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Potential Routes for Thermochemical Biorefineries 
 
Abstract 
This critical review focuses on potential routes for the multi-production of chemicals and fuels in the 

framework of thermochemical biorefineries. The up-to-date research and development in this field has 

been limited to BTL/G (biomass-to-liquids/gases) studies, where biomass-derived synthesis gas (syngas) 

is converted into a single product with/without the co-production of electricity and heat. Simultaneously, the 

interest on biorefineries is growing but mostly refers to the biochemical processing of biomass. However, 

thermochemical biorefineries (multi-product plants using thermo-chemical processing of biomass) are still 

the subject of few studies. This scarcity of studies could be attributed to the limitations of current designs of 

BTL/G for multi-production and the limited number of considered routes for syngas conversion. The use of 

a platform chemical (an intermediate) brings new opportunities to the design of process concepts, since 

unlike BTL/G processes they are not restricted to the conversion of syngas in a single-reaction system. 

Most of the routes presented here are based on old-fashioned and new routes for the processing of coal- 

and natural-gas-derived syngas, but they have been re-thought for the use of biomass and the multi-

production plants (thermochemical biorefinery). The considered platform chemicals are methanol, DME, 

and ethanol, which are the common products from syngas in BTL/G studies. Important keys are given for 

the integration of reviewed routes into the design of thermochemical biorefineries, in particular for the 

selection of the mix of co-products, as well as for the sustainability (co-feeding, CO2 capture, and negative 

emissions). 
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1. Introduction 
Currently, the uses of biomass as a renewable source account for the production of 1st 

generation ethanol and FAME (fatty acid methyl ester) biodiesel, in addition to the generation of 

heat and power. Nonetheless, there is controversy over the use of food-competitive biomass for 

the production of fuels. The low mass yield of 1st generation processes often makes them 

unprofitable at current biomass price. Furthermore, expected future regulation of biofuels in the 

EU could exclude them or impose strong limitations in order to fulfill the sustainability criterion 

[1]. In response to that, 2nd generation processes have been proposed and several 

demonstration projects, based on the biochemical conversion of lignocellulosic biomass, are 

reported for the production of non-food-competitive bioethanol [2,3]. In a prior stage of 

development are the BTL/G (biomass to liquids/gases) processes, focusing on the 

thermochemical conversion of biomass into synthesis gas (syngas) or pyrolysis oil, which is 

then converted into products.  
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Nomenclature 
BETE: bioethanol-to-ethylene 

BTL/G: biomass-to-liquid/gas 

CCS: carbon capture and storage 

CFB: circulating fluidized bed 

DME: dimethyl ether 

EF: entrained flow 

GHG: greenhouse gas 

LCA: life cycle assessment 

LPMEOH: liquid-phase methanol 

MTG: methanol-to-gasoline 

MTO: methanol-to-olefins 

MSW: municipal solid waste 

WGS: water gas shift 

 

Research on BTL/G processes is limited to various types of potential bio-products [4-8], i.e. 

Fischer-Tropsch (FT) diesel [9-16], ethanol [17-24], methanol [14,15,25-31], DME [16,29,30,32-

36], H2 [25,26,30,37,38], synthetic natural gas (SNG) [11,39-43] and urea [14,15]. Each of these 

processes has focused on the production of a single fuel, either with or without the co-

production of heat/electricity. Rather than producing a single product, a more interesting option 

is a multi-product plant, either by combining two or more known BTL/G processes, or based on 

a chemical intermediate (platform chemical) [14,44]. 

 

In a thermochemical biorefinery fuels, chemicals and power are co-produced. A first 

technoeconomic assessment of such a multi-product plant (thermochemical biorefinery) based 

on a platform chemical has shown there are important benefits compared to studied BLT/G 

plants, i.e. greater profitability due to the co-production of high value products, the possibility of 

overcoming (e.g. in ethanol synthesis) the limitations of product selectivity and a better energy 

and material integration [44]. 

 

Within 2nd generation processes, different concepts of biorefineries are subject of special 

attention nowadays. Despite the uncertain classification of biorefineries*, a thermochemical 

biorefinery involves (in the opinion of the authors) the processing of biomass and carbon-based 

waste, i.e. organic fraction of municipal solid waste (MSW), to generate (simultaneously) 

products and services covering fuels, chemicals, heat and electricity from syngas. 

 

* Classification of biorefineries is still under discussion, particularly for the case of thermochemical processing of 

biomass. The Bioenergy Task 42 (International Energy Agency) has as its objective the classification of biorefinery 

systems and has proposed a classification method based on four features (i.e. platforms, products, feedstocks and 

processes) [45]. Although this classification method is useful, e.g. for C5/C6 sugars and lignin platform systems, it may 

not be best option in order to make a thorough classification of biorefineries using syngas as a platform [46]. 
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The production of fuels, chemicals and services from syngas presents little or none differences 

if coal or natural gas were used as feedstock. However, the benefits of the use of biomass 

instead of such fossil fuels are well-known. Biomass has a better GHG (greenhouse gas) 

balance (could even be negative regarding the process), it enhances the security of the energy 

supply (in case biomass is produced in the same region) and it is the only renewable source for 

carbon based fuels and chemicals (essential for the production of for example fibers, plastics or 

jet fuel). For instance, the use of biomass via thermochemical processing is related to the 

former carbochemistry and the production of chemicals via reforming of natural gas. The fact of 

being close to current petrochemical facilities should be considered as an advantage, since both 

the technology and the know-how from the processing of fossil fuels can be adapted and 

integrated in BTL/G plants and thermochemical biorefineries. Of course, the use of 

petrochemical technologies involves that BTL/G plants and thermochemical biorefineries should 

be large enough to achieve the benefits of the economy of scale as in petrochemical facilities. 

 

Contrary to current BTL/G processes, in a thermochemical biorefinery multi-production is the 

main objective. In a thermochemical biorefinery the existence of a platform chemical brings 

different options for multi-production. The platform chemical could be a product itself or 

converted into more products, i.e. following two (or more) different routes resulting in different 

products. The design of thermochemical biorefineries is of greater complexity than in the case of 

BTL/G processes. The chemical routes assessed in studied BTL/G processes could be used in 

the design of thermochemical biorefineries (combining two or more), but as they are not 

properly suitable for multi-production, the review of other routes (especially for the production of 

chemicals) is of interest. In this context, several routes were proposed for the production of 

chemicals and fuels from syngas in the 1980s due to the crude oil crisis, which promoted the 

search of an alternative feedstock (i.e. natural gas or coal) to substitute crude oil for chemical 

and fuel production. In some routes, syngas was converted into methanol, which is a platform 

chemical for the production of for example, gasoline (Methanol-To-Gasoline –MTG–) and olefins 

(Methanol-To-Olefins –MTO–). Biomass and carbon-based waste are also suitable as crude oil 

substitutes, since the processing downstream of syngas conditioning is identical. The main 

advantage of routes via platform chemicals for the design of new concepts of thermochemical 

biorefineries is their capability to be combined or slightly modified to achieve multi-product 

generation, as has been already demonstrated [44]. 

 

In this review, the most appealing platform chemicals suitable for the design of thermochemical 

biorefineries have been identified, namely: methanol, DME and ethanol. In section 2, compiled 

routes via platform chemicals are described and revised in detail, while the well reported MTG 

and MTO routes are only briefly reviewed. Implications of the use of biomass and carbon-based 

waste are also detailed together with one example of thermochemical biorefineries based on 

DME as the platform chemical.  
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1.1. General aspects of thermochemical processing 

Selection of the thermal treatment of biomass depends on further use of the product. For BTL/G 

processes the thermochemical processing of biomass usually involves gasification or pyrolysis 

[47-50]. This review will focus only on synthesis routes via gasification. 

 

1.1.1. Gasification, gas cleaning and conditioning 

Gasification of all carbon-based feedstocks (biomass, coal, carbon-based waste) undergoes the 

same basic chemistry and thermodynamics [51]. The gasification process can take place at 

temperatures in the range of 800 °C to 1800 °C, but in the case of biomass gasification, 

temperatures are always below 1300 ºC due to softening and melting temperatures of the 

biomass ashes [51]. Currently, entrained flow bed (EF) and circulating fluidized bed (CFB) 

operated with oxygen and steam, and indirect circulating fluidized bed (i-CFB) operated with air 

are the proposed gasification technologies for syngas production from lignocellulosic biomass 

[13,14,20,26,39,52]. Gasification of carbon-based waste is also feasible but the variability of its 

chemical composition makes it technologically more difficult [51]. Raw syngas from the gasifier 

needs different cleaning and conditioning treatments, which depend on the further processing of 

syngas. 
 

2. Routes via platform chemicals 
The chemistry of these routes is always characterized by the presence of at least one chemical 

intermediate (platform chemical) generated from syngas. The platform chemical can be directly 

converted into products or converted into a new chemical intermediate. Most routes were 

initially proposed in the 1980s as consequence of the crude oil crisis, since they allow replacing 

crude oil with coal and natural gas with the production of commodities and fuels. The recovery 

of crude oil prices led to their abandonment; however, their use has recently been reconsidered 

for the processing of biomass. Figure 1 shows the routes via platform chemicals which have 

been reviewed. Most routes are based on the use of methanol or DME, which is easily 

generated from methanol (dehydration). Ethanol is also included as a platform chemical, 

although bioethanol is usually not produced from syngas, but directly from biomass. 
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Figure 1. Thermochemical routes via platform chemicals (methanol/DME and ethanol) for the production of chemicals 

and fuels from syngas. 

 
The chemical equations which are involved in routes via platform chemicals are presented 

below: 

 

CO + 2H2  CH3OH         (1) 

CO + H2O  CO2 + H2         (2) 

CO2 + 3H2  CH3OH + H2O        (3) 

2CH3OH  CH3OCH3 + H2O        (4) 

3CO + 3H2  CH3OCH3 + CO2        (5) 

CH3OH + CO + 2H2  C2H5OH + H2O       (6) 

CH3OH + 2CO + H2  C2H5OH + CO2       (7) 

CH3OH + CO  CH3COOH        (8) 

CH3COOH + 2H2  C2H5OH + H2O       (9) 

CH3COOH + CH3OH  CH3COOCH3 + H2O      (10) 

CH3COOH + C2H5OH  CH3COOCH2CH3 + H2O     (11) 

CH3COOCH3 + 2H2  C2H5OH + CH3OH      (12) 

CH3COOCH2CH3 + 2H2  2C2H5OH       (13) 

2CH3OH + CO  CH3COOCH3 + H2O       (14) 
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CH3OCH3 + CO  CH3COOCH3       (15) 

CH3OCH3 + CO + 2H2  C2H5OH + CH3OH      (16) 

CH3COOCH3 + CO  (CH3CO)2O       (17) 

(CH3CO)2O + C2H5OH  CH3COOCH2CH3 + CH3COOH    (18) 

(CH3CO)2O +CH3OH  CH3COOCH3 + CH3COO     (19) 

C2H5OH  C2H4 + H2O         (20) 

2C2H5OH  C4H9OH + H2O        (21) 

 

2.1. Methanol/DME as a platform chemical 
The production of methanol from syngas is well documented and represents one of the most 

important industrial applications of syngas [25-27,53]. Methanol synthesis (Eq. (1)) can be 

described as a set of two exothermic reversible reactions, namely, conversion of CO via water 

gas shift reaction to CO2 (Eq. (2)) and hydrogenation of CO2 to methanol (Eq. (3)) [54]. The 

catalyst used for methanol synthesis is a Cu-ZnO supported on alumina (Al2O3), which has been 

improved to achieve selectivity to methanol over 99% [54]. Typical reaction conditions for 

methanol synthesis are 200-300 ºC and 40-100 bar [54-55]. Industrial production of methanol is 

carried out using different reactor configurations. The most important reactors for commercial 

production of methanol are: tube cool converter, radial flow steam raising converter (R-SRC), 

axial flow steam raising converter (A-SRC), quench converter (Johnson Matthey Company) 

[56,57]; combined synthesis converter (Lurgi – Air Liquid Group) [58]; methanol super converter 

(Mitsubishi Heavy Industries) [56,59]; collect-mix-distribute (CMD) reactor, boiling water reactor 

(Haldor Topsoe) [56,57]; axial radial concept (ARC) quench type reactor, horizontal steam 

raising reactor, pseudo isothermal reactor (Methanol Casale) [56,60]; Variobar converter (Linde 

AG) [55,61]; MRF-Z converter (Toyo Engineering) [61]; and liquid-phase methanol (LPMEOH) 

reactor (Air Products and Chemicals, Inc.) [56,62]. 

 

DME can be produced directly from syngas (Eq. (4)) or indirectly via methanol dehydration (Eq. 

(5)) [63,64]. Typical reaction conditions are 250-400 ºC and up to 20 bar, using a dehydration 

catalyst, e.g. γ-alumina or zeolites [65,66]. Direct synthesis of DME from syngas is described in 

[67-69]. Typical reaction conditions are close to methanol synthesis and the catalyst employed 

is a mixture of methanol synthesis and dehydration catalyst [70]. In the case of methanol 

dehydration, industrial production of DME is carried out using fixed bed reactors, whereas in the 

case of direct synthesis similar reactors to those used for methanol synthesis are employed. 

 

2.1.1. Methanol homologation to ethanol 
The methanol homologation, or methanol reductive carbonylation, route was the first studied 

route via a platform chemical (1951) to produce ethanol from syngas and remains the most 

investigated to date.71 Methanol homologation was envisioned along with direct conversion of 

syngas to ethanol as an alternative process to produce ethanol from coal [72]. Despite the great 

interest in the 1980s the methanol homologation route has been nearly disregarded and neither 
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a pilot plant nor commercial process based on this route has been constructed [4]. For a 

profitable application of the methanol homologation route, development of non-toxic 

homogeneous catalysts which could be easily (and economically) recovered, or 

heterogeneous/supported catalysts achieving yields to ethanol similar to those in the case of 

homogeneous catalysts, are needed. 

 

The methanol homologation route comprises two consecutive steps to make ethanol from 

syngas: methanol synthesis (Eq. (1)) and methanol homologation (Eq. (6) or Eq. (7)). In a 

possible process based on this route, syngas would be first converted in a methanol synthesis 

reactor and the outlet stream would be directly fed to the homologation reactor where 

unconverted syngas and previously generated methanol react at 150-200 ºC and high 

pressures (100-300 bar) producing ethanol, and to a lesser extent, oxygenates and 

hydrocarbons. 

 

The methanol homologation step can be carried out via different kinds of homogeneous 

catalyst. The first study of methanol homologation was presented by Wender et al. using a Co-

based homogeneous catalyst in a batch reactor [71]. Depending on the H2/CO molar ratio in the 

homologation reactor feed, the homologation can occur by Eq. (6) or Eq. (7), resulting in the 

generation of either water or CO2 as a by-product. Table 1 shows the common chemical states 

for the studied homologation catalysts along with the main promoters for the reaction. A detailed 

description of the kinetics and reaction mechanism of the homologation reaction is presented 

elsewhere [73-77]. The main active complex in the homologation reaction can be described by 

the formula [M(CO)n]d, where M represents the active component, n is the coordination factor 

(frequently: 3, 4, 12) and d is always negative (often -1). This complex allows itself the CO 

insertion in the methanol molecule. However, promoters and additives are required in order to 

increase the rate of reaction and selectivity, and avoid complex irreversible degradation [78]. 

Promoters can be present in different chemical species, e.g. CH3I, phosphine [79,80]. Additives, 

mainly oxygenates compounds, affect product distribution since most are products of the 

secondary reactions during homologation [81-85]. These additives shift secondary reactions, 

which are in equilibrium, at operating conditions of methanol homologation. Attempts to use 

heterogeneous or supported catalysts are reported in the literature but the results obtained are 

still unsatisfactory [86,87].  
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Table 1. Chemical state for the catalyst used in the methanol homologation route. 

 
chemical state 

Ref. 
Acetate Carbonate Carbonyl Formate Oxide Carboxylate Elemental Chloride Organic 

ac
tiv

e 

co
m

po
ne

nt
 Co-Rh          

[4 

71,88,89] 

Mn          [72,90] 

Fe-Rh-

Mn 
         

[91−93] 

pr
om

ot
er

 I          [94] 

P          [85] 

Ru          [94−96] 

 

Despite the great number of patents and publications on the methanol homologation route, 

neither a commercial process, nor even an industrial program has been developed. The only 

active project, at laboratory scale, is called the Dry Ethanol Process, carried out by the Argonne 

National Laboratory [93-97]. This process follows Eq. (7), so no water is generated, and uses a 

Fe-Mn-based homogeneous catalyst with n-methylpiperidine as the promoter. The main 

advantage of this route is the absence of water in products, which makes the recovery of 

ethanol easier [93]. 

 

There is a lack of knowledge on the deactivation of the methanol homologation catalyst. 

According to Ishogai, it would be possible to use syngas with low contents of methane, ethylene 

and CO2 without a significant negative impact on the catalyst [85]. Due to the scarcity of 

information, the experience gained from the most similar process, acetic acid synthesis 

(Monsanto Process), could be helpful [54,78]. 

 

The research on methanol homologation following Eq. (6) is limited at laboratory scale, but there 

are some patents describing preliminary conceptual designs [81,88]. In a similar way to 

LPMEOH synthesis, the homogeneous catalyst requires the presence of an inert solvent to 

carry out the reaction [81]. The solvent, e.g. the same used in LPMEOH, has to ensure liquid-

liquid equilibrium (water-products/solvent-catalyst-syngas) [83]. Hence, the homologation of 

methanol should be carried out for example, in a batch reactor, a continuous stirred tank reactor 

(CSTR), a bubbling column with internal recycle, or another kind of reactor available for 

homogeneous catalysts. Table 2 shows a collection of reaction data for methanol homologation 

following Eq. (6). Although general references claim that methanol homologation needs 

pressures of about 300 bar, which was only true in the first stage of development of the 

homologation catalyst [98]. The use of promoters allowed a reduction of operating pressure, 

which is limited by the condition of retaining methanol as liquid in the reactor (usually limited to a 

total pressure of 50 bar). Detailed information on product selectivity for a catalyst with Ru can be 

found in Jenner [99]. Through the use of additives, ethanol selectivity is improved up to 91-93% 

[89]. 
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Table 2. Reaction conditions, product distribution and main additives for homologation catalysts. 

Catalyst 

reaction conditions a product yield (%) additives b 

T (ºC) 
P 

(bar) 

Residence time 

(min) 

H2/CO molar 

ratio 
XCO XMethanol Ethanol Propanol 

Ethyl 

acetate 

Oxygenates 
c CO2 CH4 Others Water [81,84] 

[Co(CO)4]2 [71] 
180-

185 
205 480 1 N/A 76.4% 38.8 4.7 6.3 12.0 N/A 8.5 6.1 90.8 acetone 

n-propanol 

n-butanol 

methyl 

acetate 

benzoic acid 

Co-I catalyst [88] 190 100 300 2 N/A 70% 52.71 11.55d 3.71 2.03e N/A 0 0 N/A 

Rh/(Ru-I-P) [100] 140 83 180 3 N/A NA 89f NA NA NA N/A N/A N/A N/A 

Co(OAc)2·4·H2O [81] 185 200 120 2 N/A 35.1% 25.5 NA NA NA N/A N/A N/A N/A 

Co(OAc)2·4·H2O-I-P 

[83] 
205 200 120 1 N/A 47.0% 32.8 NA NA ~8 N/A N/A ~6 N/A 

a All collected data refers to batch reactors. 
b Refers to all catalysts. 
c Other oxygenates. 
d Propanol, propanal and methyl acetate. 
e Acetic acid. 
f Selectivity to ethanol and acetic acid. 
N/A = not available. 

 
Table 3. Reaction conditions for the Dry Ethanol Process. 

Catalyst 
reaction conditions a product yield (%) 

T (ºC) P (bar) Residence time (min) H2/CO molar ratio XCO XMethanol Ethanol Propanol Ethyl acetate Oxygenates b CO2 CH4 Others Water 

Fe-Rh-Mn [93-97] 180-220 300 360 1/3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
a All collected data refers to batch reactors. 
b Other oxygenates. 
N/A = not available. 
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2.1.2. Methanol to ethanol via acetic acid hydrogenation 
The acetic hydrogenation route comprises a set of common steps: methanol synthesis (Eq. (1)), 

acetic acid synthesis (Eq. (8)) and acetic acid hydrogenation (Eq. (9)). As shown in Figure 2, 

syngas is used for methanol synthesis, as commented in section 2.1., and also to provide CO 

for the synthesis of acetic acid. Produced methanol is carbonylated using a homogeneous 

catalyst. Acetic acid is then directly hydrogenated to ethanol and water. Regarding the 

conditions of the acetic acid hydrogenation, i.e. considered catalyst and reaction conditions, 

more steps could be needed for subproduct conversion by recycling or chemical conversion in 

additional reactors [101]. 

 

 
Figure 2. Chemical scheme for the acetic acid hydrogenation to ethanol. 

 

The acetic acid hydrogenation route was developed in the early 1980s [4]. This route is based 

on the hydrogenation of acetic acid to yield ethanol, and to a lesser extent, acetates using 

heterogeneous catalysts. The employment of a heterogeneous catalyst is the main advantage 

of this route compared with the methanol homologation route. As in the case of methanol 

homologation, the end of the crude oil crisis was the main reason for its withdrawal, but in the 

case of the acetic acid hydrogenation route, the corrosiveness of the reaction mixture (with a 

detrimental effect on the life of hydrogenation catalyst) was also determinant [101-103]. 

 

The synthesis of acetic acid is one of the most important examples of industrial processes using 

homogeneous catalysts. When the hydrogenation of the acetic acid route was in the first stage 

of development, conventional synthesis of acetic acid was mainly conducted via the Monsanto 

process operating at 150-200 ºC and 30-60 bar with very high selectivity to acetic acid [104]. 

The Monsanto process uses a Rh-based homogeneous catalyst, which is converted in-situ into 

an active Rh-carbonyl catalyst as described in 2.1.1. for methanol homologation [104]. 

Currently, BP’s Cativa process has emerged as the best available technology for acetic acid 

production [105]. The Cativa process is similar to Monsanto’s except for the catalyst. In the 

Cativa process an Ir-based catalyst is used, featuring a higher catalyst lifetime and better 

stability and recovery [105,106]. 

 

The hydrogenation of acetic acid is carried out at liquid phase (and high H2 pressure) using a 

conventional catalyst for organic compound hydrogenation [107,108]. Typical reaction 

CH3COOH
(acetic acid)

CH3OH C2H5OH

H2

CO, H2
(syngas)

CO

Eq. (1) Eq. (8) Eq. (9)

H2O

10 
 



 
 
 
conditions for the ENSOL process are 230-270 ºC and 40-120 bar [108]. A detailed description 

of kinetics and reaction mechanisms along with catalyst behavior can be found elsewhere 

[103,109-111]. Catalysts considered in the literature for acetic acid hydrogenation to ethanol are 

Co, Cu, Fe-based dispersed on silica support [112], supported Pt-based [103,109,110] and Pd-

based catalyst [111,113]. These studies differ from the ENSOL process in operating conditions. 

Whereas the BASF process achieves near complete conversion of acetic acid at moderately 

high pressures (40-120 bar) [108], the other studies always operated at near atmospheric 

pressure and achieve very low per pass conversion of acetic acid (around 5%) with high lights 

formation [107,112]. According to the reaction mechanism, acetaldehyde is the main 

intermediate of the reaction and sometimes the reaction could not proceed further depending on 

catalyst and operating conditions (partial pressure of H2) [111]. Therefore, acetic acid 

conversion to acetaldehyde is the subject of more studies in the literature than to ethanol. The 

reaction is quite selective to ethanol, ethyl acetate and n-butanol being the only by-products in 

the aqueous phase, and with low gas formation (CO and methane) [108]. Both liquid by-

products can be partially converted into ethanol by recycling them into the reactor [108]. The 

reaction mixture (aqueous phase) is highly corrosive, which leads to rapid catalyst degradation, 

and becomes the main limitation for the reaction. Although reaction in the vapor phase could 

avoid catalyst degradation by reducing the corrosiveness of the reaction mixture, extremely high 

partial pressures of H2 (of at least 270 bar) would be needed [108]. Recent efforts to produce 

new catalysts for the hydrogenation of acetic acid have been conducted by Range Fuels Inc. 

and Celanese International Corp [114,115]. Celanese has developed a Pt-Sn catalyst (see 

Table 4) that allows higher productivity for acid acetic hydrogenation to an ethanol/ethyl acetate 

mixture with remarkably high space velocity and global selectivity (to both ethanol and ethyl 

acetate) [115]. Other recent improvements in hydrogenation catalysts, i.e. nano Pd-based 

catalyst, have been carried out by BASF [116]. 

 
Table 4. Reaction conditions and product distribution for acetic acid hydrogenation catalysts. 

catalyst 

reaction conditions a product yield (%) 

T 

(ºC) 

P 

(bar) 

GSHV 

(h-1) 

H2/acetic 

acid 
Conversion Ethanol 

Ethyl 

acetate 

Oxygenates 
b CO2 CH4 Others 

Co-Cu-

Mn-Mo 

[108] 

230-

270 

40-

120 
N/A 2.1 100 97 N/A N/A N/A 0 N/A 

Pt-Sn 

[115] 
250 

14-

22 
2500 10-4 22-43 15-40 3-7 0 0 0 N/A 

Co-Mo-

S-K [114] 
325 100 6372c N/A 100/72.2%d NA N/A N/A N/A N/A N/A 

a Referred to all catalysts. 
b Other oxygenates. 
c Defined as L/(kgcat·h). 
d Conversion of acetic acid. 

N/A= not available 
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The ENSOL process was developed by a joint-venture between Humphreys & Glasgow Ltd., 

Monsanto and BASF based on the acetic acid hydrogenation route, but neither a pilot plant nor 

further research has been done [107]. According to the original scheme of the process, 

methanol is produced either on-site or off-site using natural gas as feedstock. If methanol is 

produced on-site, it can be used as raw methanol without enhanced purity [107]. Acetic acid is 

produced from CO and methanol, and further converted into ethanol by hydrogenation (see 

Figure 2). As water is produced in the hydrogenation of acetic acid, a dewatering section is also 

required in the process [107]. A combination of cryogenic distillation and pressure swing 

adsorption (PSA) was considered the technical solution to achieve the required purity of CO and 

H2 streams [107]. The requirement of high purity CO and H2 streams represents a disadvantage 

of this route, since it is intensive in both energy and economy. However, the main limitation for 

further development of this route lies in the degradation of the catalyst for the acetic acid 

hydrogenation. 

 

On the basis of reaction data from the Pacific Northwest National Laboratory, which made a 

technoeconomic assessment of this route, the calculated ethanol minimum selling process was 

higher than current market price [108,117]. In this assessment, CO and H2 for both acetic acid 

production and hydrogenation were assumed as raw materials, i.e. they were not produced from 

biomass. A new process configuration has been recently described by Jetvic et al. [118]. 

 

2.1.3. Methanol to ethanol via acetic acid esterification 
The acetic acid esterification route comprises a set of different processes in which one mole of 

acetic acid is esterified with one of alcohol to give one mole of the corresponding ester. The 

produced ester is easily hydrogenated (hydrogenolysis) to alcohols, yielding two moles of 

alcohol per mole of ester. One mole of alcohol is used for the esterification of acetic acid, 

whereas the other would be the product. To our knowledge, only two alcohols have been 

studied, i.e. methanol and ethanol. Chemical schemes for both cases are shown in Figure 3 and 

Figure 4. Although this route was developed in the early 1980s only recently have some 

processes become commercial, such as that by Enerkem Inc. which uses MSW as feedstock 

[101,119,120]. 

 

In this route, acetic acid can be produced as described in 2.1.2., or via “acid carbonylation” 

(combination of Eq. (8) and Eq. (14)). The first case is applicable for both methanol and ethanol, 

whereas the second makes sense only if the considered alcohol for the esterification is 

methanol. The methanol acid carbonylation is close to common acetic acid synthesis but, in this 

case, it is carried out in acid conditions leading to in situ esterification of part of the generated 

acetic acid with methanol [121-127]. For acid carbonylation, typical molar selectivity to both 

acetic acid and methyl acetate is up to 80%, with a 3:1 molar distribution of acetic acid and 

methyl acetate, respectively [121,126,127]. Reaction conditions for the acid carbonylation of 

methanol are presented in Table 5. The in situ esterification reduces the size of the acetic acid 
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esterification section, since a fraction of methyl acetate is produced in the carbonylation reactor. 

More information about methanol carbonylation over heterogeneous catalysts can be found 

elsewhere [128-133]. 

 

The esterification of methanol and acetic acid is an equilibrium-limited reaction, like most 

esterification reactions, which can be conducted in regular fixed-bed reactors, but it is normally 

conducted by reactive distillation [135]. The reactive distillation of acetic acid and methyl acetate 

is currently the best available technology (BAT) for the production of methyl acetate [136]. The 

reaction system was developed by the Eastman Kodak Company and it uses an acid catalyst, 

e.g. sulfuric acid or a sulfonic acid ion exchange resin, for the esterification [137,138]. 

 

Esterification of ethanol and acetic acid is also an equilibrium-limited reaction, but in this case, a 

ternary azeotrope is present [101,139]. Industrial production of ethyl acetate can be conducted 

in batch or CSTR reactors along with several distillation columns [140]. The same 

considerations as in the esterification with methanol are applicable for the catalyst [139]. There 

are also studies on vapor-phase esterification, including in a supercritical CO2 atmosphere, but 

they are not commercially viable [139,141,142]. 

 
Table 5. Reaction conditions and product distribution for methanol acid carbonylation catalysts. 

Catalyst 

reaction conditions product yield (%) 

T (ºC) 
P 

(bar) 

GSHV 

(h-1) 

CO/methanol 

molar ratio 
Conversion 

Methyl 

acetate 

Acetic 

acid 

Rh-I-triphenylphosphine 

[122] 
175 40 1 N/A 

64.0% 

Methanol 
41,6 22.4 

Rh-Irc [134] 255 10 2500 2 
99.8% 

Methanol 
80.1 18.3 

Rh-Ir-Ic [126,127] 
150-

200 

15-

50 

2000-

10000 
1-0.2 

100% 

CO 
50-75 25-50 

a Referred to all catalysts. 
b Other oxygenates. 
c Supported catalyst (on activated carbon). 

N/A= not available. 
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Figure 3. Chemical scheme for the acetic acid esterification with methanol. 

 

 
Figure 4. Chemical scheme for the acetic acid esterification with ethanol. 
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Hydrogenation (hydrogenolysis) of methyl or ethyl acetate is carried out with heterogeneous 

catalysts in fixed-bed reactors. Various catalysts have been used for both reactions but at 

reaction conditions. For common Cu-Cr (Adkins) catalysts reaction conditions are severe, i.e. 

250–350 °C and a partial pressure of H2 of 100-300 bar [122,143]. Other catalysts used for 

acetate hydrogenation are Cu-Fe [144], Re-based [145], Pd-ZnO [146], hydrotalcites [143], Ni-

based [147] and Rh-based catalysts [148]. Reaction conditions for these catalysts are close to 

those from the Cu-Cr catalyst, but with lower H2 pressures (up to 60 bar) [143]. Ethanol 

selectivity ranges from 60 to 95%, the main by-products being higher acetates (produced by 

homologation of the original acetate) and acetaldehyde. However, in these previous studies, 

acetate hydrogenation (hydrogenolysis) is carried out in the absence of CO. Recent publications 

based on a Cu-ZnO catalyst claim that the hydrogenation of acetates (methyl and ethyl 

acetates) can be carried out in the presence of CO with a H2 to CO molar ratio of 1, at lower 

partial pressures of H2 (<15 bar) and with similar or higher selectivity to corresponding alcohols 

[149-151]. 

 

The Halcon SD Group proposed a process based on the acetic acid esterification route for the 

production of ethanol using methanol and natural gas as feedstock [101]. In this process, 

methanol is carbonylated to produce acetic acid using a proprietary technology similar to 

Monsanto’s process. Esterification of acetic acid is carried out with methanol recycled from the 

hydrogenation section using proprietary technology (Eastman Kodak). Produced methyl acetate 

is hydrogenated to yield an equimolar mixture of methanol and ethanol. CO and H2 for the 

process are produced by reforming natural gas [101]. BASF AG proposed another alternative 

based on this route which used acid carbonylation (see Table 5) [122]. In this process, methanol 

is carbonylated to yield a mixture of methyl acetate, acetic acid, DME, and to a lesser extent, 

ethanol and propionic acid [122]. Produced methyl acetate is then hydrogenated, as 

commented before. In this process, acetic acid from the acid carbonylation is recycled to the 

carbonylation reactor for total conversion to methyl acetate. There are other process 

alternatives such as that by the Korea Institute of Science and Technology, which proposed a 

supported catalyst for the acid carbonylation of methanol with no recycling of acetic acid [134]. 

 

Recently, Enerkem Inc. has proposed the modification of previous BASF and Korea Institute of 

Science and Technology processes by adding a stage for acetic acid esterification in order to 

achieve complete conversion to methyl acetate [126]. In this process, methanol is carbonylated 

to a mixture of methyl acetate and acetic acid in the vapor phase using a fixed bed reactor 

packed with a rhodium-based catalyst [127]. Acetic acid is further esterified with methanol by 

reactive distillation yielding methyl acetate. Methanol from the hydrogenation of methyl acetated 

is recycled to esterification section. If ethanol is used instead of methanol for the esterification, 

only ethanol would be produced (hydrogenation of ethyl acetate, Eq. (13)) and no distillation of 

the methanol/ethanol mixture would be required. However, the use of ethanol does not result in 

the reduction of costs, due to the greater complexity of the acetic acid esterification [101]. 

15 
 



 
 
 
Enerkem has announced that they expect to produce competitive bioethanol in the short term 

with their process [120]. 

 

2.1.4. Methanol/DME to methyl acetate via DME carbonylation 
The DME carbonylation route relates the production of methyl acetate through DME by using 

only heterogeneous catalysts. This route is based on the capability of some catalysts, e.g. 

zeolites, to synthetize methyl acetate from CO and DME. The carbonylation of DME to yield 

methyl acetate is a new and active field of research [152]. Although this route can be integrated 

with acetic anhydride production (see 2.1.6.), it is preferable to discuss each one separately, 

since they are focused on a different product. Methyl acetate is currently available as a 

subproduct in the commercial production of acetic acid or produced by reactive distillation from 

acetic acid and methanol [153]. The uses of methyl acetate are as a solvent (substitute for 

acetone), and for the production of acetic anhydride [154,155]. 

 

 
Figure 5. Chemical scheme for DME carbonylation. 

 

The DME carbonylation route comprises the combination of DME synthesis and DME 

carbonylation (Eq. (15)), as shown in Figure 5. Syngas is used for DME synthesis (see 2.1.) and 

to provide CO for the carbonylation of DME, which (depending on the syngas composition and 

plant configuration) normally leads to a net production of H2. 

 

The carbonylation of DME occurs in the presence of some kinds of zeolites, e.g. mordenites, 

ferrierites and ZSM-35, at reaction conditions of up to 100 bar and 150-200 ºC [131,156,157]. 

The carbonylation reaction is said to be conducted with a stable rate and without significant 

catalyst deactivation [131,156]. Presence of water in the reaction mixture decreases methyl 

acetate formation and slightly increases that of methanol. This is because of the competition of 

water for the active sites of the zeolite [131,152]. However, this effect is reversible and does not 

deactivate the catalyst [131]. Methyl acetate synthesis rates are proportional to CO pressure 

and independent of DME [131]. DME carbonylation is primarily conducted in 8-MR channels, in 

the case of mordenites, or in 10-MR channels, in the case of ZSM-35 [156,157]. There is a 

possible deactivation due to coke formation on the catalyst [132,157]. Details for the kinetics of 

the DME carbonylation are given elsewhere [133,152,156,158]. The DME carbonylation route 

has been technoeconomically assessed along with the DME hydrocarbonylation route (see 

CH3OCH3
(DME)

CH3OH CH3COOCH3
(methyl acetate)
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2.1.5.) [44]. Results showed that methyl acetate can be produced economically from 

lignocellulosic biomass. 

 

2.1.5. Methanol/DME to ethanol via DME hydrocarbonylation 
The DME hydrocarbonylation route is the most recent attempt to find a feasible technoeconomic 

route to produce ethanol from lignocellulosic biomass [44,52,149-151,159]. The DME 

hydrocarbonylation route is an extension of the DME carbonylation route (2.1.4.), where a 

hydrogenation step is added leading to ethanol production. In this route, produced methyl 

acetate is hydrogenated (see 2.1.3.) to yield methanol, which is recycled to complete 

conversion, and ethanol. For ethanol production, the DME hydrocarbonylation route outweighs 

the above described processes focused on ethanol production (with acetic acid as 

intermediate), since the number of process steps is lower and only heterogeneous catalysts are 

employed. 

 

The DME hydrocarbonylation route (Figure 6) comprises the following steps (some alternatives 

are possible): DME synthesis (see 2.1.), DME hydrocarbonylation (Eq. (16)) and methanol 

dehydration (Eq. (4)). The hydrocarbonylation of DME has been studied in a dual catalytic bed 

reactor, where catalysts for carbonylation of DME and hydrogenation of methyl acetate were 

placed in series [149-151,159]. Results of these studies show that the hydrocarbonylation can 

be effectively conducted at 220 ºC and 15 bar using the combination of a first catalytic bed of H-

Mordenite and a second catalytic bed of Cu-ZnO [149-151]. 

 

The DME hydrocarbonylation route has been technoeconomically assessed [44,52]. The results 

showed that the DME hydrocarbonylation route is cost-competitive for ethanol production from 

lignocellulosic biomass, due to the mild reaction conditions and high global selectivity to ethanol. 

 

2.1.6. Methanol/DME to acetic anhydride via methyl acetate carbonylation 
The methyl acetate carbonylation route was developed in the 1980s in an attempt to overcome 

the ketene process in the synthesis of acetic anhydride [136,160]. Acetic anhydride is one of the 

most important organic intermediates in the industry and it is used for the production of cellulose 

acetate and as a precursor of vinyl acetate monomer [161]. In the methyl acetate carbonylation 

route, acetic anhydride is produced through acetic acid (Eq. (8,10)) or DME (Eq. (4,15)), which 

leads to the two alternatives shown in Figure 7. Acetic anhydride production through acetic acid 

represents, along with the ketene process, the main commercial means of acetic anhydride 

production [136,161]. 

 

The carbonylation of methyl acetate is a process derived from methanol carbonylation (see 

2.1.2.), using Rh-based homogeneous catalysts. In methyl acetate carbonylation, H2 has to be 

present as a reduction agent for the catalyst, and also to avoid acetic anhydride hydrolysis. 
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Other differences between methyl acetate and methanol carbonylation relate to the choice of 

promoters (LiI) and the reaction mechanism, as described by Zoeller [136,162]. 

 

The Eastman Kodak Company, in collaboration with the Halcon SD Group, proposed the first 

commercial process using methyl acetate carbonylation. The process aimed to use coal as 

feedstock and the final product would be cellulose acetate [136,160]. In this process, methyl 

acetate reacts with CO to yield acetic anhydride which is converted in the plant into cellulose 

acetate. Reaction of acetic anhydride and cellulose leads to the production of acetic acid as a 

by-product, which is used for the esterification with methanol [136]. 
 

 
Figure 6. Chemical scheme for the DME hydrocarbonylation route. Adapted from Haro et al. [44]. 

The dashed line means recycling. 

 

 
Figure 7. Chemical scheme for methyl acetate carbonylation through DME.  
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2.1.7. Methanol to ethanol via acetic acid esterification 
The acetic anhydride esterification route was proposed by the Halcon SD Group in the 1980s 

[101,160,163]. This route relates to the capability of acetic anhydride to yield acetates via 

esterification with alcohols. Several process configurations are applicable to this route, but only 

two are appealing. In both configurations the main product is ethanol. However, neither has 

been commercialized or further investigated. 

 

In the first alternative, methanol reacts with acetic acid (see 2.1.3.) to form methyl acetate, 

which is then converted into acetic anhydride by carbonylation with CO (Eq. (17), see 2.1.6.) 

[163]. The acetic anhydride is esterified with ethanol (Eq. (18)) to yield ethyl acetate and acetic 

acid. Acetic acid is recycled to the first esterification (Eq. (10)), whereas ethyl acetate is 

hydrogenated to ethanol (Eq. (13)). A fraction of generated ethanol is used for the esterification 

with acetic anhydride (see 2.1.3). Figure 8 shows the chemical scheme in the case of acetic 

acid esterification with ethanol. 

 

In the second alternative, an equimolar mixture of methanol and ethanol react with acetic 

anhydride to yield a mixture of methyl and ethyl acetate, (Eq. (19) and (18)) [101]. Methyl 

acetate is recycled for acetic anhydride production (Eq. (17)) and ethyl acetate hydrogenated 

(Eq. (13)) to yield ethanol as a product. 

 

2.1.8. Methanol/DME to gasoline 
The methanol-to-gasoline (MTG) route was developed in the 1980s in response to the crude oil 

crisis. The considered feedstock was natural gas, as a substitute to crude oil, which made the 

process especially attractive for isolated locations with access to natural gas [164,165]. The first 

commercial plant based on the MTG route was constructed in New Zealand (1985) using fixed-

bed technology [166]. Other facilities were constructed, but most of them were shut down when 

crude oil prices made the process unprofitable [164]. DME can also be used (and is sometimes 

preferred for the thermal integration of the reactor) as the chemical intermediate for conversion 

to gasoline [167]. At present, there is new interest on this route, not focused only on natural gas 

as the feedstock but also on coal and biomass. Exxon Mobile and Haldor Topsoe are the most 

important licensors of this technology. 

 

Kinetics for methanol/DME to gasoline conversion is described elsewhere (focused on methanol 

conversion) [164,168,169]. Methanol/DME to gasoline conversion is a complex reaction pattern 

of methylation, oligomerization, hydrocarbon formation and cracking using zeolites as catalysts 

[168,169]. Further discussion on process technologies and other aspects such as catalyst 

deactivation can be found in Olsbye et al. [166]. The conversion of methanol/DME into gasoline 

results in light gases, hydrocarbons in the light and heavy gasoline range, and water. The most 

problematic compound of the heavy gasoline fraction is durene (1,2,4,5-tetramethyl-benzene) 

which needs to be further processed in order to meet current gasoline specifications [170]. The 
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upgraded heavy gasoline is blended with the light gasoline fraction to give commercial grade 

gasoline. 

 

Both fixed-bed and fluidized bed technologies have been proven for the MTG route in 

commercial plants. Details of process design and plant economics are given elsewhere 

[164,165,171]. Technoeconomic assessments on gasoline production from lignocellulosic 

biomass have been recently published [21,170,172,173]. 

 

2.1.9. Methanol/DME to olefins 
The methanol/DME to olefins (ethylene and propylene) route was developed simultaneously 

with the methanol/DME to gasoline route and both routes have important similarities [164,172]. 

Regarding conversion section, UOP has developed the so-called methanol-to-olefins (MTO) 

process using a fluidized catalytic reactor [164,166,168]. This design is the best available 

technology for methanol conversion to olefins [164]. 

 

Details for the kinetics and reaction conditions for the methanol/DME conversion into olefins are 

presented elsewhere [164,166-169]. In general, catalysts (zeolites) for the production of olefins 

are characterized by smaller pore sizes compared to the production of gasoline [169]. Lower 

partial pressures of DME and higher reaction temperatures lead to a shift in the product 

distribution to lighter hydrocarbons [167]. The main products are ethylene and propylene, 

making up about 84% on mass basis of total hydrocarbons produced [164,174]. 

 

This route has been recently assessed [172]. Results showed that olefins could be produced 

efficiently from lignocellulosic biomass but at higher costs than current production, mainly due to 

the feedstock price. 

 

2.1.10. Methanol/DME to fuels (gasoline, diesel and jet fuel) 
In this route, olefins are converted into hydrocarbons in the range of gasoline, diesel and jet 

fuel. The conversion of olefins can be conducted in a fixed-bed reactor at variable reaction 

conditions which leads to different productions of each fraction. A description of such a process 

is given by Avidan and was developed by Mobil [164,175]. Despite the greater complexity of this 

route, the gasoline fraction is usually better quality, as the durene content is lower compared to 

gasoline produced via the MTG route (2.1.8.) [164,169,175]. However, there is a lack of public 

information on specific reaction conditions and process configuration. 
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Figure 8. Chemical scheme for the acetic anhydride esterification route (with ethanol). 

Dashed lines mean recycling. 
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2.2. Ethanol as a platform chemical 
The following routes relate to the use of ethanol as a platform chemical. Obviously, these routes 

are independent of the origin of ethanol, which could come from lignocellulosic biomass (2nd 

generation processes), e.g. from sugar cane, corn or sugar beet (1st generation processes), or 

even from a fossil feedstock, as commented in 2.1.1., 2.1.2., 2.1.3. and 2.1.5. Hence, the 

discussion will include the processing of all kinds of ethanol regardless of their provenance. 

 

2.2.1. Ethanol dehydration to ethylene 
The ethanol dehydration route relates to the production of ethylene using ethanol. There is 

growing interest in this route, since the apparent relatively low-cost of bioethanol makes it 

attractive for chemical synthesis [176]. Ethylene production from ethanol represents one of the 

most feasible options at present from both a technical and economic point of view [177]. The 

dehydration of ethanol is an established technology which is commercially available [176,178]. 

Some industrial projects are currently being carried out [179]. 

 

The dehydration of ethanol (Eq. (20), Figure 9) is conducted at 180-400 ºC and atmospheric 

pressure achieving selectivities of over 95% to ethylene [176,179-183]. As in the case of 

methanol dehydration (see 2.1.), zeolites are the preferred catalyst for ethanol dehydration, but 

a carbon-based catalyst has also been studied [180,184]. Main by-products depend on the 

employed catalyst, but the most cited are ethane, propylene, butylene and diethyl-ether 

[178,180,181]. Presence of water in the reaction mixture has an important effect on selectivity to 

by-products and on ethanol conversion [180,181]. Water prevents catalyst deactivation due to 

coke formation [180]. Details on the kinetic and process conditions can be found elsewhere 

[180-183,185]. 

 

The BETE (bioethanol-to-ethylene) process was studied in the 1980s as an attempt to use raw 

ethanol from 1st generation processes as feedstock [185]. However, there is no new information 

about this process. Currently, there are several projects in Brazil, due to the availability of low-

cost ethanol [176,186]. A technoeconomic assessment for ethylene production using bioethanol 

as feedstock has been recently carried out [187]. 

 

 
Figure 9. Conceptual diagram for the ethanol dehydration route. 
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2.2.2. Ethanol to propylene 
Propylene can be produced from ethanol [188]. In this route, the ethanol feedstock is 

dehydrated to ethylene (see 2.2.1.) and then a portion of ethylene is dimerized to produce 

normal butene. The butenes are then reacted with the remaining ethylene via the metathesis 

reaction to produce propylene [188]. The chemistry of olefins metathesis is described elsewhere 

[189,190]. 

 

2.2.3. Ethanol to butanol 
Recently, some companies have focused their efforts on the production of renewable butanol 

from ethanol, because of the enhanced properties of butanol as a gasoline substitute and as a 

chemical precursor [191]. The conversion of ethanol to butanol (Eq. (21)) is called catalytic 

condensation, dimerization or reductive dehydration. Some catalysts are active for the reaction: 

MgO [192], hydroxyapatites [193,194], Cu-Mg-Al mixed oxides [195] and hydrotalcites 

[196,197]. Depending on the selected catalyst, the reaction is conducted at temperatures 

ranging from 250 to 450 ºC and atmospheric pressures [192-195,197]. Details of ethanol 

conversion to butanol are given elsewhere [192-198]. Technological development of this route is 

still limited and public technoeconomic assessments on the routes are scarce [199]. 

 

Butanol can be further processed for the production of renewable jet fuel and chemicals but 

further research is still needed to optimize process conditions and quality of the fuel [200-202]. 

 

2.2.4. Ethanol dehydrogenation to ethyl acetate 
Ethanol can be dehydrogenated to yield ethyl acetate, i.e. the reverse reaction to Eq. 13 (see 

2.1.7.). The chemistry basis of ethanol dehydrogenation is analogous to reverse hydrogenation; 

details are given elsewhere [203-205]. The production of ethyl acetate from renewable ethanol 

using the technology licensed by Kvaerner Process Technology Ltd. has been recently reported 

indicating that the route could be cost competitive [206,207]. 

 

2.2.5. Other routes to chemicals 
Important efforts are being made for the conversion of ethanol into a wide range of 

hydrocarbons, e.g. gasoline and aromatics, following similar processing to the methanol case. 

Information of this processing can be found elsewhere [208-213]. 

 

2.3. Other platforms chemicals 
As shown earlier, there is limited development of thermochemical routes via platform chemicals. 

To date, only methanol, DME and ethanol have been considered platform chemicals, but there 

are other potential compounds of interest, e.g. butanol and methane. The conversion of light 

hydrocarbons to high-value compounds could be one example, although these efforts are 
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focused on the use of natural gas as feedstock. Currently research is being conducted into the 

efficient conversion of methane into methanol [214-216]. 

 
3. Discussion 
The review provides a variety of routes via platform chemicals to be taken into account for the 

design of thermochemical biorefineries. However, it is still necessary to define the methods 

leading to these routes (they were first studied some time ago) because they could be used in a 

multi-production plant. For this propose, an example of design is given, based on the use of 

DME as a platform chemical. Since the reviewed routes were developed for the use of fossil 

feedstock instead of biomass and waste, the impact of the change in syngas composition needs 

to be clarified, e.g. in the case of natural gas as original feedstock. This and other preliminary 

questions for the further design of thermochemical biorefineries are introduced. 

 

3.1. Example of thermochemical biorefinery 
An example of thermochemical biorefinery based on routes via platform chemicals has been 

recently proposed by Haro et al. [44]. In this assessment, the DME carbonylation (see 2.1.4.) 

and hydrocarbonylation (see 2.1.5.) routes were selected to bring up to two sets of 

thermochemical biorefinery concepts. Potential products considered in that study were: methyl 

acetate, H2, DME and electric power (DME carbonylation), and ethanol, H2, DME and electric 

power (DME hydrocarbonylation). The study proved that concepts based on routes via platform 

chemicals have better or at least similar economics to BTL/G processes, despite their greater 

complexity [44]. In addition, a previous study [52] confirmed that the DME hydrocarbonylation 

route can overcome the limitation of the direct synthesis of ethanol from without a negative 

effect on economics [4,5,20,55,217]. 

 

3.2. Impact of feedstock selection of the mix of products 
The impact of using lignocellulosic biomass or carbon-based waste instead of other fossil fuels 

raises two important considerations regarding the design of thermochemical biorefineries. 

 

First, each feedstock (coal, natural gas, biomass or carbon-based waste) processing 

(gasification) leads to a different syngas composition, i.e. different H2/CO molar ratios, which 

must be compared with the optimum H2/CO ratio required in each route. For the single 

production of ethanol the optimum H2/CO ratio would be 2 (2.1.1., 2.1.2., 2.1.3., 2.1.5., 2.1.7.), 

except for the Dry Ethanol Process in 2.1.1. (with a ratio of 0.5). For the single production of 

gasoline and olefins from methanol/DME (2.1.8., 2.1.9.) the ratio is also 2. However, in the case 

of single methyl acetate production (2.1.4.) the ratio would be 1.33, and 1 in the case of acetic 

anhydride (2.1.6.). Finally, in the case of ethanol as a platform chemical, only in the case of 

ethanol dehydrogenation to ethyl acetate (2.2.4.) the ratio would be 1.5 instead of 2. If single 

production is sought, then natural gas (which presents a H2/CO ratio of 3) would be more 

appealing than coal, biomass or carbon-based waste as feedstock, which leads to much lower 
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ratios in the syngas (0.5 – 1.0); and therefore, some routes via platform chemicals were 

intended to use natural gas according to the given description. Furthermore, the H2 excess in 

the processing leads to a net production of H2. In the case of lower H2/CO ratios using other 

feedstock, the water gas shift (WGS) reaction is usually the best option to achieve enhanced 

conversion to products, but with an important reduction of carbon and energetic efficiency. 

However, as thermochemical biorefineries are focused on multi-production, a lack of H2 could 

be overcome by a balanced design of the mix of co-products, i.e. what and in which amount will 

be produced from syngas within the thermochemical biorefinery. An example is given in 3.1., 

where ethanol production (which requires a ratio of 2) was compensated with DME production 

(which requires a ratio of 1). 

 

Second, it seems clear that beside syngas generation and conditioning, the most important 

differences within the feedstock relate to availability, price and sustainable nature. These factors 

should be balanced by simultaneously assessing the economics and sustainability of the 

process. In the case of carbon-based waste, e.g. plastics, they are usually derived from crude 

oil so should not be classified as a neutral carbon feedstock. However, their growing volume 

represents a problem in landfills and recycling suffers from a technical and economic mismatch. 

The use of MSW in thermochemical processing may be an interesting option to be assessed. 

Another opportunity would be the study of co-feeding, i.e. combination of carbon neutral and 

other feedstock, such as plastics, natural gas or coal. Some authors have studied the subject, 

but further research is still necessary [219-224]. 

 

3.3. Further research on thermochemical biorefineries 
In the opinion of the authors, studies on thermochemical biorefineries need common criteria for 

sustainability and comprehensive life cycle assessment (LCA) methodology, which include the 

specificity of the multi-production, fossil and waste feedstock co-feeding, and the integration of 

carbon capture and sequestration (CCS) technologies. The removal of CO2 in a plant using 

carbon neutral feedstock would lead to negative GHG emissions, ready to be sold as CO2 

certificates. Hence, there is an opportunity in thermochemical biorefineries and common BTL/G 

processes to improve economics and/or fulfill sustainability if co-feeding is considered. These 

proposals should be performed in current and upcoming assessments of thermochemical 

biorefineries. 
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4. Conclusions 
The use of recent and old-fashioned routes via a platform chemical facilitates the design of new 

concepts of thermochemical biorefineries. The reviewed routes demonstrate to be capable for 

the (simultaneous) multi-production of chemicals and fuels and therefore they serve as a 

keystone for the future designs of thermochemical biorefineries. Despite the lack of 

technoeconomic assessments based on these routes the results from a recent publication show 

that they could be profitable if the mix of co-products is well selected [44]. The presented routes 

bring a wider range of potential bio-products, both chemicals and commodities, different to 

those considered up to date and therefore allow more possibilities for the selection of the mix. 

The fact that the reviewed routes could be applied to a fossil feedstock, e.g. coal and natural 

gas, is a natural consequence of the concept of a thermochemical biorefinery and an 

advantage, since both the technology and the know-how from the processing of fossil 

feedstocks can be adapted and integrated in a thermochemical biorefinery. Finally, some guides 

for the further work on thermochemical biorefineries are given like the need of a minimum basis 

of agreement on LCA methodology and sustainability criteria. 
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