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Abstract

Climate zones fundamentally shape the patterns of the terrestrial environment and human habitation. How global warming 

alters their current distribution is an important question that has yet to be properly addressed. Using root-layer soil moisture 

as an indicator, this study investigates potential future changes in climate zones with the perturbed parameter ensemble of 

climate projections by the HadGEM3-GC3.05 model under the CMIP5 RCP8.5 scenario. The total area of global drylands 

(including arid, semiarid, and subhumid zones) can potentially expand by 10.5% (ensemble range is 0.6–19.0%) relative to 

the historical period of 1976–2005 by the end of the 21st century. This global rate of dryland expansion is smaller than the 

estimate using the ratio between annual precipitation total and potential evapotranspiration (19.2%, with an ensemble range 

of 6.7–33.1%). However, regional expansion rates over the mid-high latitudes can be much greater using soil moisture than 

using atmospheric indicators alone. This result is mainly because of frozen soil thawing and accelerated evapotranspira-

tion with Arctic greening and polar warming, which can be detected in soil moisture but not from atmosphere-only indices. 

The areal expansion consists of 7.7% (–8.3 to 23.6%) semiarid zone growth and 9.5% (3.1–20.0%) subhumid growth at the 

expense of the 2.3% (–10.4 to 7.4%) and 12.6% (–29.5 to 2.0%) contraction of arid and humid zones. Climate risks appear 

in the peripheries of subtype zones across drylands. Potential alteration of the traditional humid zone, such as those in the 

mid-high latitudes and the Amazon region, highlights the accompanying vulnerability for local ecosystems.
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1 Introduction

Climate zones characterize regionally similar features of the 

complex climate system and highlight links between climate 

and terrestrial systems (Koppen 1936; Thornthwaite 1943; 

Brovkin et al. 1997; Kottek et al. 2006; Beck et al. 2018). 

As a result, shifts in climate zones imply substantial climate 

change and its profound impacts on terrestrial environments, 

for example, exacerbating aridification, desertification, and 

ecological degradation (Jylha et al. 2010; Lobell et al. 2011; 

Huang et al. 2016). Thus, climate zones can efficiently serve 

as an integrated but simplified climate indicator for under-

standing climate change and assessing its impacts on our 

living environments.

The climate zone concept has been widely adopted in 

assessments of climate change, and its impacts on hydrology, 

agriculture, and socioeconomy. For example, based on the 

Koppen climate classification (Kottek et al. 2006), approxi-

mately 5.7% of the global land area shifted to warmer and 

drier types during 1950–2010, and especially, the arid and 

high-latitude continental climate zones expanded (Chan and 

Wu 2015). Moreover, across climate zones, the drying and 

wetting trends and extreme precipitation vary quite heteroge-

neously (Chen et al. 2017; Ragulina and Reitan 2017). The 

climate classification scheme is also used to pinpoint biases 

in model simulations (Gallardo et al. 2013; Phillips and Bon-

fils 2015). In addition, climate zones, according to various 

indices, also play an essential role in impact assessments 
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of climate change on hydrology, agriculture/ecology, and 

socioeconomy (Goodrich and Ellis 2006). For instance, 

Haines et al. (1988) developed a global river regime clas-

sification based on streamflow, assisting with an accurate 

description of global river features. Hydrologic classifica-

tion also underpins water resource assessments and planning 

for the impacts of climate change (Kennard et al. 2010). 

In agriculture, using temperature and soil moisture, global 

land was classified into 100 climate zones to evaluate the 

potential yield of crops around the world (Licker et al. 2010). 

Moreover, climate zones have an influence on the patterns 

of global energy transport, trade flows, etc., and they are 

increasingly used in impact assessments of climate change 

on the socioeconomy (Landau 1983; Guan et al. 2018).

Because of their indication of climate change and its 

impacts, geographic shifts in climate zones further gain 

attention on various scales. In terms of global scale, the large 

shifts between climate zones were found to lead to expanded 

arid regions and smaller polar regions (Rubel and Kottek 

2010). On regional scales, the variation in the Koppen cli-

mate boundary was examined, and no evidence was found 

to support a northerly migration of the climate boundary 

in the central United States (Suckling and Mitchell 2000). 

However, in China, decadal variations in the arid-semiarid 

boundary show a moving trend toward drier climate zones 

during the second half of the 20th century (Ma et al. 2005; 

Kim et al. 2008). A similar expansion of the semiarid zone is 

also detected in soil moisture variability (Li and Ma 2013). 

In Europe, climate shifts have strongly affected most regions 

in Central Europe and Fennoscandia (Gallardo et al. 2013). 

Furthermore, climate zone shifts leading to dry climate 

expansion and polar climate contraction are projected to be 

intensified in the future (Rohli et al. 2015; Chan et al. 2016; 

Zhang et al. 2017). In particular, drylands will acceleratingly 

expand under future climate scenarios (Huang et al. 2016).

Previous studies on climate zone shifts were mostly based 

on atmospheric-only variables (Chan et al. 2016; Huang 

et al. 2017; Zhang et al. 2017; Defrance et al. 2020); how-

ever, from the aspect of soil moisture, global climate zone 

shifts remain unclear. Soil moisture, on various time scales, 

directly connects to both atmospheric climate anomalies and 

almost all aspects of land processes and uniquely modu-

lates the soil-ecosystem-climate relationships (Koster et al. 

2004; Seneviratne et al. 2006). For instance, soil moisture 

anomalies have a substantial effect on summer precipitation 

known as “hot spots” of land-atmosphere coupling (Koster 

et al. 2004). By changing albedo, aerodynamic roughness, 

and evapotranspiration, it also controls surface energy flux 

partitioning, water balancing, and ecosystem function-

ing (Shrestha et al. 2018; Schoener and Stone 2019; Liu 

et al. 2020). Furthermore, for its “memory” of atmospheric 

anomalies, soil moisture can depict stable dry-wet conditions 

on a monthly time scale, that is, filter out high-frequency 

fluctuations (Entin et al. 2000). On such a time scale, vege-

tation-soil moisture feedbacks are important to the composi-

tion and structure of water-limited ecosystems (D’Odorico 

et al. 2007). As a result, based on soil moisture, the assess-

ment of shifts in climate zones can efficiently capture cli-

mate change and its potential impacts on terrestrial ecosys-

tems and environments.

Given these important roles of soil moisture variabil-

ity in the climate system and ecosystem, increasing efforts 

have been made in monitoring and modeling to increase our 

knowledge of soil moisture-climate interactions (Seneviratne 

et al. 2010). To date, observationally constrained climate 

model projections can largely be explored for potential 

future changes in land hydrology and ecosystems (Flato 

et al. 2013). These efforts gradually make it feasible to inves-

tigate climate zone shifts in terms of soil moisture classifica-

tion (Seneviratne et al. 2013; Li et al. 2020). In the present 

study, the focus is on potential shifts in climate zones under 

the CMIP5 RCP8.5 scenario using root-layer soil moisture 

as an integral indicator. The goal is to provide insights into 

the potential impacts of soil moisture changes on terres-

trial ecological environments under future climate change 

scenarios. By exploring a perturbed parameter ensemble 

of climate projections with the latest Hadley Centre model 

HadGEM3-GC3.05, the ranges of uncertainties are also 

estimated. Models are first evaluated using observations in 

terms of land water cycles. Section 2 describes the data and 

methods in detail, and Sect. 3 describes the main results, 

followed by a discussion. The entire paper is summarized 

with conclusions in Sect. 5.

2  Model, data, and methods

2.1  Model and experiments

The main body of this study is based on the perturbed 

parameter ensemble (PPE) simulations (Murphy et al. 2004) 

using the coupled Hadley Centre Global Environment Model 

version 3.05 [a closely related configuration, HadGEM3-

GC3.05, is described in Walters et al. (2017a)]. The land sur-

face component of this coupled model is the Joint UK Land 

Environment Simulator (JULES) (Best et al. 2011; Clark 

et al. 2011), in which soil water and heat fluxes are repre-

sented with a 4-layer scheme, with soil layer thicknesses of 

0.1, 0.25, 0.65, and 2.0 m, including the coupling processes 

between soil water and heat, such as the latent heat exchange 

caused by the phase change in soil water. The processes of 

subgrid soil moisture heterogeneity and an interactive water 

table are represented based on the rainfall-runoff model 

TOPMODEL (Beven and Kirkby 1979), hence increasing 

runoff heterogeneity driven by topography. With the river 

routing model TRIP (Total Runoff Integrating Pathways) 
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(Oki and Sud 1998), the total runoff is routed from grid 

cells to the sea or inland basins. The water in inland basins 

can flow back into the soil moisture and the remaining por-

tions flow into seas, which can then contribute to a compo-

nent of the thermohaline circulation. Based on this coupled 

model, the PPE experiments were dedicated to achieving 

a broad range of plausible climate projections and sample 

uncertainty to assess climate change impacts in the future. 

To this end, there are 47 parameters selected (Sexton et al. 

submitted, Table 1), which are associated with the processes 

of aerosol, land surface, boundary layer, gravity wave drag, 

convection, cloud, and radiation, according to their ability 

to control physical processes (Sexton et al. 2019). Then the 

plausible ranges and prior probability distributions of the 

parameters were determined based on the analyses of high-

resolution process models, such as large-eddy simulations 

and cloud resolution models, as well as constraints of obser-

vations [the distributions of the ranges for the 47 parameters 

shown in Fig. 1 of Sexton et al. (submitted)]. Subsequently, 

these 47 parameters were perturbed using a maximin Latin 

hypercube design (McKay et al. 1979) to generate a large 

sample of approximately 3000 different combinations. For 

these combinations, two coarse-resolution experiments were 

conducted: one is a climate simulation forced with time-var-

ying  CO2 concentration as CMIP5 (CRP8.5 from 2005 for-

ward) and daily SST and sea ice during the 1999–2008; the 

other is a 5-day weather forecast. By calculating the weather 

forecast errors, mean climate biases against observations and 

reanalysis data, a subset of 25 parameter combinations were 

identified in terms of their response to SST and representa-

tion of climate outcomes driven by  CO2 and aerosol that are 

as diverse as possible (Murphy et al. 2018; Karmalkar et al. 

2019) to run the CMIP5 historical (1900–2005) and RCP8.5 

emissions (2006–2100). Details of the choice of parameter 

combinations are explained in Sexton et al. (submitted), and 

the experimental configuration for coupled PPE simulations 

is reported in Yamazaki et al. (submitted).

Since these simulations were designed to be plausible and 

diverse in their climate response, they have been used as part 

of a package of information on future climate for the UK Cli-

mate Projections [UKCP18; Murphy et al. (2018)]. 5 of the 

25 members were not included in UKCP18 because of poor 

performance at representing the Atlantic meridional over-

turning circulation and historical global temperature trends. 

Although this does not necessarily mean that they perform 

poorly in their representation of climate zones, this study still 

excluded the five members for a more prudent expectation. 

Yamazaki et al. (submitted) show that the PPE is diverse in 

terms of precipitation changes for many worldwide regions, 

often to a similar degree to CMIP5. HadGEM3-GC3.05 also 

has a relatively high climate sensitivity [of approximately 

5.4 K for the standard variant (Andrews et al. 2019)], so the 

Fig. 1  Comparisons of correla-

tion coefficients between glob-

ally averaged annual mean soil 

moisture from 20 HadGEM3-

GC3.05 PPE members, four 

GLDAS simulations, and two 

reanalyses over 1979–2008. 

"Asterisk" on the color bar 

denotes significance at the 

p < 0.05 level as n = 30. "Caret" 

indicates the four PPE members 

removed from the following 

analyses
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results here should be considered in the context that these 

20 PPE runs are all high warming scenarios. In the present 

study, we will further evaluate soil moisture and associated 

land water components in the 20 PPE members in Sect. 3 

and identify adequate members for indicating shifts in cli-

mate zones. The variables of model data used include soil 

moisture, evapotranspiration, groundwater table, precipita-

tion, and surface air temperature, with an N216 horizontal 

resolution (approximately 0.56° × 0.83° of latitude/longi-

tude, 60 km in mid-latitudes), from simulations of CMIP5 

historical before 2005 and RCP8.5 emissions for the period 

of 2005–2100.

2.2  Observation-based data

In situ observations of soil moisture were taken from the 

international soil moisture network (ISMN, https ://ismn.

geo.tuwie n.ac.at), which is a global soil moisture database 

maintained by international cooperation. The ISMN collects 

available observations from around the world through coor-

dination by the Global Energy and Water Exchanges Project 

(Dorigo et al. 2011). To augment spatial coverage, we use 

observations with records longer than 36 months (frozen 

period excluded based on soil temperature), which can repre-

sent the local climate and meet the statistical requirement of 

the large sample theory (n > 30). The selected observations 

cover 20 networks with 644 sites from low to high latitudes. 

With respect to these sites, we filtered out partial records of 

less than “Good” quality: soil moisture (1) values exceeding 

the range between 0 and 0.6 m3  m− 3 or larger than satura-

tion points; (2) records of soil temperature below zero; (3) 

peaks without precipitation events; (4) spikes and negative/

positive jumps in the soil moisture spectrum; (5) low con-

stant values; and (6) saturated plateaus in the soil moisture 

spectrum, according to Dorigo et al. (2013). Finally, all the 

records of the original time intervals (Table 1), which have 

“Good” quality ratios of over 85% over selected periods, 

are used to estimate monthly means. The measurements 

were conducted at various depths ranging from 5 to 50 or 

to 100 cm below the soil surface with sensors for high-fre-

quency measurement and the oven-drying method for those 

of lower frequencies in China, Mongolia, and the former 

Soviet Union regions. These in situ observations have played 

an important role in the evaluations of satellite and model 

products (e.g., Robock et al. 2000; Dorigo et al. 2011; De 

Lannoy et al. 2014; Wang et al. 2016). Further details are 

presented in Table 1, and the information about instruments 

and data quality control processes can be found in the reports 

of networks and the references therein (available from https 

://ismn.geo.tuwie n.ac.at).

Two reanalyses and four offline land model soil moisture 

products are used to evaluate global spatiotemporal pat-

terns of soil moisture produced by all ensemble members. 

These are the National Centers for Environmental Prediction 

Table 1  Information on in situ soil moisture observations and observational networks

Units are volumetric fractions derived from the international soil moisture network (https ://ismn.geo.tuwie n.ac.at/)

No. Observational networks Country Number of sites Data period Soil layer depths (cm) Data interval

1 a ARM USA 22 1996–2015 5, 15, 25, 35 1 h

2 b AWDN 42 2002–2010 10, 25 1 day

3 c ICN 19 1983–2008 10, 30, 50 7 day

4 d SCAN 19 1999–2017 5, 10, 20,50 1 h

5 e SNOTEL 117 1999–2017 5, 20, 50 1 h

6 f USCRN 114 2009–2017 5, 10 1 h

7 g CALABRIA Italy 5 2001–2012 5, 30 1 h

8 h UMBRIA 4 2002–2017 15, 25, 45 1 h

9 i CHINA China 38 1981–1997 5, 20, 40, 60, 80, 100 10 day

10 j MOL-RAO Germany 2 2003–2014 10, 20, 30 1 h

11 k TERENO 5 2009–2017 5, 20, 50 1 h

12 l MONGOLIA Mongolia 34 1979–2002 10, 30, 50, 70, 90 10 day

13 m ORACLE France 2 2006–2013 10, 20, 30 6 h

14 n SMOSMANIA 21 2007–2017 5, 10, 20, 30 1 h

15 o OZNET Australia 33 2001–2011 30 1 h

16 p REMEDHUS Spain 12 2005–2017 5 1 h

17 q RUSWET-AGRO Former

Soviet Union

68 1979–2002 100 10 day

18 r RUSWET-GRASS 83 1979–1985 100 10 day

19 s SWEX_POLAND Poland 2 2006–2010 5, 10, 20, 30, 40 1 h

20 t WEGENERNET Austria 2 2013–2017 20, 30 1 h

https://ismn.geo.tuwien.ac.at
https://ismn.geo.tuwien.ac.at
https://ismn.geo.tuwien.ac.at
https://ismn.geo.tuwien.ac.at
https://ismn.geo.tuwien.ac.at/
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Climate Forecast System Reanalysis (CFSR) (Saha et al. 

2010), the fifth-generation atmospheric reanalysis by the 

European Centre for Medium-Range Weather Forecasts 

(ERA5) (Hersbach et al. 2020), and four members of the 

Global Land Data Assimilation System (GLDAS) (Rodell 

et al. 2004). CFSR has a high horizontal resolution (0.31° 

× 0.31° over 1979–2010, 0.2° × 0.2° over 2011–2017), and 

ERA5 has a 0.28° × 0.28° latitude-longitude resolution. 

GLDAS simulations were driven by atmospheric forcing 

from the combination of models, satellite retrievals, radar 

measurements, and observations. We use monthly outputs 

from 1979–2009 at a 1° × 1° latitude-longitude resolution.

To indirectly examine soil moisture simulations, land sur-

face evapotranspiration and terrestrial water storage simula-

tions are also validated with observation-based data. The 

evapotranspiration (ET) is estimated using latent heat flux 

(LE) data given that ET = LE/2.501, where the units are mm 

and  106 Joule  m− 2  s− 1, respectively. The observation-based 

LE dataset is derived from a global network of eddy-covar-

iance towers (FLUXNET) (Jung et al. 2009), covering the 

period of 1982–2011 with a 0.5° × 0.5° latitude-longitude 

resolution. Another satellite-based ET data set, the Mod-

erate Resolution Imaging Spectroradiometer (MODIS), is 

also used for cross-examination. The MODIS data set has a 

0.5° × 0.5° resolution, covering the 2000–2014 period (Mu 

et al. 2011).

The terrestrial water storage anomalies (integrated from 

the anomalies of the groundwater table, soil moisture, snow 

water, canopy water, and river water in the HadGEM3-

GC3.05 model) are assessed based on satellite retriev-

als from the Gravity Recovery and Climate Experiment 

(GRACE). Herein, the mean anomalies of GRACE products 

are used based on the regularized mass concentration solu-

tions from two data centers (NASA’s Jet Propulsion Labo-

ratory, the University of Texas at Austin Center for Space 

Research), according to Watkins et al. (2015) and Save et al. 

(2016). The data products have a 0.5°× 0.5° resolution, cov-

ering 2002–2017. Details about GRACE data products can 

be found in GRACE Tellus (https ://grace .jpl.nasa.gov) and 

the publications therein.

2.3  Methods

2.3.1  Comparisons of PPE mean soil moisture with in-situ 

observations

To validate the soil moisture of PPE simulations by 

HadGEM3-GC3.05, we conducted site-grid cell compari-

sons between monthly observations and model outputs 

for the grid cells that contain the observational sites. The 

consistency measured by the Pearson correlation coeffi-

cient includes the annual cycle because it is still a challenge 

for land models to regenerate soil moisture in phase with 

observed annual cycles. Furthermore, the relative variations 

in RCP8.5 to historical soil moisture largely determine the 

results of the present study. Owing to the sparsity of in situ 

observations and despite discontinuous monthly data, the 

sites that still have over 36 samples after the frozen peri-

ods were excluded were included in the comparisons by 

scoring out the model outputs at the corresponding time. 

In addition, their errors and variance are also compared at 

the site-grid scale. To address the mismatches of soil layer 

depths in HadGEM3-GC3.05 with in situ observations and 

the other reanalysis and land models, the HadGEM3-GC3.05 

soil moisture was linearly interpolated to the corresponding 

observation or model depths, analogous to the reanalysis or 

observations in Li et al. (2005) and Albergel et al. (2013). 

Because of the various and short durations of the individual 

in situ observations, we integrated them into a time series by 

averaging soil moisture across sites along the timeline from 

1979 to 2017, serving as a subset of the statistical population 

of climate during the whole period, to assess model fidel-

ity on multiple time scales, especially the long-term trend. 

The model time series is correspondingly generated at the 

same time using outputs with observations. The resulting 

time series may not represent a real climatology, but it is 

fair and more robust to assess consistency between obser-

vations and simulations considering the sparsity of in situ 

observations. Then, we decomposed the resulting time series 

into long-term, seasonal, and subseasonal and noise signals 

using a method of seasonal trend decomposition based on 

Loess (Cleveland et al. 1990) in an additive model, which is 

described as follows:

where Yt denotes monthly time series of observations or 

simulations; and Tt, St, and Rt denote decomposed long-term, 

seasonal, and the remaining components during the period 

of t, respectively. The long-term component includes linear 

and nonlinear signals. The nonlinear part reflects repeated 

but nonperiodic fluctuations. The seasonal component 

occurs over a fixed period (e.g., annually). The residual por-

tion represents subseasonal signals and noise.

2.3.2  Classification of climate zones

The climate zones, in the present study, are classified using 

root-layer (0–1 m) soil moisture content, which includes 

water in both liquid and solid phases. As a result, the total 

soil water budgets and water resource potential can be rep-

resented in the context of a warming climate, as well as 

water-heat interactions. This representation enables the 

detection of climate impacts from both precipitation vari-

ability and rising temperatures in future scenarios, especially 

in the mid-high latitudes. Soil moisture-based climate zones 

(1)Y
t
= T

t
+ S

t
+ R

t
,

https://grace.jpl.nasa.gov
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contain changes not only in atmospheric climate change but 

also in interactions with land processes. Based on the spatial 

patterns of well-established climate classifications, such as 

the AI index, Koppen classification, and precipitation (Kot-

tek et al. 2006; Huang et al. 2016), as well as the features of 

soil moisture, we classified the global land areas into four 

basic dry-wet climate zones: arid, semiarid, subhumid, and 

humid zones by the mean volumetric soil moisture of 18, 

23, and 33% in the root layer in HadGEM3-GC3.05 dur-

ing 1976–2005 (30 years) as a climatic reference, relative 

to which their changes are considered to be the potential 

shifts in climate zones under a future global warming sce-

nario. The thresholds are chosen such that the classification 

gives nearly consistent results to classification based on the 

established indices during 1976–2005 (for more details, 

see Sect. 3.2). The former three types comprise the areas 

of global drylands. The drylands are also detected using 

an atmospheric-only aridity index to indicate the land pro-

cess effects of climate change. The aridity index is a ratio 

of annual total precipitation to potential evapotranspira-

tion (P/PET). Values less than 0.65 denote drylands, which 

further fall into four subtypes of hyperarid (< 0.05), arid 

(0.05–0.2), semiarid (0.2–0.5), and dry subhumid (0.5–0.65) 

areas (Middleton and Thomas 1992).

2.3.3  Relationships of areal changes in climate zones 

to the climatic driver and other statistical analysis 

methods

The relationships of areal changes in climate zones to 

changes in climate factors (precipitation and surface air 

temperature) are investigated using ordinary least squares 

linear regression. Then, coefficients are tested using a t-test, 

with the t statistic estimated as follows:

where r denotes the correlation coefficient, n is the sample 

size, and xi and yi are the soil moisture and climatic driver, 

with corresponding means of x and y , respectively. Then, the 

probability value p is estimated using a t-distribution with 

n–2 degrees of freedom. When p is less than the significance 

level (e.g., 0.05), the regression coefficient is statistically 

significant. The significance of Pearson correlation coeffi-

cients (formula 3) and the difference in means is tested using 

the same method. The absolute errors are computed as the 

differences between observations and simulations, which are 

(2)t = r

√

n − 2

1 − r2
,

(3)
r =

∑n

i=1
(xi − x)(yi − y)

�

∑n

i=1
(xi − x)

2

�

∑n

i=1
(yi − y)

2

,

divided by the means of observations as the relative errors. 

The root mean square error (RMSE) is computed as follows:

where xHadGEM,i and xobs,i are modeled and observational soil 

moisture time series, respectively, with the sample size n. 

Standard deviations (SD) are estimated using the following 

formula.

3  Results

3.1  Evaluation of PPE soil moisture simulations

Given that the PPE experiment aims to provide possi-

ble plausible pathways of future climate change, from 

the perspective of soil moisture based on spatiotemporal 

consistency to offline simulations and reanalyses over the 

1979–2008 period (Fig. 2), we selected 16 of the 20 PPE 

members to investigate future soil moisture climate zones. 

Four members (E04, E14, E16, and E19 in Fig. 2) were 

excluded due to their negative correlations with offline 

simulation and reanalysis of soil moisture. The selected 16 

members are spatiotemporally comparable with offline land 

model simulations and two high-resolution reanalyses at 

global and annual scales (p < 0.05).

Then, we further evaluated the fidelity of the selected 16 

PPE members in terms of land water cycles using observa-

tions on various spatiotemporal scales. At the site scale, the 

monthly soil moisture of 16 PPE mean was compared with 

in situ observations at 644 sites around the world (Fig. 1). 

The simulated soil moisture (soil frozen times excluded) 

shows reasonable consistency with observations, with sig-

nificant correlation coefficients for 67% site-grid cell pairs 

(431 out of 644, p < 0.05) and 53% (20%) of coefficients 

larger than 0.5 (0.7). Due to the discontinuity of observa-

tions, the time series (for the nonfrozen period sites) partly 

retain the annual signals. Thus, the significant correlation 

coefficients indicate the consistency of annual dynamics 

with the observed, and then the adequacy of soil moisture 

transmission-related representations in the model. The 

lower correlations appear regionally in Mongolia, China, 

and the middle USA. The cause is largely associated with 

the relatively low sampling frequency of the observations 

over these networks (once per 10 days, Table 1) and low 

observational quality and spatial representativeness in the 

mountainous areas, e.g., the USCAN network, USA (Dorigo 

(4)
RMSE =

�

∑n

i=1

�

x
HadGEM,i − x

obs,i

�2

n
,

(5)
SD =

�

∑n

i=1

�

x
i
− x

�2

n − 1
,
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et al. 2011). In terms of the errors and amplitudes (Online 

Resource, Figs. S1–5), overall, the PPE mean soil moisture 

is systematically wetter than the observations, with smaller 

variation amplitudes. Specifically, the absolute errors range 

from − 28.6 to 23.6%, with 97.4% of sites being less than 

10 percent; the RMSEs of less than 10% account for up to 

65.4% (421) of the total 644 sites; the sites of less than 50% 

relative errors are up to 73.6% (474 sites). The differences 

in SD vary from − 4 to 3.8% and less than zero at 77.5% 

of sites. Although site-grid cell comparisons provide valu-

able information on model performance, the spatiotemporal 

mismatches between in situ observations and grid-average 

simulations might make for a less favorable evaluation 

(Entekhabi et al. 2010; Zeng et al. 2015; Bi et al. 2016). For 

filtering out parts of site-specific signals in observations by 

regional mean, the regionally integrated data hence enhance 

the regional characteristics, which are more appropriate for 

evaluations of modeled soil moisture.

To this end, the network-averaged soil moisture is com-

pared separately for the 20 networks. The monthly time 

series over various periods (Online Resource, Fig. S6) show 

that model soil moisture can regenerate the significant vari-

ations in 19 of 20 networks, with correlations ranging from 

0.3 to 0.87 (p < 0.05), larger than 0.5 in 14 networks. The 

annual cycles for the 20 networks (Fig. 3) also show good 

agreement between modeled and observational soil mois-

ture despite mismatches in peak months in parts of networks 

(e.g., Fig. 3g, h, o). Note that these annual cycles might not 

characterize the real climatological cycles due to some soil 

moisture being removed for frozen soil at various depths and 

sites. On the global scale, all available observations were 

then integrated into a time series along the timeline from 

1979 to 2017, also representing a subset for the statistical 

population of global soil moisture, to verify the model’s 

ability to generate long-term soil moisture variability and 

trend. The globally integrated monthly simulations agree 

well with the observations, with a significant correlation 

coefficient of 0.81 (0.68 after annual cycles were removed, 

p < 0.01, Fig. 4a). Although simulations are 16% larger 

than the observations on average, the systematic bias in the 

means has only a small effect on the assessment of rela-

tive changes in soil moisture between two periods. Accord-

ing to the seasonal trend decomposition, the main features 

of long-term changes also agree well with those observed 

(r = 0.85, p < 0.01). However, the linear term of simulations 

is less than that of the observations (3.0 and 5.7 volumet-

ric percentage points, pp, for simulations and observations 

over the 39 years, Fig. 4b). The seasonal terms highlight the 

remarkable ability of the model to regenerate annual cycles 

in observations (r = 0.98, p < 0.01), despite larger annual 

ranges (10.6 and 7.6 pp for simulations and observations, 

Fig. 4c). Regarding the higher frequency variability (residual 

term), the climate model captures the substantial fluctua-

tions observed (r = 0.38, p < 0.01, Fig. 4d). Generally, on the 

regional scale, the climate model generated reasonable soil 

moisture variability on various time scales.

To compensate for the scarcity of available soil moisture 

observations, we further compared another two components 

of the land water cycle continuum: evapotranspiration, ET, 

and terrestrial water storage anomalies. In terms of ET, the 

Fig. 2  Correlation coefficients between monthly soil moisture of 16-member means and in situ observations. Sample numbers vary with indi-

vidual sites; 30 is the minimum sample size, and the responding significant coefficient is 0.349 at the p < 0.05 level
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comparisons with two observation-based products (Fig. 5) 

showed that simulations are generally larger than obser-

vations, particularly over the regions with high ET totals 

(> 20 mm per month, Fig. 5a, b). Moreover, the biases vary 

with months (or ET monthly totals), and smaller simula-

tions occur in months with higher ET totals (spatial averages 

from 0° to 60° N) compared with FLUXNET (Fig. 5c, d). 

Against the MODIS product, smaller biases are observed in 

months with low ET totals (Fig. 5c, e). Nonetheless, such 

systematic biases have less influence on the adequacy of 

the spatial pattern of the model ET. Furthermore, the com-

parisons between annual cycles show that the model largely 

captures the annual cycles in the two observation-based 

products (Fig. 5d, e). Given the complexity of observations, 

the comparisons of ET indicate reasonable adequacy of 

water-heat related representations in the model.

From the aspect of terrestrial water storage anomalies, the 

model also performs reasonably well (Fig. 6). The spatial 

pattern of simulated anomalies largely characterizes that of 

GRACE, despite the generally smaller amplitudes of varia-

tions (Fig. 6a, b). In addition, the time series of globally aver-

aged simulations captured the temporal patterns in the annual 

dynamics of observations, with a significant correlation coef-

ficient of 0.71 (p < 0.01). The linear trend in normalized simu-

lations also regenerates the decreases in observed anomalies 

over 2002–2017, despite a 57% slower speed (Fig. 6c). The 

discrepancies largely result from the absence of representa-

tions of anthropogenic effects on terrestrial water storage 

Fig. 3  Annual cycles of network-averaged PPEs mean soil moisture and observations. The serial numbers (a–t) in panels correspond to those for 

networks in Table 1



2079Potential shifts in climate zones under a future global warming scenario using soil moisture…

1 3

anomalies in the HadGEM3-GC3.05 model. For instance, 

groundwater withdrawals and water diversion in China have 

significant impacts on the natural patterns of terrestrial water 

storage (Long et al. 2020). However, the exact mechanism for 

the difference requires further study. In summary, the terres-

trial water storage anomalies integrated from multiple compo-

nents imply that the model can represent the main processes 

of land water cycles.

These evaluations of soil moisture, evapotranspiration, 

and terrestrial water storage, along with atmospheric studies 

using HadGEM3-GC3.05 (e.g., Walters et al. 2017a, b), sug-

gest that the selected PPE members can reasonably encompass 

the observed variability in land water cycles. This result gives 

us confidence that the model can underpin climate projections 

under the RCP8.5 scenario.

3.2  Climate zone classification based on soil 
moisture

We classified the global land into four dry-wet climate zones 

that are arid, semiarid, subhumid, and humid climate zones 

(Fig. 7) using 30-year average soil moisture in the root layer 

(0–1 m) with the reference period of 1976–2005. Herein, soil 

moisture is the average soil moisture of 16 PPE members 

(Sect. 2.3.2). Among the four climate zones, the former three-

type zones comprise drylands. The areal percentages of arid, 

semiarid, subhumid, and humid climate zones are 20.9, 11.3, 

36.6, and 31.2%, respectively, and 68.8% of drylands, relative 

to the global land areal total (excluding the Greenland and Ant-

arctic areas). The global pattern of climate zones is generally 

consistent with those of classifications using atmospheric-only 

Fig. 4  Seasonal trend decomposition of integrated monthly soil 

moisture for observations and the corresponding PPE mean. Here, r 

denotes the correlation coefficient, and "double asterisk" denotes the 

significance level p < 0.01. Linear trends are 3.0 and 5.7 volumetric 

percentage points for simulations and observations, respectively, over 

the 39 years
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indicators (Belda et al. 2014; Huang et al. 2016; Zhang et al. 

2017). However, the boundaries between climate zones can 

vary substantially with different classification methods (Belda 

et al. 2014). In the present study, soil moisture is constrained 

not only by atmospheric processes but also by land processes, 

such as soil properties, vegetation, topography, and water-heat 

feedbacks. For example, at mid-high latitudes, soil temperature 

is a dominant factor controlling soil moisture dynamics (Niu 

and Yang 2006). Consequently, this classification appropri-

ately represents the combined responses of land processes to 

global warming.

3.3  Response of soil moisture climate zones 
to climate change in the RCP8.5 scenario

3.3.1  Spatial shifts in climate zones

Shifts in climate zones indicate changes in regional climate 

regimes and hence profound climate change. In the RCP8.5 

scenario, extensive areal expansions or contractions of cli-

mate zones (Fig. 8) suggest that shifts between climate zones 

will occur throughout the 2030s, 2060s, and 2090s in com-

parison with the baseline period (1976–2005). In the arid 

Fig. 5  Comparisons of monthly ET between HadGEM3-GC3.05 

simulations and observation-based products. Spatial patterns for the 

ET differences between HadGEM3-GC3.05 and FLUXNET (1985–

2005), and MODIS (2000–2014) in a, b. Scatters denote monthly 

ET averaged over 0° to 60° N during 1985–2005 for FLUXNET and 

HadGEM3-GC3.05 and 2000–2014 for MODIS and HadGEM3-

GC3.05 in c and corresponding annual cycles d, e. Black dots denote 

no significant differences between two ET data at the p < 0.05 level by 

the paired sample t test in a, b. Dashed lines in c, e denote the stand-

ard deviations for 16 HadGEM3-GC3.05 PPE members
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zone, along its peripheries, new regions shift from semiarid 

zones. Meanwhile, in southern America, mid-eastern Africa, 

Central Asia to northern China, and northern Australia, 

parts of arid areas shift into wetter zones, with increased 

probability after the 2030s (Fig. 8a, e, i). The expansions of 

semiarid regions mainly emerge in middle Siberia, north-

ern America, the Tibetan Plateau and eastern adjoining 

areas and parts of the semiarid zone peripheries. Over the 

contracted areas, the semiarid climate zone mainly shifts 

into the drier arid zone, while in parts of areas in eastern 

Africa, Central Asia, and northern China, the zone shifts 

into the subhumid zone. The newly emerged semiarid areas 

are remarkably enlarged by the 2070s in comparison with 

those in the 2030s (Fig. 8b, f, j). The subhumid zone shows 

Fig. 6  Spatial patterns of averaged terrestrial water storage (TWS) 

anomalies (relative to the 2004–2009 time-mean baseline) during the 

period of 2002–2017 for GRACE satellite data (a, in the form of liq-

uid water equivalent in millimeters, lwe mm) and HadGEM3-GC3.05 

PPE mean (b) and monthly evolutions of global averaged time series 

with the regions covered by constant ice removed (c)

Fig. 7  Geographical distribu-

tions of soil moisture-based 

wet-dry climate zones using 

30-year average root layer soil 

temperature (16 PPE mean from 

HadGEM3-GC3.05 historical 

simulations) with the reference 

period of 1976–2005
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a marked northward expansion. This zone can reach approxi-

mately 67° N, then 73° N, and further north by the 2030s, 

2070s, and 2090s, respectively (Figs. 8, 9). The subhumid 

regions also spread in most humid lower latitudes, except 

southern China and most of the Maritime Continent. In par-

ticular, the peripheries of the Amazon and Congo basins 

gradually change into the subhumid zone from the humid 

climate zone (Fig. 8c, g, k, d, h, l). By the 2090s, the shifts 

in climate zones are characterized by northward expansions 

of the drier climate zones. As a result, most humid regions 

over mid-high latitudes, as well as parts of the Amazon and 

Congo basins, shift to the subhumid zone (Fig. 9). Overall, 

the dominant shifts between the four climate zones highlight 

the tendency of drying soil moisture in the root layer along 

the boundaries of climate zones throughout the 21st century 

in the RCP8.5 scenario.

In terms of the temporal evolutions of the areas covered 

by each climate zone (Fig. 10), in the arid climate zone, it 

will decrease by approximately 0.63 million  km2 by 2.3% 

in 2099 in comparison with the mean area over 1976–2005. 

The semiarid and subhumid zones will expand by 7.7% and 

9.5%, which comprise 1.15 and 4.59 million  km2, respec-

tively. Accordingly, the humid zone contracts 12.6%, which 

is approximately 5.12 million  km2. Furthermore, according 

to individual projections among the 16 PPE members, the 

strongest areal expansions are up to 23.6 and 20.0% by 2099 

for the semiarid, and subhumid zones, at the expense of a 

10.4% and 29.5% contraction in the arid and humid zones, 

Fig. 8  Variations in the four climate zones in the 2030s, 2060s, and 

2090s relative to the baseline period of 1976–2005. The red end 

shows the probability of expansion and the blue end shows the prob-

ability of contraction of different climate zones in the future (2030s, 

2060s, and 2090s) relative to 1976–2005. The probability is estimated 

using 16 PPE members
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respectively (Fig. 10). For the mean annual cycles during the 

RCP8.5 scenario period (figures not shown), the strongest 

expansions toward drier zones occur from July to September, 

while the most remarkable contractions appear from April 

to May. In addition, a probability density function analysis 

(figures not shown) indicates that in the humid zone interan-

nual areal changes tend to intensify during the second half 

of the 21st century compared with the first half.

3.3.2  Areal changes in global drylands

Since drylands are susceptible to variations in regional 

water budgets, areal changes in global drylands can be 

expected if there are any shifts in climate zones. The pro-

jected areal expansion is remarkable in the RCP8.5 sce-

nario throughout the 21st century in light of the soil mois-

ture index (Fig. 11). Compared with the baseline period 

(1976–2005), the expanded areas mainly emerge over the 

mid-high latitudes, such as northern Canada and mid-east-

ern Siberia, by the end of the 2090s according to the PPE 

mean. Regional expansions also appear in the European 

continent, the Tibetan Plateau, the eastern adjoining areas, 

and the northeastern USA. In addition, the Amazon and 

Congo basins, along with parts of the maritime continent, 

namely, the major tropical rainforest regions, undergo the 

impact of drying expansions from their peripheries. In 

contrast, dryland contractions are observed in the scattered 

areas of the western USA, mid-eastern Asia, and middle 

Africa (Fig. 11a). Regarding temporal evolution, drylands 

expand to approximately 9 million  km2 by the end of the 

2090s, 10.5% in the ensemble mean compared with the 

baseline period (Fig. 11b). The range of expansion across 

the PPE is from 0.6–19.0%. This diverse range occurs 

despite the narrow range in global temperature changes 

explored by the PPE, suggesting that this is not the main 

driver of the PPE spread. However, the increasing speed 

tends to slow after the 2050s, accompanied by a decrease 

in leveling off in the humid zone areas. Subsequently, most 

humid zone regions will be subjected to soil drying under 

the RCP8.5 scenario, indicating a substantial decrease in 

soil water storage.

Fig. 9  Variations in the four climate zones in the 2090s relative to the 

baseline period 1976–2005. The increased regions indicate the expan-

sion of each climate zone, with colors denoting the shifts from other 

climate zones based on the baseline period; the decreased regions 

indicate the contraction of each climate zone, with colors denoting 

the shifts to others in the 2090s
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3.3.3  Drivers of soil moisture climate zone shifts

To detect the drivers of areal changes in the four soil mois-

ture climate zones under the RCP8.5 scenario, we conducted 

trend and regression analyses using PPE projections. The 

results (Fig. 12) show that the drier/humid climate zones 

significantly expand/contract during the 21st century, 

although precipitation is expected to significantly increase 

over most regions, except northeastern South America, 

southern Europe, and parts of western Africa (Fig. 12a). In 

the context of global warming (Fig. 12b), the trends of root-

layer soil moisture vary with regions in contrast to those 

of precipitation due to the regulation of land-atmosphere 

interactions. For instance, over the mid-high latitudes, the 

regional mean water balances (north of 60° N, Northern 

Hemisphere, Online Resource, Fig. S7) show a cumulative 

decrement in soil moisture accompanied by increases in pre-

cipitation, evapotranspiration, and runoff. Since HadGem3-

GC3.05’s land model JULES incorporated the groundwater 

scheme, from the perspective of water budgets, it can be 

speculated that soil moisture-groundwater exchanges will 

play an important role in land water balance as the tem-

perature rises under the RCP8.5 scenario during the 2090s. 

Moreover, decreasing trends in soil moisture can be seen in 

Mongolia and eastern adjoining regions, the Tibetan Pla-

teau, the Mediterranean regions, and parts of western Africa, 

eastern North America, and northern South America. Con-

versely, soil moisture increases significantly in Central Asia, 

northern China, parts of South Asia and northern Australia, 

eastern Africa, western North America, and southeastern 

South America (Fig. 12c). Taking Central Asia as an exam-

ple (latitudes from 40° N–50° N, longitudes from 55° E–80° 

E, Online Resource, Fig. S8), the soil moisture increase is 

mainly contributed by increases in precipitation. Subtract-

ing runoff and evapotranspiration losses and precipitation 

cumulatively increase soil moisture from the start year, with 

less increments in 10 years (during the 2090s). However, 

the mechanisms behind water cycle changes under RCP8.5 

require specific observations and model experiments in fur-

ther studies.

Fig. 10  Variations in the areas of four wet–dry climate zones accord-

ing to the soil moisture index during historical (1976–2005) and 

RCP8.5 scenario (2006–2099) periods relative to the means of the 

period of 1976–2005. The colored lines denote area anomalies based 

on the soil moisture of 16 PPEs, and the solid red line is the mean 

of 16 members. The percentages are minimum, mean, and maximum 

area changes during the 2090s relative to the mean over 1976–2005. 

S denotes the linear regression trend by ordinary least square regres-

sions over the scenario period with a p value of the level of signifi-

cance
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Fig. 11  Spatial pattern of areal 

changes (over 50% probability 

based on 16 PPEs) in drylands 

by soil moisture index between 

2090s and 1976–2005 means 

under RCP8.5 (a) and temporal 

evolutions of dryland areas 

from historical (1976–2005) to 

RCP8.5 scenario (2006–2099) 

periods (b) relative to the mean 

of the period of 1976–2005

Fig. 12  Patterns of the linear trends for annual total precipitation, surface air temperature, and soil moisture under RCP8.5 during 2006–2099, 

with black dots denoting significance at the p < 0.05 level
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4  Discussion

Two particular aspects must be addressed before we draw 

our conclusions: (1) the differentiation in responses to 

global warming among different components of the climate 

system and (2) the difference between dryland expansion 

rates defined by the atmospheric aridity index and by soil 

moisture.

Figure 13 compares the model spreads among the 16 PPE 

members between precipitation (Pr), actual evapotranspira-

tion (AET), runoff (RO), surface air temperature (Tas) and 

soil moisture anomalies in RCP8.5 relative to the baseline 

period of 1976–2005. The long-term evolution of water and 

heat processes (Fig. 13) shows that global land-averaged sur-

face air temperature is expected to rise 59.7% (47.4–74.5% 

across 16 PPEs) averaged in the 2090s against that in the 

baseline period (1976–2005) and the increase is up to 8.7 K 

(7.3–10.3 K). Precipitation is expected to increase by 8.7% 

(4.8–13.2%), and runoff is expected to increase by 26.1% 

(20.0–34.4%), up to 95.5 mm (13.6–188.8 mm) and 60.9 mm 

(42.4–82.7 mm), respectively. In contrast, actual evapotran-

spiration and soil moisture decrease 7.7% and 5.1%, respec-

tively, up to 36.9 mm (− 129.3–9 mm) and 1.5 volumetric 

percentage points, pp, (− 0.5 to − 3.2 pp), respectively. The 

increased precipitation at low-middle latitudes is mainly bal-

anced by the increased runoff and slightly increased soil 

moisture. However, the soil across mid-high latitudes loses 

water and hence leads to the drying tendencies of soil and 

drying shifts in climate zones, despite the increases in pre-

cipitation (Fig. 12a–c, Online Resource, Fig. S9).

Fig. 13  Global land average 

annual mean precipitation 

(Pr), actual evapotranspiration 

(AET), runoff (RO), surface air 

temperature (Tas) and soil mois-

ture anomalies (in the form of 

percentage points, pp) relative 

to their means over the baseline 

period of 1976–2005, with 

changed minimum, mean, and 

maximum percentages (right 

axes) of the means during the 

2090s relative to the baseline 

period
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In terms of soil moisture, the correlation analysis 

(Fig. 14) over the last 30 years (2070–2099) between soil 

moisture and all parameters perturbed in PPE runs indicates 

that variations in soil moisture are most sensitive to those in 

two parameters: the dependence of photosynthesis on tem-

perature (tupp_io) and mixing detrainment rate (amdet_fac), 

with correlation coefficients of − 0.82 and − 0.67 (p < 0.01), 

respectively. The parameter tupp_io denotes the optimal 

temperature for photosynthesis determining the turnover 

point for temperature, above which further increases in tem-

perature will drive a decline in photosynthesis, and the opti-

mal temperature would be expected to have a large impact 

on plant functioning. The higher tupp_io is, the broader 

the temperature range that plants hold active photosynthe-

sis, and the more soil moisture that would be lost by plant 

transpiration.

The other parameter is mixing detrainment, amdet_fac, 

incorporated with “forced detrainment” (related to buoy-

ancy loss in the core updraft), in the Gregory-Rowntree 

convection schemes in the HadGEM3-GC3.05 model 

(Derbyshire et al. 2011). Mixing detrainment regulates 

the outflow of cloudy air into the environment; as a 

result, a larger value leads to stronger air mixing between 

clouds and the ambient atmosphere and then convection 

inhibition followed by decreases in convective precipita-

tion. On the other hand, the larger values of the parameter 

tend to enhance large-scale humidity profiles favorable 

to the formation of large-scale precipitation. However, 

for the large ratio of convective precipitation to the total 

precipitation amount over land (Online Resource, Fig. 

S10), the decreased convective precipitation leads to a 

decrease in the total precipitation and soil moisture. This 

mechanism largely accounts for the negative correlation 

between variations in mixing detrainment and soil mois-

ture (corr = − 0.67, Fig. 14). Nevertheless, it must be noted 

that the relationships of mixing detrainment with convec-

tive and large-scale precipitation are not straightforward, 

much less those with soil moisture, due to the resulting 

nonlinear effects on cloud radiation, cloud radiation-pre-

cipitation processes, and land-atmosphere feedbacks. In 

summary, from the water input and output aspects, the 

two parameters, among the all parameters, mostly affect 

the soil water budget in the HadGEM3-GC3.05 model.

Regarding the difference in dryland expansion rates from 

the perspective of the atmospheric aridity index and soil 

moisture, both dryland definitions, using the two indicators, 

show similar areal expansions in Europe and lower latitudes. 

However, more extensive expansion in the mid-high lati-

tudes is revealed by soil moisture in comparison with that 

by the aridity index (Figs. 11, 15). One of the main reasons 

behind this result is that warming involves more frozen soil 

water in the land-atmosphere water cycles, which is further 

enhanced by boosted vegetation. There has been an increas-

ing body of evidence showing observed Arctic greening 

trends (Potter et al. 2013; Vickers et al. 2016; Edwards and 

Treitz 2017). Additionally, with global warming, freeze/

thaw-induced transitions in soil hydrological conditions 

open up pathways for soil water to the groundwater flow 

system, resulting in substantial soil drying, even though 

water inputs (precipitation minus evaporation) tend to rise 

in the mid-high latitudes (Lawrence et al. 2015). Compelling 

increases in river base flow owing to increased groundwa-

ter have been observed across Canadian and Alaskan Arctic 

rivers (Walvoord and Striegl 2007; Wu et al. 2008, 2010; 

Bense et al. 2012). However, the atmospheric-only indictor 

(i.e., P/PET, aridity index) cannot efficiently depict such 

geophysical-chemical processes. Additionally, PET does 

not directly correlate with temperature variations (Mck-

enney and Rosenberg 1993; Kafle and Bruins 2009). As a 

result, soil moisture may exacerbate the drying effects of 

atmospheric processes in mid-high latitudes. Unfortunately, 

atmospheric drying trends are also projected to rise in these 

regions according to multimodel atmospheric aridity indices 

(Huang et al. 2016; Zhang et al. 2017). Taken together, in the 

mid-high latitudes, climate zones shift to drier zones under 

the RCP8.5 scenario. The unsustainability of the soil water 

supply to enhanced evapotranspiration and groundwater 

Fig. 14  The relationship of changes in soil moisture with two key 

parameters in 16 PPE simulations during 2070–2099. Here, tupp_io 

denotes the optimal temperature for photosynthesis, whose low val-

ues lead to greater temperature dependence of photosynthesis, and 

amdet_fac is mixing detrainment, whose larger values increase large-

scale humidity and temperature profiles. The correlation coefficients, 

− 0.67 and − 0.82, are both significant at the p < 0.01 level with a 

sample size of 30 (last 30 years, 2070–2099) and a degree of freedom 

of 28 (sample size − 2)
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discharge loss will determine the fate of Arctic greening 

and the transformation of ecosystems.

However, the shifts from humid to sub-humid zones in the 

Amazon and Congo basins mainly result from the decreases 

in precipitation (Fig. 12), which are controlled by atmos-

pheric processes. Although the projections of precipitation 

in these regions vary across models, a strong consensus 

with 13 CMIP5 models highlights a drying and lengthen-

ing of the dry season (from June to September) (Joetzjer 

et al. 2013), and similar trends are also seen according to 

36 GCMs (Boisier et al. 2015). Based on these findings, 

climate drying can be propagated into root-layer soil in these 

regions, resulting in substantial soil moisture decreases, 

hence increasing the water-stress risk to rainforest ecosys-

tems, which is the most important carbon sink. On the other 

hand, dryland contractions at middle latitudes according to 

the atmospheric aridity index are not observed in light of 

the soil moisture index (Figs. 8, 9, 11, 15), for example, 

in the western USA, northern Mexico, China, and India, 

South America, eastern Africa, southern India, and north-

eastern Australia. The discrepancies suggest that the limited 

enhancement of precipitation cannot convert the dry regimes 

of the soil moisture climate and thus has a slight influence 

on the dry terrestrial environments in these regions under 

RCP8.5. Furthermore, the shifts in the peripheries of the 

four subtype zones may substantially alter local climate 

regimes, which highlight the accompanying vulnerability 

of the local ecosystems.

5  Summary and conclusions

Climate change is expected to reshape the pattern of climate 

zones as the temperature rises and precipitation changes. 

Many indicators are used to define climate zones and exam-

ine their shifts, but soil moisture is a metric directly linked 

to ecosystem functions and a manifestation of the climatic 

balance among the atmosphere, biosphere, hydrosphere, 

Fig. 15  Spatial pattern of areal 

changes (over 50% probability 

based on 16 PPEs) in drylands 

by aridity index between the 

2090s and 1976–2005 means 

under RCP8.5 (a) and temporal 

evolutions of dryland areas 

from historical (1976–2005) to 

RCP8.5 scenario (2006–2099) 

periods (b) relative to the means 

of the 1976–2005 period
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and lithosphere. Using soil moisture classification and PPE 

simulations, this study has investigated potential changes in 

terrestrial climate zones, particularly those associated with 

snow/glacier melting, frozen soil thawing, and groundwater 

changes. The PPE allows us to estimate a range of potential 

future changes due to modeling uncertainty.

An evaluation against available observations suggests 

that the perturbed physics ensemble produces realistic sim-

ulations of soil moisture and its spatiotemporal variability. 

According to root-layer soil moisture, the global land surface 

is classified into four dry-wet climate zones: arid, semiarid, 

subhumid, and humid zones, with a reference period of 

1976–2005. The first three zones make up the global dry-

lands (68.8% of land areal total excluding the Greenland and 

Antarctic areas), including 20.9% of the arid zone, 11.3% 

of the semiarid zone, and 36.6% of the subhumid zone. The 

humid zone accounts for 31.2% of areal total areas globally.

Under the RCP8.5 scenario, the global drylands are pro-

jected to experience a significant expansion (10.5%) at the 

expense of the humid zone by the end of the 21st century 

relative to the 1976–2005 climatology. This result is quali-

tatively consistent with previous studies using different met-

rics. The areal expansion consists of 7.7% (–8.3 to 23.6%) 

and 9.5% (3.1–20.0%) semiarid and subhumid zone 

growth at the expense of 2.3% (–10.4 to 7.4%) and 12.6% 

(–29.5 to 2.0%) arid and humid zone contraction. The 10.5% 

ensemble mean dryland expansion rate globally is slower 

than the 19.2% estimate using the precipitation-potential 

evapotranspiration ratio, but regional expansion over the 

mid-high latitudes can be much greater. This difference is 

mainly because of frozen soil thawing and accelerated evap-

otranspiration with Arctic greening and accelerated polar 

warming, which can be detected in soil moisture but not 

from atmosphere-only indices.

The projected potential shifts in climate zones highlight 

areas of ecosystem vulnerability and climate risks. Clearly, 

high risks mainly exist in the peripheries of subtype zones, 

especially in the mid-high latitudes and the Amazon and 

Congo basins. The mechanisms behind the shifts toward 

drier regimes in the mid-high latitudes involve land pro-

cesses that cannot be fully described by atmospheric-only 

indictors. The soil moisture-based assessment presented in 

this study facilitates a better understanding of climate change 

from the land process perspective and its direct impacts on 

terrestrial ecosystems.

This study highlights the importance of land processes 

in climate change impact assessments using a classification 

based on soil moisture, which would not be possible if only 

the atmospheric aridity index is used. The current analysis 

is based on one particular upper-end projection, the RCP8.5 

scenario, which may not be absolutely realistic. Because of 

limitations from current land surface models and the lack of 

reliable long-term soil moisture observations, there must be 

unavoidable uncertainties in quantitative projections. With 

the involvement of land water balance and vegetation dis-

tribution, in principle, it is desirable to use soil moisture 

classification to define climate zones, in comparison with 

the atmospheric aridity index. The results are qualitatively 

valuable for ecosystem and environment impact assessments 

in the context of future climate change.
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