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Abstract: Leaf extract of Cydonia Oblonga Mill. is interesting for further exploration of the potential of
its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on
samples of green (October), yellow (November), and brown (December) quince leaves collected in
the region of Pinhel, Portugal. Mineral analysis determined the measurements of the levels of several
macro- and micro-elements. Organic analysis assessed the moisture content, total phenolic content
(TPC), vitamin E, and fatty acid (FA) profiles. Mineral analysis was based on ICP-MS techniques,
while the profiles of vitamin E and FA relied on HPLC-DAD-FLD and GC-FID techniques, respec-
tively. Moisture content was determined through infrared hygrometry and TPC was determined by
spectrophotometric methods. Regarding the mineral content, calcium, magnesium, and iron were
the most abundant minerals. Concerning organic analysis, all leaf samples showed similar moisture
content, while the TPC of gallic acid equivalents (GAE) and total vitamin E content, the most pre-
dominant of which was the α-tocopherol isomer, showed significant variations between green-brown
and yellow leaves. FA composition in all leaf samples exhibited higher contents of SFA and PUFA
than MUFA, with a predominance of palmitic and linolenic acids. Organic and inorganic analysis of
quince leaves allow for the prediction of adequate physiological properties, mainly cardiovascular,
pulmonary, and immunological defenses, which with our preliminary in silico studies suggest an
excellent supplement to complementary therapy, including drastic pandemic situations.

Keywords: Cydonia oblonga Mill. leaves; inorganic composition; phenolic compounds; vitamin E;
fatty acids; nutraceutical potential

1. Introduction

The quince of Persia is a plant also known as Cydonia vulgaris Persoon or Cydonia
oblonga Miller, and is a monotypic genus comprising the family Rosaceae, subfamily Mal-
oideae, and genus Cydonia (USDA, 2009) [1]. Currently coined with different names—the
Arabic name “Sefarjal”, the Azari name “Heyva”, the Urdu name “Bahee Dana”, the
Farsi name “Beh”, the Hindi name “Bihi”, the Italian name “Cotogno”, the German name
“Quitte”, the Spanish name “Membrillo”, the Portuguese name “Marmeleiro” and the
French name “Cognassier or Pommier de Cydon”—the etymology derives from the Latin
cotoneum mālum (quince fruit), probably a variant of cydonium malum from the Greek
kydōnion malon, which is traditionally referred to as the “apple of Kydōnia” (modern-day
Greek city of Chania), a prominent ancient seaport city on the Northwest coast of Crete [2,3].
Regarding its taxonomy and plant characteristics, the quince plant grows as a shrub or
small tree (4–6 m high) and is rounded by a canopy up to 3 m in diameter. The root presents
a superficial and fasciculate system with a tortuous trunk. The leaves are green-intense and
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bright, with a shape from oval to oblong (5–10 cm in length across, 5 cm width). The large
and single flowers (4–5 cm) vary from white to pink shades. Each flower with five petals,
five styles, 20 or more stamens, and a lower ovary with many ovules reaches full blossom
during the respective spring season of each hemisphere [4,5]. The fruits ripen during
autumn, depending on the climatic conditions of the habitats on which they are farmed.
They are covered with grey-whitish hairs and may reach a weight of about 300–500 g. The
quince fruit can be left on the tree to ripen further, which softens the fruit to the point where
it can be eaten raw in warmer climates but should be picked before the first frosts, at a time
when the entire surface of the fruit is pale yellow and is easy to tear it off by twisting the
stalk. Three common varieties of Cydonia oblonga Miller exist in Europe: Cydonia vulgaris
Maliformis, Cydonia vulgaris Pyriformis, and Cydonia vulgaris Lusitanica. Cydonia vulgaris
Lusitanica is the Lusitanian or Portugal quince. This variety has broader leaves and larger
fruits than the former two, and the fruit has a pear shape similar to Cydonia vulgaris Pyri-
formis, and stands out by its robust growth and improved adjustment for stocks to graft
upon. It is less valuable as a bearer compared to the other two varieties and the fruit’s skin
is deep yellow instead of orange. Regardless, this variety is considered of high value for
marmalade, as its pulp turns to fine purple and becomes milder and less austere due to
the formation of anthocyanins when stewed or baked [6]. The pulp is yellowish, acidic,
astringent, and consumed processed as jams, jellies, marmalade, and cakes. This cultivar
was taken to England by John Tradescant in 1611, when it was described as the best quince
for baking [7]. With respect to the the origin and geographical distribution, this plant is na-
tive to the northern forests of Asia Minor and the Caucasus Mountains between Persia and
Turkmenistan, though quince can still be found in the wild form in Dagestan, Azerbaijan,
Turkmenia, and Iran [8]. There are records of quinces being cultivated 5,000 years ago in
Mesopotamia (now Iraq), and from 100 BC onwards, they were popular in Palestine long
before apples [9]. From the Central Asia region, the plant crossed old trade routes to the east
and west, and it was first noticed within southwest Europe on the ancient island of Crete
and most probably reached the Mediterranean during the classical (Greco–Roman) times.
Due to its medicinal properties, quince has been known since ancient times in mythology
and folk tradition as a symbol of love, happiness, fertility, wisdom, beauty, durability, and
eternity. The Plutarch of Chaeronea in Boeotia (45–120 AD), a Platonist author, confirms
this when he reports the tradition of sharing a quince between a couple of newlyweds as
a harbinger for the couple’s fertility. Additionally, Romans cultivated quinces for their
medicinal qualities. A terracotta life-sized quince found in in Apulia in southern Italy was
traced back to 300–250 BC. De Agricultura of Marcus Porcius Cato the Elder (234–149 BC), a
farming manual on agriculture of 202 BC, recommended growing three types of quinces
that ripened well: Strutea, Cotonea, and Mustea. Pliny the Elder (23–79 AD), a Roman
naturalist, praised their medicinal virtues and discriminated the Mulvan variety, which
was the only cultivated quince at the time that could be eaten raw. Furthermore, Columella
(4–10 AD), a Roman agriculture writer says: “Quinces not only yield pleasure, but health.” [10].
Both Greeks and Romans preserved quinces in honey, giving rise to the name melimelum
from the Greek for honey apple, which evolved into the Spanish marmello and presently,
membrillo and Portuguese marmelo. They are rich in pectin, which allows them to set as
jam or jelly when cooked. This quality was first discovered by the Romans, who cooked
the fruit prior to preserving it. Quinces were the only fruits that needed cooking first, and
for a long time it was assumed that they were the only fruits that would set in this way.
Portuguese quince jam or marmelada (from the Portuguese marmelo) reached Britain in
the 16th century and became a popular way to preserve fruit. Apart from its historical
importance, it still carries an economic value with cultivation worldwide, where Turkey
holds 25% of the world production followed by China, Iran, Argentina, and Morocco, each
producing less than 10%. The United States is a very minor producer of quince fruit, mainly
in California’s San Joaquin Valley [11]. In Portugal, Cydonia vulgaris Lusitanica is widely
spread in the northeast, central east, and southern regions such as Trás-os-Montes, Beira
Alta, and Ribatejo, respectively. It is also possible to find it in the Minho and Beira Litoral
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regions. Several parts of the plant have functionality and have been constitutionally used
for different purposes: wood of quince is used for furniture making, the fruits and its
juice are rich in thiamine, riboflavin, nicotinic acid, vitamin B6, inositol, pantothenic acid,
folic acid, and biotin [12]. Quince fruit may be consumed raw in some countries where
population is used for astringent flavors [13], such as in South America, and cooked quince
is still used as a complement to apple pies and brandy, for jam and marmalade making, and
even as tea [14]. Aromatic and functional properties of quince have also been used to fortify
products such as beers and yogurts. Moreover, the seed mucilage of this quince fruit, a
hydrocolloid, has been useful as a bulking and thickening agent in food [15]. The medicinal
properties of this plant reported during ancient times caught the eye of modern scien-
tific researchers that have looked up to isolation of plant active phytochemicals [16–23],
using their curative potential in response to health challenges [24–29]. In the past few
years, the chemical constituents of quince fruit and its derivatives have been the subject
of study [13,30–36]. In the leaf of the Portuguese quince, several phytochemicals have
been isolated, from which phenolic compounds such as organic acids (oxalic, citric, malic,
quinic, shikimic, and fumaric acids); caffeoylquinic acids (3,4,5-O-caffeoylquinic acids,
3,5-O-dicaffeoylquinic acid) [33]; and flavonoids (quercetin-3-O-galactoside, quercetin-3-
O-rutinoside, kaempferol-3-O-glycoside, kaempferol-3-O-glucoside, and kaempferol-3-O-
rutinoside) [31,32] were identified. Similarly, quercetin-3-O-galactoside, quercetin-3-O-
rutinoside, kaempferol-3-O-glycoside, kaempferol-3-O-rutinoside and kaempferol-3-O-
glucoside, and 4-O-caffeoylquinic acid were identified in the methanolic extract of Tunisian
Quince leaves [37]. Rutin (36%) was the most abundant flavonoid found in its leaves [38].
On the other hand, chlorogenic acid was identified as the major phenolic compound in
Quince leaf methanolic extract [39]. Similar to phenolic compounds, organic acids are
important secondary metabolites of plants with antioxidant properties. Quince leaves from
central and northern Portugal contained quinic acid (72.2%), oxalic acid (6.1%), malic acid
(7.6%), and citric acid (13.6%) with small amounts of fumaric and L-shikimic acids. It was
also observed that greener leaves harvested earlier in June and August had higher acid
contents than those collected in October [33]. Leaves gathered during the flowering and
fruiting seasons had a composition of 47 and 40 different essential oils each, composing
95.7% and 64.5% of their respective total oils. Aldehydes were 12.8% of the total oils in the
leaves of the flowering period, followed by fatty acids (7.2%), monoterpenes (5.7%), and
norisoprenoids such as (E)-β-Ionone (5.1%) and (E,E)-α-Farnesene (4.6%). However, the
leaves of fruiting quince contained hydrocarbons of sesquiterpene (8.6%), benzaldehyde
(4.9%), and (Z)-β-Farnesene (4.8%) as the main constituents of essential oils [40]. Facing this
difference in composition, the present study aimed to determine the chemical composition
of Portuguese quince leaves using a more recent collection from the largest region with
certified biological quince cultivars in Europe (an area of about 800 acres) managed by
the Biocôa Association in the Pinhel region. To understand the functional and therapeutic
properties of this part of the plant and its potential applications in different industries, the
assessment of the chemical composition of the leaf of Cydonia oblonga, a variety Cydonia
vulgaris Lusitanica, analysis of the inorganic (mineral composition) and organic profiles
(moisture content, total phenolic content, vitamin E, and fatty acids profiles) were accom-
plished. The possible pharmaceutical properties associated with risk reduction in aging
processes and the development of chronic diseases such as cardiovascular, pulmonary,
and cancer were also considered. Sample collection happened in two different periods of
maturation: A first sample of green leaves collected in October, just before the fruit harvest,
another of yellow leaves collected after the fruit harvest in November, and a third collection
of brown leaves in December. Additionally, in silico studies with clinical cases (preliminary
personal data) showed distinct but complementary therapeutic actions between green,
yellow, as well as brown quince leaves.
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2. Materials and Methods
2.1. Chemical Reagents

Absolute ethanol was obtained from Fisher Chemical (Loughborough, England).
methanol, gallic acid, Folin–Ciocalteu reagent, sodium carbonate (Na2CO3), and 1,4-
dioxane were from Sigma (St. Louis, MO, USA). HNO3 (Merck®) and H2O2 (Merck®). Potas-
sium hydroxide (KOH), anhydrous sodium sulfate (Na2SO4), and n-hexane (HPLC grade)
were obtained from Merck (Darmstadt, Germany). Tocol (2-methyl-2-(4,8,12-trimethyl-
tridecyl) chroman-6-ol) was obtained from Matreya Inc. (State College, PA, USA). Vitamin
E standards were obtained from Calbiochem (La Jolla, CA, USA). Fatty acid methyl ester
standard mixture (FAME) Supelco 37 was obtained from Supelco (Bellefonte, PA, USA).

2.2. Sample Collection

Three samples of quince leaves with an origin in the village of Pereiro, municipality of
Pinhel, Guarda, Portugal, were collected during the months of October, November, and
December. This farm in Guarda (coordinates in WGS84: Lat: 40.725443 Long: −7.01789) is
a biological plantation of 11,000 prolific cultivars of the variety Cydonia vulgaris Lusitanica
that reached an actual peak of 46,000 Kg of quince fruits for the processing industry. It
should be emphasized that this area is incorporated in a total production territory of
800 ha, with 400 ha of this being explored under biological conditions. No pesticides or
herbicides are used to treat the plants, and the trees are not watered to achieve the best
fruit possible according to the climate and soil conditions of the region. This particularity
makes these cultivars a perfect source of samples for a reliable analysis and study of the
healing properties of phytochemicals and nutrients identifiable in this plant, including
quince leaves. This large-scale project of biological agriculture was the first candidate to be
financed by the Financing Institute and Support of development of Agriculture and Fishing
(IFADAP - Instituto de Financiamento e Apoio ao Desenvolvimento da Agricultura e das Pescas).
Each sample was dried in a stove (Memmert UL6D, Germany) at 30 ± 2 ◦C for 5 days (in
the dark). The mean drying yield was 49.82%.

2.3. Sample Preparation for ICP-MS Analysis

Quince leave samples were ground in a mill (GM200 GrindoMix, Retsch) before
organic analysis. For inorganic evaluation, 0.2 g of dry leaf sample was digested using
microwaves (MW) within a closed system at 170 ◦C using 1 mL of HNO3, 2 mL of H2O2,
and 1 mL of H2O. After cooling, the vessel contents were transferred to volumetric flasks
and the volume was made up with 25 mL of deionized water.

2.4. Moisture Content

Assessment of moisture content was determined in triplicate through infrared hy-
grometry readings at 105 ◦C using 1 ± 0.1 g of milled leaves sample (infrared balance,
Scaltec model SMO01, Scaltec Instruments, Heiligenstadt, Germany).

2.5. Inorganic Elements Quantification

Mineral concentration was obtained by inductively coupled plasma mass spectroscopy
(ICP-MS) on a Thermo ICP-MS X Series equipped with a Burgener nebulizer. The system
functions with a plasma power at 1400 w, an argon flux of 13 ml/min, an auxiliary gas flux
of 1 mL/min, and a sample flux of ~1mL/min.

The tuning procedure was performed daily using a multielement solution (6Li, In, Ce,
U, 10µg/L each) and the response for oxides (140Ce16O/140Ce ratio) did not exceed 2%.

External calibration was performed using multielement standard solution in 1% nitric
acid (v/v) at the following element concentration levels: 0, 0.2, 0.4, 1.0, 2.0, 5.0, 10, 50,
and 100 µg/L for minor constituents and 0, 0.02, 0.04, 0.1, 0.2, 0.5, 1,5, and 10 mg/l for
major elements. The internal standard (10.0 µg/L 115In) was added on-line. This procedure
was accomplished with three sample groups under different growing stages, i.e., green
(October), yellow (November), and brown (December) leaves. Moreover, each sample
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group is the result of green, yellow, and brown leaves collected from six different trees
within the respective month. For obtaining a biological average per group, a mix of
several leaves was made, with an approximate weight from six trees following the chemical
digestion in accordance with the method cited above. In the end, three different solutions
were obtained, relating to the green, yellow, and brown sample groups. Each analysis was
carried in triplicate readings per solution sample.

2.6. Extraction and Quantification of Phenolic Content (TPC)

For the extraction of phenolic phytochemicals, the mass/volume ratio was optimized
using milled quince leaves and 80/20 methanol/water (v/v) as solvent. The mixture was
agitated in a magnetic stirrer (MS-H-S10 magnetic stirrer, ChemLand, Poland) at a constant
temperature (40 ◦C) and agitation (600 rpm) for 1 h, according to Melo et al. (2021) [41].

The total phenolic content (TPC) was determined by a spectrophotometric method
with the Folin–Ciocalteu reagent at room temperature using an absorbance reading of
765 nm in a microplate reader (BioTek Instruments, Synergy HT GENS5, EUA) following
Costa et al. (2018) [42]. Results are reported in g of gallic acid equivalents (GAE)/100 g of
sample fresh weight.

2.7. Extraction of Lipid Fraction

The lipid fraction extraction was performed as described by Melo et al. (2021) [41]
using absolute ethanol and n-hexane (HPLC grade) as solvents in constant agitation (Multi
Reax EU, Heidolph, Germany). The final extract (1 mL) was divided for vitamin E (500 µL)
and fatty acid profile (the other 500 µL) assessment.

2.7.1. Vitamin E Profile

For vitamin E profile determination, the final extract (using tocol as an internal stan-
dard) was injected in a HPLC-DAD-FLD (high performance liquid chromatography with
diode array detector and fluorescence detector) system (Jasco, Tokyo, Japan) equipped
with a MD-4015 multiwavelength diode array detector (Jasco, Tokyo, Japan), and an FP-
4025 fluorescence detector (Jasco, Tokyo, Japan) programmed for an excitation of 290 nm,
an emission of 330 nm, a PV-4180 pump, an AS-4050 autosampler, and a normal phase
Supelcosil TM LC-SI column (75 mm × 3.0 mm, 3.0 µm, Supelco). The eluent was 1,2% 1,4-
dioxane in n-hexane (v/v). The flow rate was 0.7 mL/min. The injection volume was 20 µL.
Vitamin E isomers (α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol, α-tocotrienol,
β-tocotrienol, γ-tocotrienol, and δ-tocotrienol) were identified based on their UV spectra
and by comparison to the retention times of standards. Isomers were quantified based on
the fluorescence signals. Results are expressed in mg/100 g of sample fresh weight.

2.7.2. Fatty Acids (FA) Profile

For FA profile determination, a transmethylation with KOH in methanol was per-
formed to the extract to obtain methyl esters, according to ISO 12966-2:2017 [43]. The
obtained extract was then injected in a GC-FID system (Shimadzu, Tokyo, Japan) equipped
with an AOC-20i automatic sampler and a split/splitless auto injector (Shimadzu, Tokyo,
Japan) at 250 ◦C, a flame ionization detector (Shimadzu, Tokyo, Japan) at 270 ◦C, and
a CP-Sil 88 silica capillary column (50.0 m × 0.25 mm inner diameter and 0.20 µm film
thickness, Varian, Middelburg, Netherlands). The carrier gas was helium. The injection
volume was 1 µL. The used program was: 120 ◦C held for 5 min, 2 ◦C/min to 160 ◦C
held for 2 min, and 2 ◦C/min to 220 ◦C held for 10 min. Identification was performed by
comparing the retention times of fatty acids methyl esters to a standard mixture (FAME
37, Supelco, Bellefonte, PA, USA). The data were analyzed based on relative peak areas.
Results are expressed as relative percentage (%) of total FA.
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2.8. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics (v. 26 for Windows, IBM
Corp., Armonk, 241 NY, USA). The evaluation of statistical significance was determined
by ANOVA and Tukey’s HSD to assess significant differences between samples at a 5%
significance level.

3. Results
3.1. Inorganic Analysis

In this study, it was determined that the green leaf sample had a mineral content with
a predominance of Ca 15000 mg, Mg 5500 mg, K 2200 mg, Si 880 mg, P 760 mg, Fe 119 mg,
Na 100 mg; the yellow leaf sample had mineral content of Ca 17000 mg, Mg 4700 mg, K
2300 mg, Si 1800 mg, P 700 mg, Na 310 mg, Fe 109 mg; and the brown leaf sample had a
mineral content of Ca 21480 mg, K 12010 mg, Mg 4350 mg, P 830 mg, Si 630 mg, Na 520 mg,
Fe 40 mg by 1.0 Kg of substrate (Table 1). During maturation of Portuguese quince leaf, it is
possible to notice an increase in the mineral content of Ca and K, and a slight decrease in
Mg and Fe. On the other hand, after a significant increase in Si level following the transition
from the green to yellow leaves, it is possible to verify a severe decrease in the content of Si
in the brown leaves (Table 1). On the contrary, after a very small decrease in the levels of P
during the transition period from green to yellow leaves, it is possible to verify a significant
increase in the brown leaves (from 700mg to 830 mg/Kg) in comparison to the green leaves
(Table 1).

Table 1. Mineral analysis of leaf samples of Cydonia oblonga Mill—green leaves in October, yellow
leaves in November, and brown leaves in December. Each sample group was made by a mix of
different tree leaves to obtain an approximate biological average. As a result, present results express a
mean ± reading deviation (n = 3) which varies between a 3.0–5.0% gap. ** DRIs (daily recommended
intake)—https://www.nap.edu (accessed on 30 October 2021).

Elements
Samples Units Green Leaves

(October)
Yellow Leaves

(November)
Brown Leaves

(December)
DRIs—Male

(31–50 Y.O.) **
As mg/Kg <3.00 <3.00 <3.00 N/A

Ba mg/Kg 50.00 ± 0.05 49.00 ± 0.05 51.00 ± 0.05 N/A

Ca g/Kg 15.00 ± 0.05 17.00 ± 0.05 21.48 ± 0.03 1.00 g/d

Cd mg/Kg <0.25 <0.25 <0.25 N/A

Cr mg/Kg <0.50 <0.50 <0.50 0.04 mg/d

Cu mg/Kg 3.90 ± 0.03 3.50 ± 0.03 0.69 ± 0.03 0.90 mg/d

Fe mg/Kg 119.00 ± 0.05 109.00 ± 0.05 40.00 ± 0.05 8.00 mg/d

K g/Kg 2.20 ± 0.03 2.30 ± 0.03 12.01 ± 0.05 3.40 g/d

Mg g/Kg 5.50 ± 0.03 4.70 ± 0.03 4.35 ± 0.03 0.42 g/d

Mn mg/Kg 52.00 50.00 85.00 2.30 mg/d

Na g/Kg 0.10 ± 0.03 0.31 ± 0.03 0.52± 0.03 1.50 g/d

Pb mg/Kg <2.50 <2.50 <2.50 N/A

Se mg/Kg <2.50 <2.50 <2.50 0.06 mg/d

Sr mg/Kg 78.00 ± 0.05 71.00 ± 0.05 79.00 ± 0.05 N/A

Zn mg/Kg 27.00 ± 0.05 21.00 ± 0.05 10.00 ± 0.03 14.00 mg/day

Mo mg/Kg <3.00 <3.00 <3.00 0.05 mg/d

Si g/Kg 0.88 ± 0.03 1.8 ± 0.03 0.63 ± 0.03 N/A

P g/Kg 0.76 ± 0.03 0.70 ± 0.03 0.83 ± 0.03 0.70 g/d

3.2. Organic Analysis

The assessment of moisture content in the green quince sample showed a percentage
of approximately 10% (Table 2), which is very similar to the yellow and brown quince
samples and means that quince leaves did not suffer a significant change in their water
content throughout their ripening period. With respect to the phenolic content the quince

https://www.nap.edu
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leaves, a total amount of gallic acid between 9–12 g per 100g of net weight of each sample
was detected. A non-significant decrease in the relative weight of gallic acid equivalent
(GAE)/100g was observed between the 11.51g of green leaf net weight and the 9.35g of
yellow leaf net weight, indicating a loss in phenols throughout the ripening time, followed
by a slight increase to 10.97g at full maturation in brown leaves (Table 2).

Table 2. Organic analysis of leaf samples of Cydonia oblonga. Results expressed as mean ± stan-
dard deviation (n = 3). Different letters denote significant differences (p > 0.05). TPC—total
phenolic content, GAE—gallic acid equivalents, C12:0—lauric acid, C14:0—myristic acid, C15:0—
pentadecanoic acid, C16:0—palmitic acid, C17:0—margaric acid, C18:0—stearic acid, C18:1n9c—oleic
acid, C18:2n6c—linoleic acid, C18:3n3—linolenic acid, C20:0—arachidonic acid, C22:0—behenic acid,
C24:0—lignoceric acid, SFA—saturated fatty acids, MUFA—monounsaturated fatty acids, PUFA—
polyunsaturated fatty acids.

Elements
Samples Green Leaves

(October)
Yellow Leaves

(November)
Brown Leaves

(December)

Moisture (%) 10.60 ± 0.46 a 10.35 ± 0.29 a 10.16 ± 0.10 a

TPC
(g GAE/100 g) 11.51 ± 0.54 a 9.35 ± 0.19 b 10.97 ± 0.57 a

α-Tocopherol
(mg/100 g) 29.16 ± 0.89 a 12.50 ± 1.20 b 29.87 ± 1.00 a

β-Tocopherol
(mg/100 g) 0.24 ± 0.00 b 0.20 ± 0.01 c 0.26 ± 0.00 a

γ-Tocopherol
(mg/100 g) 0.44 ± 0.01 b 0.65 ± 0.05 a 0.73 ± 0.01 a

Total vitamin E
(mg/100 g) 29.84 ± 0.90 a 13.34 ± 1.26 b 30.86 ± 0.99 a

C12:0 (%) 1.10 ± 0.03 c 1.96 ± 0.06 a 1.34 ± 0.07 b

C14:0 (%) 2.03 ± 0.10 b 3.49 ± 0.08 a 2.09 ± 0.01 b

C15:0 (%) 0.21 ± 0.03 b 0.33 ± 0.01 a 0.14 ± 0.01 c

C16:0 (%) 31.25 ± 0.48 b 38.05 ± 0.14 a 30.27 ± 0.31 b

C17:0 (%) 0.87 ± 0.01 b 1.25 ± 0.03 a 0.80 ± 0.02 c

C18:0 (%) 4.10 ± 0.07 c 5.69 ± 0.05 a 4.59 ± 0.08 b

C18:1n9c (%) 10.65 ± 1.13 b 15.53 ± 0.85 a 14.52 ± 0.76 a

C18:2n6c (%) 12.57 ± 0.03 b 12.58 ± 0.26 b 14.20 ± 0.29 a

C20:0 (%) 1.66 ± 0.10 b 1.98 ± 0.08 a 1.74 ± 0.11 a,b

C18:3n3 (%) 32.20 ± 0.55 a 15.57 ± 0.33 c 26.55 ± 0.29 b

C22:0 (%) 1.92 ± 0.07 a 2.02 ± 0.08 a 2.10 ± 0.13 a

C24:0 (%) 1.44 ± 0.01 b 1.55 ± 0.05 a,b 1.65 ± 0.07 a

SFA (%) 44.58 ± 0.60 b 56.32 ± 0.33 a 44.74 ± 0.63 b

MUFA (%) 10.65 ± 1.13 b 15.53 ± 0.85 a 14.52 ± 0.76 a

PUFA (%) 44.77 ± 0.54 a 28.15 ± 0.52 c 40.74 ± 0.25 b

3.2.1. Vitamin E Profile

The study of the vitamin E profile allowed for the determination of the quince leaves’
composition of α, β, and γ-tocopherol. α-tocopherol, the only form known to meet human
requirements, was the predominant compound in all green, yellow, and brown leaf samples.
So, the total vitamin E composition decreased from a relative weight of 29 mg in green
leaves to circa 13 mg/100 g net weight in yellow leaves. Based on this, it is possible to
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deduce that the vitamin E content decreases drastically with time from the ripening of
green to yellow leaves, but is curiously followed by a significant rise back to 30.86 mg/100 g
net weight in brown leaf (Figure 1, Table 2).
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Figure 1. Example of a chromatogram obtained with fluorescence detection (FP-4025 fluorescence de-
tector, Jasco, Tokyo, Japan) for the vitamin E profile of leaf samples of Cydonia oblonga Mill. assessed by
HPLC-DAD-FLD (1—α-tocopherol, 2—β-tocopherol, 3—γ-tocopherol, 4—tocol/internal standard).

3.2.2. Fatty Acid Profile

With respect to the fatty acid composition of quince leaves, it was observed that
the general contents of SFA and MUFA showing a significant percentage increase from
44.58 ± 0.60 in green leaves to 56.32 ± 0.33 in yellow leaves and from 10.65 ± 1.13 in green
leaves to 15.53 ± 0.85 in yellow leaves, with a close return to the first (green leaf) values
in brown leaves, respectively (Figure 1, Table 2). On the contrary, the relative percentage
of PUFA showed a significant percentage decrease from 44.77 ± 0.54 in green leaves to
28.15 ± 0.52 in yellow leaves, followed by a gain back to 40.74 ± 0.25 in the brown leaves
(Figure 1, Table 2).

It was possible to identify the fatty acids that are largely present in this part of the
plant—palmitic acid (C16:0, 30–38%) and linolenic acid (C18:3n3, 16–32%)—followed by
the linoleic (C18:2n6c, 13%) and oleic acid (C18:1n9c, 11–16%) (Figures 1 and 2, Table 2).
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Figure 2. Example of a chromatogram obtained for the fatty acid profile of quince leaves assessed by
GC-FID. C12:0—lauric acid, C14:0—myristic acid, C15:0—pentadecanoic acid, C16:0—palmitic acid,
C17:0—margaric acid, C18:0—stearic acid, C18:1n9c—oleic acid, C18:2n6c—linoleic acid, C18:3n3—
linolenic acid, C20:0—arachidic acid, C22:0—behenic acid, C24:0—lignoceric acid.

C18:3n-3 decreased from 32.20% in green leaves to a minimum of 15.57% in yellow
leaves within a one-month period, and a gain up to 26.55% in brown leaves one month
later (Table 2).
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4. Discussion
4.1. Inorganic Analysis

Quince is an underrated fruit with proven significant nutritional qualities as it is a rich
source of carbohydrates, fiber, proteins, vitamins, different organic acids, and minerals [44].
Quince fruit is reported to have a higher relative nutritional value in comparison to ap-
ples [15]. According to Bíró and Lindner 1999, the mineral content of quince (Na 9.2 mg, K
189 mg, Ca 66 mg, Mg 10 mg, Fe 1.1 mg, P 25 mg) is reported to be twice as that of apples
(Na 2 mg, K 112 mg, Ca 5.5 mg, Mg 6 mg, Fe 0.3 mg, P 8 mg) [45]. The results (Table 1)
show an increase in the mineral content of Ca and K and a slight decrease in Mg and Fe. It
was also possible to observe a significant increase in Si content during the maturation of
green leaves to yellow leaves, which was followed by a severe decrease in the Si content
during the brown leaves period.

Moreover, inorganic analysis showed a composition by Kg of leaves close to or above
the DRI values for the following components in both green and yellow leaf samples: cal-
cium, magnesium, iron, phosphorus, copper, and manganese. Comparing with the study of
Bíró G and Lindner 1999, we can deduce that quince leaves are richer in inorganic content
relative to both quince and apple fruits. According to the World Health Organization
(WHO), malnutrition, defined as deficiencies, excesses, or imbalances in a person’s intake
of energy and/or nutrients, acts as a double burden for consequences as wasting, stunting,
low birth weight, and micronutrient deficiencies, on the one hand, and overweightness,
obesity, and diet-related noncommunicable diseases (NCDs), on the other hand. Efforts
have been made to overcome these serious world public health issues, namely the creation
of sustainable processes for micronutrient-fortified foods such as rice and flours. Positive
results by these measures have been already attained with the elimination of iodine de-
ficiency disorders through universal salt iodization and the impressive results gained in
the control and prevention of iron deficiency and derived anemia through fortification
of flour with iron and folic acid [46]. The reason why the initiative was extended to the
fortification of edible oils and fats with vitamin A and D was to overcome the widely
prevalent forms of subclinical vitamin A deficiency disorders [47] as well of zinc, vita-
mins B2 and B12, niacin, and calcium deficiency. Chronic hypocalcemia may derive from
several factors and affects several systems in the body, with osteoporosis being a main
concern that can be prevented with a balanced diet and calcium supplements, sometimes
in combination with vitamin D or magnesium supplementation as well, depending on the
factor leading to low calcium levels [48]. The element magnesium is involved in more than
300 biochemical reactions within the body, and a healthy intake is crucial for the nerves’
and muscles’ functional statuses, heart beating, and bone formation. For example, a diet
rich in proteins, calcium, and vitamin D requires higher levels of magnesium, the same
way that hypomagnesemia might lead to metabolic disorders such as hypocalcemia and
hypokalemia [47,49]. Malnutrition and/or malabsorption, obesity, and alcohol withdrawal
can also lead to deficiencies in inorganic phosphate or adenosine triphosphate associated
with disorders in the central and peripheral nervous system and myopathies that require
the re-establishment of phosphorus levels [50]. Just as with zinc, copper is involved in
cellular signaling pathways and has been mostly found in the human brain [51]. Both
cupric and cuprous ions can cause oxidative stress and free radical damage, so the intracel-
lular level of copper is controlled by binding to specific proteins such as Cu transporters
and copper chaperones. Copper containing enzymes and transcription factors play a key
role in the cell’s integrity, proliferation, and energy production, mainly in collaboration
with iron absorption, mediating the production of red blood cells and keeping a healthy
homeostatic function within bones, blood vessels, nerves, and the immune system [51,52].
Additionally, mechanisms related to copper have shown to be a prospective therapeutic
target for conditions such as influenza A, lung inflammation, and cancer, in addition to neu-
rodegenerative disorders such as Alzheimer’s and Parkinson’s disease as well as Menkes
and Wilson’s diseases [53–55]. Moreover, during the last years, liver copper deficiency
has been correlated with obesity and nonalcoholic fatty liver disease (NAFLD), for which
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prospective pharmacologically enhancing therapeutics have been explored as an approach
to treat excessive weight and associated pathologies [56]. Another trace mineral with
proven utility within human physiology and biochemistry is manganese. This mineral is
involved in blood clotting and hemostasis in conjunction with vitamin K and also acts as a
cofactor for several enzymes, including manganese superoxide dismutase, arginase, and
pyruvate carboxylase, through which manganese is involved in amino acids, cholesterol,
glucose, and carbohydrate metabolism; reactive oxygen species (ROS) scavenging; bone
formation; reproduction; and immune response. The human body contains about 10 to
20 mg of manganese, of which 25% to 40% is in bone with the remaining being distributed
between the liver, pancreas, kidney, and brain [57–61]. A very limited body of evidence in
humans suggests that manganese deficiency might be related to: (1) impaired growth and
bone formation in children, (2) skin rashes, (3) hair depigmentation, (4) diminished serum
cholesterol, (5) changes in lipid and carbohydrate metabolisms, (6) changes in tolerance
to glucose, (7) increased activity of alkaline phosphatase in men, and (8) mood changes
or premenstrual pain in women [58,62]. According to our results, quince leaves acquire
nutritional importance in the context of mineral deficiencies and might serve as cheap
potential substrates for food enrichment and supplement manufacture, in particular, for
addressing calcium, magnesium, iron, manganese, and phosphorus deficiencies.

4.2. Organic Analysis

The moisture content (Table 2) of all green, yellow, and brown quince leaves was
around 10%, without significant differences (p > 0.05), revealing that the samples did not
suffer a significant change in their water composition during ripening. Unlike moisture,
this period might have influenced other parameters such as, for instance, acidity, which
is probably more dependent on phenolic compounds and FA composition than on water.
Gallic acid, a secondary polyphenolic metabolite, is a well-known natural antioxidant used
in the pharmaceutical industry as a standard for determining the TPC of various analytes,
using the Folin–Ciocalteu assay. Tea leaves are considered to be an important source of
gallic acid, containing up to 4.5 g/kg fresh weight [63]. The TPC results (Table 2) varied
between 9–12 g GAE/100 g of quince leaves. The sample of yellow leaves presented the
lowest content (9 g GAE/100 g), indicating a significant (p > 0.05) loss in these compounds
throughout the ripening period. In the previous comparative study of Costa et al. (2009),
quince leaves exhibited a significantly higher reducing power in relation to green tea leaves.
The Costa group found that under the oxidative action of 2,2’-azobis (2-amidinopropane)
dihydrochloride (AAPH), quince leaf methanolic extract significantly protected the ery-
throcyte membrane from hemolysis similarly to green tea (IC50 = 30.7 and 24.3 µg/mL,
respectively, p > 0.05). These findings highlight the potential of quince leaves for the
prevention of cardiovascular disorders and mitigation of risk based on cardioprotective
and hypolipidemic properties as previously described [31,39,64]. Khademi et al. (2013)
found a significant reduction in serum lipids as well a similar thickness of atheroma in
both the control and intervention groups, with animals treated with a methanolic fraction
of leaf extract [37], confirming the potential of the traditional use of the plant to treat
metabolic and cardiovascular diseases [65,66]. Several studies have already shown the
efficacy of quince fruits and leaf extracts in the treatment and prevention of atherosclerosis,
endothelial dysfunction, hypertension, diabetes, and hyper-homocysteinemia [16,64,67–75].
Once again, despite the slight loss in phenolic content during its ripening from green to
brown, all of Pinhel’s Portuguese quince leaves emerge as a phytochemical alternative
to the use of statins, which are prioritized for the treatment of hypercholesteremia and
currently known for its risks of muscular toxicity. Studies conducted in the past few years
by Silva and coworkers [31,35,39,76–79] have demonstrated that Cydonia oblonga Mill. is a
good, safe, and low-cost natural source of different classes of phenolic compounds, such as
flavonol and flavone heterosides and, especially, caffeoylquinic acids. Polysaccharides of
quince fruit inhibited the activity of tyrosine phosphatase (IC50 = 2.07 µg/mL), indicating
its capability to treat type 2 diabetes and obesity [80]. Moreover, quince is used in sore
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throat, cough, pneumonia, and lung disease [2,7,37,81–85]. The antimicrobial potential of
quince leaf extract was also tested by Benzarti et al. (2018), who tested the activity against
eight pathogenic bacteria using the disc diffusion method. The quince leaf extract inhibited
Enterococcus faecium (ATCC 19434), Streptococcus agalactiae, and Bacillus subtilis [86], opening
a window for important future research exploring the antimicrobial properties of the extract
against infections other than airway-related infections. Carvalho et al. (2010) used quince
leaf and fruit methanolic extracts to assess their ability to inhibit the growth of human renal
(A-498 and 769-P) and colon (Caco-2) cancer cell lines, showing a concentration-dependent
growth inhibitory activity toward human colon cancer cells. Quince leaves contain the high-
est content of polyphenols of quince parts, mainly caffeoylquinic acids and quercetin and
kaempferol derivatives [1], possibly responsible for the remarkable antiproliferative activity
of quince leaf extract against colon cancer cells. It is possible to infer that rich polyphenol
quince leaf extract may have pharmaceutical potential to intercept or to mitigate oxidative
stress-induced damage leading to cancer [86]. The vitamin E profile (Table 2) revealed that
quince leaves present α-, β-, and γ-tocopherols. The major isomer identified in all of the
leaves’ samples—with a higher relative percentage of green and brown leaves compared
to yellow leaves—was α, which is the only isoform known to meet human requirements.
α-tocopherol can be incorporated into biological membranes, not only preventing protein
oxidation and inhibiting lipid peroxidation, but also maintaining cell membrane integrity—
especially those with high amounts of polyunsaturated fatty acids (PUFA)—while also
protecting against cell damage as well as inhibiting the activity of protein kinase C (PKC)
and PKC-mediated pathways. Moreover, it is able to inhibit the activity of powerful inflam-
matory mediators induced by PKC such as COX-2 and IL-8 in many tissues [87], resulting
in a decrease in prostaglandin production [88,89]. Vitamin E is also known to suppress
the transcription of the vascular endothelial growth factor (VEGF or VEGF-A) gene re-
sponsible for expressing an important angiogenic protein, thereby restraining angiogenesis
and tumor development [90]. A study with male smokers suggested that VEGF-A levels
decreased during an intervention where randomized men received a trial α-tocopherol
supplement compared to those who received a placebo [91]. Yellow leaves present a sig-
nificant decrease in total vitamin E, almost a third of total amount determined in green
and brown leaves. Thus, green and brown quince leaves seem more valuable as a potential
substratum for pharmaceutical and cosmetic industries, where tocopherols may be used
to help recover hair and skin damage and promote healthy aging. A biomaterial named
D-α-tocopheryl polyethylene glycol succinate (TPGS), used in the development of various
drug delivery systems (e.g., micelles, liposomes, and other nanoparticles), can function
as a solubilizer, emulsifier, additive, and permeability enhancer as well as an absorption
enhancer. Additionally, TPGS is capable of overcoming multidrug resistance mediated by
the P-gp efflux pump [92]. Because of this, quince leaf extracts can be an asset in further
drug development in pharmaceutical industry, improving colloidal stability and in vivo
antitumor activity. Furthermore, α-tocopherol is known to be a safe food additive [93], and
so the relative content of this metabolite in quince leaves’ extract turns it into an affordable
option for use in the food industry. Studies indicate that vitamin E supplementation may
be a valuable addition to the treatment of patients with seasonal allergic rhinitis [94], and
the substantial vitamin E content in quince leaves supports that this substrate is a potential
low-cost solution for the production of natural vitamin E supplements. Moreover, it helps
justify the efficient and wide traditional use of quince leaf extract to treat allergic rhinitis
and asthma [82,95,96]. Lastly, with the increasing incorporation PUFAs such as linoleic
acid and α-linolenic acid (ALA) in contemporary diets, a higher intake of vitamin E is
required, as α-tocopherol is a very important lipophilic antioxidant able to break peroxida-
tion chains [97]. Even though no final value for the human recommended daily intake of
α-tocopherol has been yet defined, an estimated value of the requirements has been based
on the equation 0.4–0.6 mg of RRR-α-tocopherol/g of PUFA [98]. PUFA peroxidation chains
compromise the integrity of cellular membrane components essential for embryological
development and lifelong neuromuscular acuity, which reinforces the relevance of vitamin
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E protection, so a higher intake in diets by incorporation of more vegetable oils, nuts, or
seeds or by supplementation with nutraceuticals is advisable. Thus, quince leaves might
be an accessible source for the development of dietary supplements. From a comparison
between the FA content in the yellow and green leaf samples, it is possible to see that
ALA significantly (p > 0.05) decreased by half within one month of ripening from green
to yellow leaves, rising again in the following month (brown leaves). As the FA results
are presented in relative percentage due to the decrease in ALA, the other FA percentages
increase, which happened for palmitic, oleic, and myristic acids. According to the Academy
of Nutrition and Dietetics, the energy provided by dietary fats in healthy adults should
account for 20–25% of the total energetic intake, with a major preference for unsaturated
over saturated fatty acids (SFA), as the differences in their chemical composition result
in diverse physiological pathways and metabolic functions [99]. The impact of ALA on
health has been studied by several groups in animals and humans and a review on its
benefits and properties points to the following: (1) inhibition of MCF-7 breast tumor growth
in mice; (2) apoptosis of hepatoma cells in rats; (3) decrease in depression-like behavior
and stimulation of functional stroke recovery in mice; (4) improvement of the brain’s
blood circulation and vasodilation of the basilar artery and protective effects against stroke
in mice and rats; (5) production of optimal levels of DHA in the brains of postweaning
rats; (6) anti-inflammatory effects in both acute and chronic arthritis in rats; (7) significant
improvement in bronchial asthma in patients; (8) improvement of atopic dermatitis in
atopic patients; (9) decreased levels of total cholesterol, low-density lipoprotein (LDL),
LDL/HDL ratio, and serum triglycerides in mild hypertensive patients; (10) decline of
hot flash activity in women; (11) effectiveness in primary and secondary prevention of
coronary artery disease in risky patients; (12) antiarrhythmic therapeutic actions in in
smoking women; (13) decrease in serum cholesterol in hypercholesteric patients; (14) de-
creased systolic blood pressure, total cholesterol, LDL-C, and insulin levels in patients with
metabolic syndrome; (15) partial modulation of inflammation and endothelial activation in
mildly hyperlipidemic patients; and (16) decrease in the risk of mild dementia in elderly
patients [100]. According to the same authors, oral consumption of ALA (α- linolenic acid)
has been verified to be safe so far, though attention has been paid to the observational, yet
inconclusive studies where ALA could be possibly linked with prostate carcinogenesis and
macular degeneration. Major dietary sources of ALA are whole flaxseed and flaxseed oil,
which have been associated with gastrointestinal complaints such as bloating, flatus, and
stomach aching. Having said that, the significant ALA content found in both the green and
brown quince leaf extract makes them an alternative source of this essential plant-based n-3
FA, which is the substrate for the synthesis of more unsaturated n-3 fatty acids formed by
longer chain eicosapentaenoic acid (C20:5n3) and docosahexaenoic acid (DHA, C22:6n3),
essential for tissue function in both men and women, though the conversion to DHA is
higher in the female gender, possibly due to the action of estrogen [101,102]. As previously
mentioned, ALA, as a PUFA, can produce lipid peroxidation products under exposure to
air or UV radiation, which may produce adverse effects if not appropriately controlled,
and which can be prevented through radicals scanvenging with vitamin E [103]. It would
be interesting to study a strategy for the supplement of ALA enriched with protective
α-tocopherol, both derived from quince leaf extract, given the fact that these substrates
appear to be a substantial source of both. Considering that, similar to the ALA content,
the vitamin E value was higher for green and brown quince leaves, it would be useful
to merge the biological activity of both green and brown quince leaves, creating a func-
tional synergy that promotes the antioxidant and cytoprotective activities of α-tocopherol
with enhancement of the anti-inflammatory effect of ALA. In this study, after palmitic
acid and ALA, the most predominant FAs are linoleic and oleic acids. Oleic acid (n-9) is
the most common monounsaturated fatty acid (MUFA) in diets. It is partially essential
because the body is not able to fully compensate its absence by synthetizing it in diets
low in this FA [104]. Both palmitic and oleic acid are non-esterified fatty acids (NEFAs),
where palmitic acid is a saturated chain and oleic acid is a monounsaturated chain. NEFAs
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are associated with three key concepts of metabolic syndrome: obesity, insulin resistance
(IR), and type 2 diabetes mellitus (T2DM). However, palmitic acid and oleic acid seem
to contribute differently for IR. Vessby et al. (2001) reported that insulin sensitivity im-
proves with changes in the quality of the FA intake, with a reduction in SFA and increase
in MUFA within a fat intake up to 37% of the total energy [105]. Additionally, a higher
percentage of total MUFA, in contrast with the total intake of SFA, is considered as a
shielding factor against pancreatic cancer [106]. Distinct mechanisms are implicated in
the action of oleic acid over insulin sensitivity, such as countering the reduction in the
AMP-activated protein kinase (AMPK) activity induced by palmitic acid. AMPK is the
action target of the most prescribed drug for T2DM: metformin [107]. Studies demonstrated
a similar action between the drug metformin and oleic acid by hampering the detrimental
effects of AMPK activation with palmitic acid, which ultimately leads to the prevention
of endoplasmic reticulum stress, inflammation processes, and IR [108,109]. This evidence
implicates that oleic acid is a potential alternative to metformin in the treatment of IR
implicated in metabolic syndromes and T2DM after discontinuation of treatment due to
adverse effects of metformin such as nausea, diarrhea, loss of appetite, and xerostomia,
among others [110]. Regarding the studies in this area and the favorable results of oleic acid
content in the brown leaf sample, we propose that quince leaves are an inexpensive source
of this biological material. On the other hand, FAs also hold a crucial position in brain
function and the peripheral nervous system as an energy source, molecule signaling agents,
and as pillars of the integrity of the cellular membrane. Evidence has related FAs with
neurodegenerative diseases, mental disorders such as depression, stroke, and trauma. Once
again, the dietary quality of FAs is correlated with the exposition to disease: while SFA
and n-6 PUFA are considered to be injurious to nervous system function, MUFA and n-3
PUFA are acknowledged to be beneficial. Moreover, an optimized health status would be
reached with a 1:1 intake proportion of n-6 PUFA/n-3 PUFA. This ratio has been disrupted
in the consumption habits of modern society, therefore triggering negative effects such
as neuroinflammation and loss of memory associated with Alzheimer’s and Parkinson
diseases [111]. Even though the WHO advises a higher ratio of 5:1 to 10:1 for n-6 to n-3
PUFA, such as that found in olive oil, contrarily to other vegetable oils except for flaxseed
and soy oils [112], in our results, it is possible to observe a ratio ranging from 0.41 (green
leaves) to 0.58 (brown leaves). On the other hand, previous studies analyzed the addition
of olive leaves (3%) to Tunisian olive cultivars before the oil extraction, which increased
peroxide value, phenol and tocopherol contents, and oxidative stability. The conclusions
were positive, with the resultant olive oil being an extra virgin olive oil with appreciated
sensory properties [113]. Taking into account that Tunisian olive oil is higher in linoleic
and palmitic acids than oleic acid [112], adding olive leaves showed a rather economic and
efficient solution to meet both goals: harmonized FA composition and sharpened sensory
properties. So, following the same line of thought, the n-6/n-3 ratio of quince leaves shows
them to have the potential to be used as a fortifier of n-3 PUFAs in vegetable oils if further
studies verify that their organoleptic properties are suitable for proper acidity and taste.
Overall, green and brown leaf samples presented a different profile, characterized by a
higher value (55.42% and 55.26%, respectively) of unsaturated fatty acids when compared
with yellow leaf composition (43.68%), originating a ratio of 1.3 and 1.2, respectively, which
is in line with the recommended nutritional guidelines of a PUFA/SFA ratio > 0.4 [111,112].
Given the tendency of ALA for a pro-oxidant state, it is possible to infer that yellow quince
leaves, due to their close MUFA content (15.53%) to PUFA (28.15%) content, have a higher
potential to be used as an extract for meat preservation to defend against dietary dangers
such as cancer development and immune system compromise [114–117]. Of course, in
order to obviate and support the potential therapeutic indications with C. oblonga, it will be
necessary to carry out deep specific clinical studies as well as bio-physiological evaluations
based on adequate cell culture in the future. So, one simple, expeditious, and functional
hypothesis, supported by intelligence-based medicine, consists of a screening method
using electro-biological data from natural compounds using a computerized bioresonance
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integrator, MORA Nova [118–121]. This integrator mechanism allows us to check and
describe the physiological role of natural drugs in different human systems. Thus, it is
possible to create a virtual and personalized human model from the collection of func-
tional physiological parameters from various human systems diagnosis and store it in
memory in the intelligent integrator. This human virtual model is submitted to a specific
fluid or liquid interface to evaluate the respective interference from dynamic substances
(molecules, antibodies, drugs, fluids, plants, etc.) as a therapy effect or, on the contrary,
as a toxic influence. Our preliminary in silico assays using this methodology showed
that immunological alterations correlate with the severity of manifestations of diseases
such as contagious infections, cancer, autism, hypertension, and depression, among many
others. To improve those conditions, an immune-boosting effect might be achieved by
combined biological and artificial intelligence-based treatments. With effect, it was also
verified to have a different reaction intensity depending on the leaf maturation stage.
Green leaves seem to regulate and harmonize hyperfunction, whereas yellow and brown
leaves enhance the orthopathy in hypodynamic dysfunctions. On the other hand, a mixed
effect occurs due to the combination of green and yellow/brown leaves, giving a more
balanced and corrected therapy concerning several physiological parameters when tested
in less-severe dysfunction (i.e., when unhealthy people’s deviations from healthy values are
not greater than 10 points up or down). In fact, electric conductance measurements have
evidenced C. oblonga’s relevant role in the regulation of systemic immunity that seems to
be potentiated by combined treatments of individualized electromagnetic frequencies with
phytotherapeutic activated decoctions or infusions. A deeper and statistical evaluation with
different people under specific physiological conditions and/or diseases when submitted
to treatments of C. oblonga collected in different maturation periods is suggested. Then, a
similar program is possible and pertinent to apply to the cell in vitro culture at different
pathological conditions using green, yellow, brown, or mixed leaves, combined or not with
electromagnetic frequencies from Mora Nova. Concerning this bioresonance methodology,
several deeper studies are already underway to better evaluate the properties of C. oblonga
in the therapeutic clinic setting.

5. Conclusions

Natural compounds from plants have an important role in pharmaceutical research
and may result in the discovery of effective pathway modulations. Bioactives endowed
with nutraceutical properties might act either by positive preconditioning or confer ther-
apeutic value against preexisting diseases. Regarding the mineral content of Pinhel’s
Portuguese quince leaf extract, it would be interesting to further explore the potential
of this substrate for possible therapeutic supplementation or for food fortification with
calcium, potassium, magnesium, iron, copper, manganese, and phosphorus. Furthermore,
organic analysis showed interesting results. In this study, not only the presence of phenolic
was confirmed, but as well as that of organic acids and vitamin E in biological green, yellow,
and brown Pinhel’s Portuguese quince leaves. In other natural sources such as honey
and grape seeds, cardioprotective effects have been attributed to various available agents
such as polyphenols and flavonoids [122–124]. For this, the quince leaf may be a poten-
tial source of protective agents against diseases associated with an inflammatory process.
Cardiovascular diseases are associated with diabetes, high blood pressure, atherosclero-
sis, heart inflammation, and blood clotting, all of which are physiological states derived
from oxidative stress produced by ROS [125–128]. Moreover, because of their richness in
polyphenols, with values superior to the content identified in tea leaves, derivatives from
quince leaves may be a safe and low-cost alternative to (1) hypercholesteremia treatment by
statins, (2) pharmaceutical approaches to cease or to reduce oxidative stress-induced dam-
age leading to cancer, and (3) antimicrobial therapeutics against Gram-positive bacterial
infections of airways, among others. Being a considerable source of vitamin E, namely of
the potent antioxidant and anti-inflammatory α-tocopherol, quince leaf extract is a potential
substratum for pharmaceutical, cosmetic, and food industries where it can be proposed
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(1) as a possible alternative to the production of vitamin E supplements, (2) as a source of
tocopherol esters to recover hair and skin damage and settle a healthy aging, (3) for further
drug development in pharmaceutical industry improving colloidal stability and greater
in vivo antitumor activity, and (4) as a safe food additive. Regarding FA composition, the
major compounds identified in this study were palmitic acid and linoleic acids, and given
the potential nutraceutical properties of ALA and its considerable content in the green and
brown leaf extracts, this substrate can be an alternative to flaxseed seeds and oil in ALA sup-
plements with the standing feature of an enriched protective effect of vitamin E over PUFA
stabilization in membranes. Regarding the nutraceutical properties of oleic acid, quince
leaves can also be tested as a potential source for an alternative use to metformin against
the deleterious effects of IR implicated in contemporary disorders that carry a burden on
worldwide health system costs, such as T2DM and metabolic syndromes. Nevertheless, the
optimal n-6/n-3 FA ratio found in quince leaves also shows the potential to be used as a
complement of n-3 PUFA in vegetable oils that lack the 1:1 ratio found in olive oil known
to protect from inflammatory damage in nervous and cardiovascular systems. Particularly,
yellow quince leaves represent a potential source of FA for the preservation of food such as
pork and beef meat, owing to their balanced PUFA and MUFA contents. Overall, quince
leaves demonstrated a wide range of potential for applications in the food, pharmaceutical,
and cosmetic industries. Finally, due to the current drastic and prolonged COVID-19
pandemic situation, and based on global physiological concerns, mainly cardiovascular,
pulmonary, and immunological defenses, it has already been verified by our preliminary
in silico studies with green, yellow, and brown quince leaves that it is possible to preview
an excellent supplement for a complementary therapy. So, further research is needed for a
deeper understanding of the nutraceutical power of this economical vegetable source with
great potential for industrial purposes.
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