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Drug use disorders (DUDs) not only cause serious harm to users but also

cause huge economic, security, and public health burdens to families and

society. Recently, several studies have shown that gut microbiota (GM) can

affect the central nervous system and brain functions. In this review, we

focus on the potential role of the GM in the different stages of DUDs.

First, the GM may induce individuals to seek novel substances. Second,

the gut microbiota is involved in the decomposition and absorption of

drugs. Symptoms of individuals who suffer from DUDs are also related to

intestinal microorganisms. Third, the effects of the GM and its metabolites

on drug relapse are mainly reflected in the reward effect and drug memory.

In conclusion, recent studies have preliminarily explored the relationship

between GM and DUDs. This review deepens our understanding of the

mechanisms of DUDs and provides important information for the future

development of clinical treatment for DUDs.

KEYWORDS
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Introduction

Drug use disorders (DUDs) are notable as a global public health problem. According
to the latest report from the United Nations Office on Drugs and Crime, approximate
284 million people aged 15–64 years old worldwide have used drugs in 2020 (1). Notably,
people with DUDs who are co-infected with the severe acute respiratory syndrome
coronavirus 2, the etiological agent of the current coronavirus disease 2019 pandemic,
are at risk of contracting multiple diseases. In addition, because of the hindered
economic development in various countries due to the pandemic, the possibility of
drug use by high-risk groups and the risk of relapse by addicts during the abstinence
period will significantly increase (2, 3). DUDs significantly harm the physical and mental
health of drug abusers, and it is associated with public health and safety problems (e.g.,
AIDS) (4). Importantly, DUDs are considered the chronic and recurrent brain disease,
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which can impair brain function by rebuilding reward pathways
and changing synaptic plasticity (5). At present, the treatment
of DUDs mainly depends on psychological withdrawal and drug
substitution, but new treatment ideas are urgently required (6).

Recently, researchers found that the gut microbiota (GM) is
involved in the pathogenesis and progression of many diseases.
The intestinal microflora is a complex microbial ecosystem,
which is balanced by the interaction of internal and external
environments and maintains the normal physiological functions
of the host (7, 8). The GM may communicate with the
brain through the intestinal and autonomic nervous systems
and the immune system, thereby affecting brain function
(9). The signal transduction pathway between biochemical
molecules and neurons is known as the microbial-intestinal-
brain axis (10). In addition, the GM participates in the
synthesis of neuroactive molecules (e.g., dopamine and 5-
hydroxytryptamine) and affects the central nervous system
(CNS) by activating the vagus nerve, stimulating the immune
pathway, and inducing signal transduction in the intestinal
nervous system (11, 12). Therefore, the GM may be an
important factor in many neurological diseases (10, 13). Li
et al. (14) conducted a random-effects meta-analysis on the
standardized mean difference of intestinal microbial diversity
by using community richness, community diversity, and
phylogenetic diversity. It was found that the alpha diversity
of intestinal microbiota may be an effective predictor of
neurological diseases such as Alzheimer’s disease, schizophrenia,
and multiple sclerosis. In another meta-analysis study of
general adult people with mental illness, the intestinal microbial
richness of patients decreased significantly in terms of alpha
diversity compared with the control group. The differences
in beta diversity could be observed in major depressive
disorder and psychosis and schizophrenia (15). These suggest
that psychiatric disorders may be associated with a unique
pattern of microbial perturbations, which may be used as a
biomarker.

As a neurological brain disease, do DUDs also relate to GM?
If so, what are the potential roles of GM in the different stages of
DUDs? The effects of the gut microbes on DUDs are subtle yet
extensive, which may have been overlooked in previous studies.
The present review systematically summarizes recent findings
and discusses the role of the GM in different DUDs stages. The
current review will have important implications for exploring
the mechanisms of DUDs development. In addition, this review
will highlight potential diagnoses and therapeutic options.

Gut microbiota and novelty
seeking

The initiation of drug use is closely related to family
environment and social factors (e.g., parental influences and
deviant friends) (16). There is also a positive correlation between

the frequency of addictive substance use and the level of
sensation seeking, which could be one predictor of drug use
(17). However, the development of DUDs mainly depends on
neuropharmacology and neurobiological factors (18). The GM
plays a role in the initial stage of DUDs, especially in the seeking
and preference of novel substances.

Specifically, people who pursue high novelty tend to be
more sensitive to novel, packaged addictive drugs. Individuals
with cocaine and methamphetamine (MA) use disorder have
significantly higher levels of drug seeking than healthy controls,
which may impact drug use (19). There is also a positive
correlation between novelty seeking and relapse of cocaine
users (20). Novelty seeking can partially predict individual
drug susceptibility and abuse trends, and this has clinical
value in the prevention of DUDs (21). Interestingly, some
changes in the GM can significantly enhance the novelty-seeking
behavior of animals. For example, intervention with a high-dose
probiotic mixture can increase the number of Bifidobacteria
in ferrets, thus increasing the time spent interacting with the
novelty kettlebell and “strange animals” (22). In addition, other
studies have shown that antibiotic-treated mice have decreased
gut microbial content, resulting in a significant increase in
their preference for cocaine, suggesting that the GM and its
metabolites might enhance individual preference for cocaine
(23–25).

The GM could also indirectly increase the possibility of
using addictive drugs through ghrelin, a hormone produced
by the gastrointestinal tract. Positive associations have been
observed between ghrelin and total bacteria, Clostridium, and
Ruminococcus; a negative association between an increased
Bacteroidets/Firmicutes ratio, Faecalibacterium, Prevotellaceae,
and ghrelin levels has also been found (26). For example, the
abundance of Proteus, Bacteroides, Clostridium, and Prevotella
in rats fed a restricted diet was significantly higher than in rats
fed an unrestricted diet, while the number of actinomycetes,
thick-walled phyla, Lactobacillus, and Bifidobacterium decreased
significantly (27). The single-generation metabolites or related
derivatives (e.g., short-chain fatty acids; SCFAs) of GM may be
the key inducer or driving force of gut-brain communication
(28). Rahat-Rozenbloom et al. (29) also found that ghrelin
secretion decreased with an acute increase in SCFAs. Notably,
upregulation of the ghrelin system may also increase individual
cravings for drug use (30). It is closely linked to the central
dopamine system and can promote the expression of dopamine
receptors in the striatum, enhance reward behavior, and enhance
novelty-seeking behavior in rodents (31, 32). Hansson et al. (33)
also observed that the injection of ghrelin into rats increased
their exploration of novel targets, and these rats showed a
stronger preference for the new environment. Conversely, when
the ghrelin receptor was inhibited, the novel response of
rats was significantly weakened. These authors also collected
venous blood from human subjects and grouped genes encoding
ghrelin and gastrin receptors. The results showed that ghrelin
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receptor antagonists weakened individuals’ preference for a
new environment and decreased novelty activity. There was a
significant negative correlation between ghrelin receptor single
nucleotide polymorphism and novelty traits of the subjects.
Therefore, GM and its metabolites could interfere with the
level of ghrelin secretion, which may have a further effect on
some external behaviors (e.g., novelty seeking) of individuals
to some extent. That is, the effect of the GM on ghrelin may
also be an important basis for novelty seeking in rodents
and humans.

Taken together, GM and its metabolites could change
individual’s preference for novel substances in difference degrees
through both direct and indirect ways, especially for the people
with high susceptibility to addictive drugs. In the future,
GM interventions for susceptible drug users may reduce the
possibility of first use of addictive drugs.

Gut microbiota and drug taking

Drug metabolism by gut microbiota

A large number and variety of intestinal flora in the
human body participate in the physiological activities of the
host in many forms. With the progress of biotechnology, the
intestinal microflora has been gradually regarded as another
“metabolic organ” of the body, and its metabolic ability
is comparable to that of the liver. Previous studies have
shown that the intestinal flora could catabolize drugs (34, 35).
Specifically, the GM directly affects in vivo drug metabolism and
induces biotransformation reactions (e.g., demethylation and
dehydroxylation) (36). In some conjugate hydrolysis reactions
to drug toxicity, the GM may indirectly affect drug toxicity levels
by regulating the competition between bacterial metabolites in
different metabolic pathways (36).

Moreover, the GM may affect the decomposition and
absorption of MA. Salamanca et al. (37) reviewed that although
MA metabolism mainly depends on the liver, its primary
and secondary metabolites are absorbed by the gastrointestinal
tract for further metabolic activities. Second, individuals who
used MA showed symptoms of acute transient ischemic colitis
the following day, indicating that MA can be decomposed
and absorbed by the human GM and various digestive
enzymes, causing damage to the intestinal environment, and
resulting in symptoms of intestinal disease (38). In addition,
Caldwell et al. (39) showed that Lactobacillus, Enterococcus, and
Clostridium in guinea pig intestines can transform MA through
N-demethylation and other ways.

Similarly, the GM is also involved in the catabolism
of opioids. The plasma concentration of morphine is lower
in cancer patients after oral morphine administration than
in cancer patients after rectal morphine administration; this
may be due to morphine catabolism by the GM (40). Wang

et al. (41) also revealed that microbes (e.g., Bacteroides and
Bifidobacterium) could regulate the reabsorption of morphine
by expressing β-glucuronidase; the loss of catabolic metabolites
(e.g., those of Bacteroides) regulated morphine metabolism and
enterohepatic recycling. Therefore, the intervention of GM
could decrease the absorption rate of morphine to weaken effect
of analgesia. This is also the main reason why long-term use of
morphine will lead to tolerance and drug addiction.

Taken together, these results suggest that the GM may
have a high metabolic ability for addictive drugs. As many
factors can affect microbial metabolism (e.g., drug type, host,
and microbiome differences), researchers are also considering
combining chemistry and toxicology to predict the effects of
the GM on drug metabolism and toxicity. For example, Guthrie
et al. (42) proposed a graph database called the MicrobeFDT,
which clusters chemically similar drug and food compounds
and links these compounds to microbial enzymes and known
toxicities. This set could be used to study and predict the
contribution of microbial N-demethylase to drug metabolism
and toxicity. In addition, future research may reduce drug-
induced CNS damage by using the gut-brain axis through
GM intervention. An in-depth understanding of the effect of
the GM on the metabolism of addictive drugs is of great
significance in guiding toxicological research and the clinical
treatment of DUDs.

Influence of addictive drugs on gut
microbiota

Many animal and human experiments have also indicated
that addictive drugs can alter the diversity of the GM. Scorza
et al. (43) showed that the abundance of Spirochetaceae and
Desulfovibrionaceae in cocaine-treated rat feces diminished
significantly, while the abundance of Lachnospiraceae and
Prevotellaceae increased. There is a significant ecological
imbalance in the fecal microbial population of chronic opioid
users. Another study found that the relative abundance
of Bacteroidaceae in the gut of patients with cirrhosis
receiving opioid treatment was significantly lower than that in
patients with cirrhosis not receiving opioids (44). Additionally,
Barengolts et al. (45) detected Bifidobacterium in fecal samples
from male patients with type 2 diabetes and found that their
abundance in opioid users was significantly higher than that in
non-users. This may be because opioids affect the abundance of
bifidobacteria when they are used as organic cation transporter 1
inhibitors. Studies on drug users have also shown that there are
differences in GM diversity between opioid users and healthy
individuals. For example, the relative abundance of Roseburia
and Bilophila was lower in participants who used opioid agonists
compared to participants who used neither opioid agonists nor
antagonists (46). Therefore, cocaine and opioids may cause
dysbiosis in the intestinal environment.
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These gut microbial changes further affect brain function
and have long-term effects on the CNS of the user. Of
note, various symptoms associated with DUDs (e.g., emotional
disorders, increased susceptibility to drugs, and brain damage)
are directly or indirectly related to GM. First, changes in
the GM are closely related to the various mental symptoms
associated with DUDs. Forouzan et al. (47) found that after
injection of MA, the fecal samples of rats in the experimental
(MA) group had a higher diversity of Actinomycetes and a
lower diversity of Bacteroides than in the fecal samples of
rats in the control (saline) group. The relative abundances of
Bifidobacterium and Lactobacillus in the experimental group
were higher than in the control group, and the exploratory
behavior of rats in the MA group decreased during the
withdrawal period, accompanied by depressive behavior. Ning
et al. (48) investigated the GM of rats with conditioned location
preference in the MA and control groups using 16SrRNA and
high-throughput sequencing. Their results showed that the
abundance of Coccidiaceae in the control group was higher
than that in the experimental group, while that of Verruciaceae
and Bacillus in the experimental group was higher than that
in the control group. Verrucous microflora in the intestinal
microflora is associated with anxiety (49). Recently, Yang et al.
(50) detected the fecal samples of MA users and found that the
overall Shannon diversity index of GM in the addiction group
was lower than that in the healthy group; the Enterobacteriaceae
diversity in the addiction group was positively correlated with
delusions, suspicions, and other mental symptoms, and the total
general psychopathology scale was negatively correlated with
the abundance of Collinsella and Faecalibacterium. Therefore,
the long-term mental symptoms of DUDs are closely related to
GM and its metabolites.

Second, GM changes are related to the preference and
sensitivity for addictive drugs. For example, Yang et al.
(51) revealed that after the MA-induced conditioned place
preference (CPP) paradigm, the CPP score was positively
correlated with the relative abundance of Verrucomicrobia
(phylum) and Verrucomicrobiaceae (family). They also showed
that the CPP score of antibiotic-treated rats was significantly
higher than that of rats treated with distilled water, and
the former had an increased preference for MA. Repeated
use of morphine could cause the decrease of Olsenella and
Rothia, and the increase of Helicobacter, which may have a
higher risk of addictive behaviors (52). The differential relative
abundance of these taxa may be the nature of rats with high/low
sensitivity to morphine. The disorder of intestinal microbiota
may improve the sensitivity of users to drugs and increase their
preference for drugs. Therefore, the GM may be an important
intrinsic factor in addictive drug-induced behavioral changes
and DUDs.

Finally, the GM changes induced by DUDs are also
associated with neurotoxicity and brain injury in DUD patients.
The fecal samples of mice treated with multiple high doses

of MA had a higher diversity of GM species than those of
the control group, particularly, a reduced relative abundance
of Lactobacillaceae and Prevodiaceae and an increased relative
abundance of Pseudomonas and Enterobacteriaceae; compared
with the control group, the expression of monoamine oxidase
in the striatum of MA-treated mice increased significantly,
while the expression of tyrosine hydroxylase decreased,
which indicates that MA could induce dopamine terminal
neurotoxicity (53). Drug use can change the diversity of
intestinal flora and increase the permeability of the blood-
brain barrier. In certain cases, these have pathogenic intestinal
microflora and its secretions can enter the brain and
induce neurotoxicity. Choi et al. (54) also showed that
an increase in the abundance of Enterobacteriaceae may
be involved in the damage of dopaminergic neurons and
inflammation in the substantia nigra and striatum. Cook
et al. (55) sequenced the 16SrRNA gene from human
male rectal swab samples and found that MA abuse was
associated with significant changes in overall composition of the
gastrointestinal microbiome (e.g., Parvimonas, Butyricicoccus,
and Faecalibacterium), which also included some pathogenic
bacteria with neural activity potential. Therefore, after addictive
drug intake, pathogenic GM and its metabolites may enter
the CNS through damaged barriers and signaling pathways,
resulting in brain dysfunction.

To some extent, many of the above studies indicate that
the decomposition and absorption of addictive drugs can affect
the intestinal microbiota of the body. The frequent use of
addictive drugs intensifies their influence on GM, which will
have lasting effects on users’ psychological and physiological
functions. In addition, the gut sends signals to the brain through
the production of neuroactive metabolites, signaling via the
vagus nerve, and interactions with the immune system (56, 57).
This is a new way to understand the relationship between the
GM and DUDs. Further elucidation of the interaction between
the GM and the immune system may contribute to a deeper
exploration of the mechanisms of DUDs.

Gut microbiota and drug relapse

Compulsive drug use is one of the core features of DUDs,
causing some individuals to relapse after withdrawal. The
neurobiochemical mechanism of relapse after withdrawal is
mainly reflected in changes in synapses in the brain caused
by using drugs (58–60). These changes mainly include the
reward mechanism and drug memory, which are closely related
to relapse. The abnormal connection between drugs and the
reward mechanism is manifested in the activity of neurons
in multiple brain regions. In addition, after abstinence, drug-
related episodic memory and cues can activate dopamine
neurons and promote an individual’s sense of craving and
seeking behavior. In the relapse process of drug addiction, GM
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and its derivatives also play an invisible role in the memory and
reward mechanism of drug addiction.

Gut microbiota and its metabolites in
drug reward

The GM and its metabolites are directly involved in
the reward mechanisms of addictive drugs. The rewarding
effect is activated by dopamine neurons located in the
ventral tegmental area, which project to areas such as the
nucleus accumbens. The release of dopamine and other
neurotransmitters promotes euphoria (61). The GM may act
on the brain area of dopaminergic nerve transmission, and
the dopamine circuit is sensitive to these changes (62). There
is increasing evidence that the microbial-gut-brain axis may
be a key factor in regulating the reward mechanism and is
closely related to the occurrence of related diseases (63). Lee
et al. (25) found that there was a causal relationship between
the changes in GM and neuroinflammation and impaired
reward response in mice treated with antibiotics. Moreover,
the normal reward behavior of mice could be restored by
fecal microbial transplantation. The GM and its metabolites are
also necessary for the morphine reward mechanism. Hofford
et al. (24) showed that the diversity of the GM and the
SCFA levels decreased in antibiotic-treated mice, showing
a persistent weakening of the reward effect of morphine
because a decrease in diversity changes the transcriptional
response of morphine in the nucleus accumbens. However,
supplementation with SCFAs can reverse morphine reward
defects caused by antibiotics. Therefore, the GM and its
metabolites play important roles in the reward mechanism of
addictive drugs.

In addition, some previous work has also suggested that
the GM and its metabolites could indirectly regulate drug-
related reward pathway via glucagon-like peptide 1 (GLP-
1). GLP-1, produced in the gastrointestinal tract, is encoded
by the glucagon gene, and its receptor (GLP-1R) is widely
found in the CNS. The change of GLP-1 levels was correlated
with the disturbances experienced by different families, genera,
and species of the microbiota. For example, some families,
genera, and species of the phylum Actinobacteria and Firmicutes
showed positive correlations with GLP-1 levels, while the
families and genera of the phylum Bacteroidetes and the
species Blautia producta have the opposite correlations with
GLP-1 levels (64). Neurons expressing GLP-1 can project to
areas of the brain associated with reward (e.g., the ventral
tegmental area and nucleus accumbens) (65). The metabolite
SCFAs of GM may stimulate the release of GLP-1 through
the phospholipase C signaling pathway (66). Breton et al.
(67) found that infusion of Escherichia coli proteins into the
rat colon could also stimulate the secretion of GLP-1 and
increase its concentration in the plasma. Moreover, GLP-1 and

its analogs could regulate abnormal reward effects caused by
drugs (e.g., cocaine, amphetamine); its receptors are expressed
in the reward-related areas (68). GLP-1 and GLP-1R enhance
the behavioral response of mice to cocaine, and the loss
of GLP-1R could regulate the anxiety-related behavior (69).
Another study showed that activation of GLP-1R in the ventral
tegmental area attenuates cocaine intake in rats (70). GLP-
1R antagonists reduced the self-administration behavior and
recurrence behavior of MA withdrawn rats (71). The above
evidence shows that GLP-1 and GLP-1R play important roles
in drug relapse.

During relapse, the GM directly or indirectly enhances the
reward effect of drug use. Therefore, the GM contributes to the
neural mechanism of the individual pursuit of pleasure. Drugs
change the GM composition and act on the CNS, and this
may be the potential connection between the GM and relapse
after withdrawal; microbiological therapy for this abnormal
connection may reduce DUDs relapses.

Gut microbiota and drug memory

The drug-related stimuli can trigger memories of addiction
and lead to re-use of the drug, so drug memory is an important
factor for relapse (72, 73). Although there is not a lot of evidence
on the direct relationship between GM and drug addiction
memory, the existing research is still suggestive.

The following studies suggest that gut microbes may
influence memory function through lactic acid produced
by astrocytes. Astrocytes can regulate the neuronal activity,
synaptic transmission, and plasticity by providing energy and
growth factors and producing neurotransmitters (74). The lactic
acid is transported to the interstitial fluid via monocarboxylic
acid transporter (MCT)1/4 and transported into the neuron
via MCT2 (74, 75). GM and its metabolites (e.g., SCFAs,
glutamate) affect the production and transport of lactic acid
in astrocytes (28, 76). Lactic acid release in astrocytes is
necessary for the development and maintenance of long-term
memory. Lactic acid is involved in synaptic plasticity, memory
formation, and signal transduction in DUDs (77). For example,
lactic acid in astrocytes regulates synaptic plasticity, and its
release contributes to the formation of cocaine memory (78).
Zhang et al. (79) also found that as the concentration of lactic
acid in the basolateral amygdala decreased, cocaine use also
decreased in rats. This suggests that the transport of lactic
acid regulated by GM and its derivations is important for
the drug memory.

Taken together, as a signaling molecule, lactic acid in
astrocytes is important to the drug memory (80). Although little
research provides the evidence that GM can directly affect drug
memory, a previous study has shown that memory disorders in
rats with elevated levels of lactic acid, an important biomarker,
could be improved by correcting intestinal microbial disorders
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(e.g., Lactobacilllus, Bacteroidales, and Bacteroides) (81, 82).
Therefore, future research on drug memory and reducing
relapse may be carried out through GM therapy to interfere with
the production and secretion of lactic acid.

Conclusion

It can be seen from this review that GM and its
metabolites play a considerable role in the different stages
of drug addiction. First, when the GM of individuals with
high susceptibility to addictive drugs changes, they tend to
seek novel substances. Second, the GM could interfere with
the breakdown and adsorption of drugs in the body at the
beginning of using. Third, during the withdrawal period,
the intervention of intestinal microbes may interfere with
the formation of drug memory to a certain extent, which
is of great significance for the prevention of relapse among
addictive patients.

The limitations of current technology challenge research
progress but also bring opportunities. Importantly, it is helpful
to explore the process of microecological circulation in the
human body and reveal the mechanisms employed by the GM
in individual physiology and psychology. Some researchers have
pointed out that microbiological medicine is a new medical
model in the 21st century (83). The microbiota will become the
frontier and center of disease prevention and treatment (84).
Microbiological therapy may be a more comprehensive and
multi-effect approach for some chronic and recurrent diseases
(85, 86). This is beneficial to the development of drugs for
the treatment of DUDs. Therefore, future research may reduce
drug-induced damage by using the gut-brain axis through
GM intervention.
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