activation of TRP channels in Drosophila leads to
massive photoreceptor cell death (Yoon et al., 2000;
Hong et al., 2002). Additionally, redox stress-induced
and nicotinamide adenine dinucleotide-induced
apoptosis have been suggested to depend on TRPM2
mediated Ca2+ influx (Sano et al., 2001; Hara et al.,
2002; Zhang et al., 2003).Moreover, overexpression of
TRPM7 in HEK293 has been reported to induce cell
death (Yoon et al., 2000; Hong et al., 2002), and its
activation by free radicals mediates neuronal death
induced by oxygen-glucose deprivation (Aarts et al.,
2003; Aarts&Tymianski, 2005). Apoptosis can also be
induced by TRPV1 channel activation by particulate
matter or capsaicin (Agopyan et al., 2003, 2004; Bodo
et al., 2005).

Store-operated Ca2+ entry (SOCE) is a wide-
spread phenomenon that represents the major
mechanism of regulation of Ca2+ influx in non-
excitable cells. Store-operated Ca2+ entry has been
widely reported to induce apoptosis and has also been
suggested to mediate glucocorticoid-induced cell
death (Nam et al., 2003; Parekh & Putney, 2005), It

has also been suggested that antiapoptotic effects of
Bcl-2 are associated with the downregulation of
SOCE channels, suggesting a pivotal role of SOCE
on the progression of apoptosis (Vanden Abeele
et al., 2002). A large number of studies have sug-
gested the possibility that TRPC channels function as
a source for SOCE (Parekh & Putney, 2005); how-
ever, this proposal has not been clearly established.
SOCE associated with TRPC2 channel activation
induces apoptosis triggered by the growth arrest and
DNA damage-inducible gene (GADD153) overex-
pression, and acute K+ loss (Pigozzi et al., 2004). A
recent study has shown that several genes involved in
apoptosis are upregulated in cells with high levels of
SOCE currents (Zagranichnaya et al., 2005).

Ion Transport Pathways that Mediate Anion Efflux

During Apoptosis

Anion channels in the plasma membrane are perme-
able to anions such as iodide, bromide, nitrates,
phosphates, and negatively charged amino acids.
However, they are usually referred to as chloride (Cl))
channels since it is the most abundant anion and the
predominant specie in all organisms. Chloride chan-
nel activity contributes to cell membrane potential,
and maintains intracellular pH and cell volume.
Chloride channels also play important roles in dif-
ferent physiological processes including epithelial
transport and blood pressure regulation, muscle tone,
cellular excitability, cell cycle and proliferation, and
apoptosis (Okada et al., 2004). There are multiple
families of chloride channels described by their elec-
trophysiological and pharmacological properties
(Nilius & Droogmans, 2003; Jentsch et al., 2005).
Diverse apoptotic stimuli have been reported to acti-
vate Cl)-channels (Meng, Carruth & Weinman, 1997;
Okada & Maeno, 2001; Porcelli et al., 2003; Dupere-
Minier et al., 2004). In some cases, it has been sug-
gested that Cl) channel modulation during apoptosis
occurs by second messengers including intracellular
Ca2+, ROS generation and kinases (Szabo et al.,
1998; Nietsch et al., 2000; Kim, Kang & Lee, 2003;
Shimizu, Numata & Okada, 2004). Moreover, Cl)-
channel blockers have been widely reported to inhibit,
with a distinct degree of potency and specificity, the
progression of apoptosis (Fujita, Yanagisawa &
Ishikawa, 1997; Szabo et al., 1998; Rasola et al., 1999;
Maeno et al., 2000; Mizoguchi et al., 2002; Small,
Tauskela & Xia, 2002; d�Anglemont de Tassigny et al.,
2004; Myssina et al., 2004; Porcelli et al., 2004; Wei
et al., 2004; Takahashi et al., 2005; Tanabe et al.,
2005). Furthermore, media with reduced extracellular
Cl) have also been shown to prevent the progression
of apoptosis in a few model systems (Lang et al.,
2004c; Tsukimoto et al., 2005). Electrophysiological
studies have suggested that Cl)-channels activated

R. Franco et al.: Ionic Regulation of Apoptosis 49



during apoptosis have properties similar to the vol-
ume-regulated anion current (VRAC) that partici-
pates in volume recovery after cell swelling (Maeno et
al., 2000; Souktani et al., 2000; d�Anglemont de Tas-
signy et al., 2004; Shimizu et al., 2004). However, the
molecular identity of the Cl)-channels involved in the
progression of apoptosis is still unclear. Recent re-
ports have postulated the role of either the plasma
membrane voltage-dependent anion channels
(VDAC) (Elinder et al., 2005), the Ca2+-activated
Cl)-channels (Schumann, Gardner & Raffin, 1993;
Kim et al., 2003) or the voltage-gated Cl)-channels
(Wei et al., 2004) as possible mechanisms of Cl)

extrusion during apoptosis. Other reports have also
suggested that Cl) efflux occurs during apoptosis
associated with K+ loss and cell shrinkage or apop-
totic volume decrease (AVD). According to the Cl)

concentration distribution across the plasma mem-
brane (Fig. 1), the opening of a passive Cl) flux
pathway, like an anion channel, will drive an influx of
Cl) down its electrochemical gradient. However,
during AVD and cell volume regulation after cell
swelling (RVD), the intracellular concentration of Cl)

decreases (Arrebola et al., 2005; Zhou et al., 2005).
Chloride loss in these cases has been postulated to be
mediated by its extrusion coupled to the simultaneous
loss of ionic K+ due to the pronounced voltage-
mediated coupling between both K+ and Cl) con-
ductance pathways, which should not contribute to a
change in PMP (Wehner et al., 2003; Okada et al.,
2004). Alternatively, it has been reported that during
RVD an initial activation of K+ channels leads to a
transient hyperpolarization, which then acts as the
driving force for a sustained Cl) efflux and PMP
depolarization (Jakab et al., 2002). However, this
phenomenon has not been reported for AVD.

Role of Ion Movements Associated with PMP

Depolarization in the Progression of Apoptosis

As discussed earlier, the ionic mediators of plasma
membrane depolarization must involve either a net
cation influx or a net anion efflux across the plasma
membrane. In general, the effects of PMP depolar-
ization on biological systems are associated with the
changes in the intracellular concentration of the ionic
species that mediate it. This is also the case for
apoptosis, where the effects of PMP depolarization
might be ion-species specific. This observation is
supported by the fact that PMP depolarization under
high extracellular K+ conditions is protective against
apoptotic cell death (Chacon-Cruz et al., 1998; Lau-
ritzen et al., 2003; Zhong et al., 2004; Johnson &
D�Mello, 2005), although this effect has also been
demonstrated to be related to the inhibition of K+

loss during apoptosis (Bortner, Hughes & Cidlowski,
1997; Yu et al., 1997; Thompson et al., 2001).

In contrast, PMP depolarization by either Na+

(Dargent et al., 1996; Jordan et al., 2000,2002, 2003;
Koike et al., 2000; Gomez-Lazaro et al., 2005;
Banasiak et al., 2004), or Ca2+ ionophores (Gwag
et al., 1999; Gil-Parrado et al., 2002; Zhu et al., 2002;
Lang et al., 2003d) has been consistently reported to
induce apoptosis.

Na+ OVERLOAD

In contrast to reports for Ca2+, evidence for a direct
modulation of Na+ on enzyme activity or signaling
protein function is scarce. However, there are data
that suggest a direct role of Na+ ions on the regu-
lation of apoptosis. For example, early phosphati-
dylserine exposure during apoptosis has been
reported to be dependent on Na+, but not Ca2+ in-
flux (Courageot et al., 2004). Sodium overload has
also been demonstrated to modulate cytoskeleton
organization (Chifflet et al., 2003, 2004) and activate
the Rho-ROCK signaling pathways (Szaszi et al.,
2005), which are necessary for apoptotic body for-
mation (Croft et al., 2005).

An indirect effect of Na+ overload causing fur-
ther ionic gradient imbalances during apoptosis
might also modulate the activation of the apoptotic
machinery. For example, sodium overload has been
suggested to drive H+ entry via the Na+/H+ ex-
changer (Koike et al., 2000), which can further reg-
ulate the progression of apoptosis via acidification of
the intracellular milieu. Additionally, intracellular
Na+ increase has been shown to precede the activa-
tion of K+ efflux associated with cell shrinkage or
apoptotic volume decrease (Bortner et al., 2001). A
rise in the intracellular Na+ concentration has also
been reported to directly activate G-protein–gated
inwardly rectifying K+ channels but the role of these
channels in apoptosis is unclear (Migheli et al., 1999).
Sodium overload-induced plasma membrane depo-
larization has been reported to activate VGCC that
mediates intracellular Ca2+ rise. Moreover, sodium
overload can induce further intracellular Ca2+ in-
creases by means of the activation of the Na+/Ca2+

exchanger which has been widely associated with
apoptosis (Howes et al., 2003; Annunziato, Pignataro
& Di Renzo, 2004; Elgel, Gursahani & Hadley, 2004).
Finally, sodium overload has been recently reported
to be necessary for cell shrinkage or AVD, but the
mechanisms involved and implications are still elusive
(Bortner & Cidlowski, 2003).

Ca2+ OVERLOAD

Ionic Ca2+ is a highly versatile intracellular signal
that regulates numerous cellular processes. To date
there are many examples describing how Ca2+ can
directly regulate protein function by modulating ei-
ther enzymatic activity or conformational changes
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(Berridge, Bootman & Roderick, 2003), and changes
in intracellular Ca2+ clearly have a role in apoptotic
cell death. Calcium overload has also been suggested
to be the final common pathway of all types of cell
death (Rizzuto et al., 2003). Intracellular Ca2+ in-
creases have been suggested to act not only as
apoptotic inducers, but also as regulators of the
amplification loop of the death signal. In contrast,
there is also evidence suggesting that apoptosis in-
duced by different stimuli including death receptor
activation, radiation and DNA damage is either
Ca2+-independent (Jornot, Petersen & Junod, 1998;
Rozental et al., 2004), or that it participates in only
certain components of the cell death program (Scol-
tock et al., 2000).

Ionic Ca2+ has been reported to interact and
modulate the apoptotic signaling machinery at dif-
ferent stages, and several studies have shown that
cytosolic Ca2+ is elevated during both early and late
stages of apoptosis (Tombal, Denmeade & Isaacs,
1999; Rizzuto et al., 2003). Cytosolic Ca2+ overload
enhances mitochondrial Ca2+ uniport uptake that
results in matrix swelling, mitochondrial depolariza-
tion and release of apoptogenic proteins. These ef-
fects have been suggested to be mediated by the direct
opening of the permeability transition pore (PTP),
the generation of ROS, cardiolipin peroxidation and
activation of Ca2+-activated K+ channels (mitoKCa)
(Hajnoczky, Davies & Madesh, 2003). Calcium
overload may also activate apoptogenic effectors that
control the cell death process independent from the
mitochondria, by modulating the activity of kinases
and phosphatases involved in apoptosis, such as
calmodulin and calmodulin-dependent kinase II
(Nutt et al., 2005; Wu et al., 2005). Furthermore,
calcineurin, a Ca2+/calmodulin-dependent protein
phosphatase has also been demonstrated to mediate
the translocation of Bad (a Bcl-2 family member of
the pro-apoptotic proteins) to the mitochondria.
Another important mediator of Ca2+-dependent
apoptosis is the family of Ca2+-dependent proteases,
calpains. Calpains are cysteine proteases that act in a
similar way as caspases and are activated from an
inactive proenzyme by Ca2+-dependent autocatalytic
cleavage. Calpains have been reported to mediate
apoptosis by the further cleavage of various cellular
apoptogenic proteins including caspases, calcineurin,
Bcl-2 family members and X-linked inhibitors of
apoptosis. Additional effectors of apoptosis mediated
by cytosolic Ca2+-overload include DNases, nitric
oxide synthases, phospholipases and transglutamin-
ases (Orrenius, Zhivotovsky & Nicotera, 2003).

Cl)/ANION EFFLUX

Chloride/anion flux pathways have also been re-
ported to modulate the progression of apoptosis. This
has been studied primarily through the inhibitory

effect of chloride channel blockers and reduced
extracellular Cl) media on the apoptotic signaling
cascade. However, the exact role of reduced intra-
cellular Cl) concentration on the cell death program
is far from being understood. Chloride/anion efflux is
necessary for cell shrinkage or AVD during apoptosis
(Szabo et al., 1998; Okada & Maeno, 2001; d�An-
glemont de Tassigny et al., 2004; Okada et al., 2004;
Porcelli et al.., 2004). However, the idea of AVD as a
necessary signal for the activation of apoptosis (Orlov
et al., 1996; Maeno et al., 2000; Friis et al., 2005) has
been challenged by studies showing either the occur-
rence of apoptosis in the absence of cell shrinkage
(Bortner & Cidlowski, 2003; Vereninov et al., 2004),
or the inhibition of apoptosis by cell shrinkage
(Gulbins et al., 1997; Uhlemann et al., 2000).

POSSIBLE rOLE OF VOLTAGE CHANGES

The role of PMP depolarization in the cell death
program appears to depend on the ionic species
implicated, however, one cannot also discard the
existence of voltage-sensitive steps acting on the sig-
naling cascade. Changes in membrane potential affect
ion flux pathways with an intrinsic voltage sensor (ion
channels), which alters intracellular chemical condi-
tions and modulates a variety of biological processes.
Evidence concerning the direct effect of the changes in
PMP potential on enzyme activity or other signaling
pathways is limited. A recent study has demonstrated
the presence of an intrinsic voltage sensor in non-
channel signaling proteins, which suggests that other
enzymes, including apoptogenic signaling proteins,
might also possess a similar mechanism (Murata et al.,
2005). Apoptosis induced by different stimuli leads to
the activation of voltage-activated ion channels,
including VGCC and voltage-gated K+ channels that
have been reported to be involved in the progression
of apoptosis (Yu et al., 1997; Storey et al., 2003; Yu,
2003b; Remillard & Yuan, 2004; Wang, 2004). Elec-
trical activity has also been demonstrated to regulate
programmed cell death in neurons by activation of
Na+ channels (Svoboda, Linares & Ribera, 2001).
Other kinds of electric-mediated signaling have been
described as well for ion channels functionally linked
to membrane receptors involved in apoptosis (Arc-
angeli et al., 1993; Olivotto et al., 1996; Brassard et al.,
1999; Lewis, Truong & Schwartz, 2002). Thus, it is
plausible to hypothesize that other death receptors or
membrane domains might employ similar mecha-
nisms for signal transduction during apoptosis.

Concluding Remarks and Perspectives

Apoptosis is an evolutionarily conserved process in-
volved in both physiological and pathophysiological
phenomena. Despite a large number of studies dedi-
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cated to the elucidation of the signaling machinery
involved in apoptosis, there are still many aspects of
this process to be resolved. Changes in the intracellular
milieu of the cells have been reported to be a deter-
minant for the activation, modulation and progression
of apoptotic cell death, and maintaining a normal io-
nic homeostasis may be an important inhibitory
mechanism for apoptosis in cells. Ionic homeostasis
regulation is a transcendental phenomenon for the
normal physiology of all cell types, and accordingly,
ionic homeostasis deregulation is a common hallmark
of apoptosis. Particularly, PMP depolarization has
been observed to be an initial feature of apoptosis
associated with either cation overload or anion efflux;
however, the interrelationship of these phenomena is
still far from being understood. In this review, we have
summarized the current knowledge and evidence
about the role of electrogenic ion transport (including
channels, transporters and ATPases) and PMP depo-
larization in apoptosis. Evidence suggests that direct
PMP depolarization is able to trigger the cell death
program in some cell types, as shown by the observa-
tion that direct activation of Na+ and Ca2+ iono-
phores induces apoptosis. These effects seem to be ion
species- specific. Notwithstanding, and less studied is
the possibility of intrinsic voltage-sensors in non-
channel signaling proteins, as suggested by recent
studies (Murata et al., 2005). In addition, the level of
complexity is raised by the fact that there is evidence
suggesting that not only changes in the concentration
of ionic Ca2+, but also of Na+ and Cl), might have
direct effects on the signaling machinery of apoptosis.
As summarized here, both cation overload and/or
anion efflux associated with PMP depolarization can
modulate or activate the apoptotic signaling machin-
ery at different steps in the cell death program. How-
ever, current evidence is insufficient to make a clear
synthesis of the pathways involved, and more studies
are necessary to clarify the role of ionic imbalance and
PMP depolarization in apoptosis.

We appreciate the input of Dr. James W. Jr. Putney.
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