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Potential to inhibit growth of atherosclerotic plaque
development through modulation of macrophage
neopterin/7,8-dihydroneopterin synthesis
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The rise in plasma neopterin observed with increasing severity of vascular disease is a strong indicator of the inflammatory
nature of atherosclerosis. Plasma neopterin originates as the oxidation product of 7,8-dihydroneopterin secreted by
g-interferon stimulated macrophages within atherosclerotic plaques. Neopterin is increasingly being used as a marker of
inflammation during clinical management of patients with a range of disorders including atherosclerosis. Yet the role of 7,8-
dihydroneopterin/neopterin synthesis during the inflammatory process and plaque formation remains poorly understood and
controversial. This is partially due to the unresolved role oxidants play in atherosclerosis and the opposing roles of 7,8-
dihydroneopterin/neopterin. Neopterin can act as pro-oxidant, enhancing oxidant damage and triggering apoptosis in a
number of different cell types. Neopterin appears to have some cellular signalling properties as well as being able to chelate
and enhance the reactivity of transition metal ions during Fenton reactions. In contrast, 7,8-dihydroneopterin is also a radical
scavenger, reacting with and neutralizing a range of reactive oxygen species including hypochlorite, nitric oxide and peroxyl
radicals, thus protecting lipoproteins and various cell types including macrophages. This has led to the suggestion that 7,8-
dihydroneopterin is synthesized to protect macrophages from the oxidants released during inflammation. The oxidant/
antioxidant activity observed in vitro appears to be determined both by the relative concentration of these compounds and the
specific chemistry of the in vitro system under study. How these activities might influence or modulate the development of
atherosclerotic plaque in vivo will be explored in this review.
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Introduction

Atherosclerotic plaques are sites of chronic inflammation

(Libby et al., 2002). This is clearly shown by the presence of

large numbers of immune cells including macrophages, and

various inflammatory markers within the plaque and plasma

of patients. Although much attention has been given to the

elevation of C-reactive protein in the plasma of heart disease

patients, the inflammation marker neopterin is also sig-

nificantly elevated in patients with vascular disease (Tatzber

et al., 1991; Schumacher et al., 1992; Rudzite et al., 2005).

Neopterin is synthesized and released from g-interferon

activated macrophages as part of the inflammation process.

Neopterin has been investigated as a marker of immune cell

activation in a wide range of diseases as it is relatively easy to

analyse by high-performance liquid chromatography (HPLC)

and is generated by one of the key inflammatory cells, the

macrophage, during inflammation.

The macrophage is considered to be the key cell in

the development and growth of atherosclerotic plaques

(Carpenter et al., 1995; Steinberg, 1995). Both fatty streaks

and advance plaques are rich in macrophages. Macrophage

cells release a range of proteolytic and oxidizing agents

including superoxide, hydrogen peroxide, lipid peroxides,

lipoxygenases and possibly hypochlorite (Ylaherttuala et al.,

1989; Schewe and Kuhn, 1991; Chisolm et al., 1999). All

these agents have been shown in vitro to alter the low-density

lipoprotein (LDL) found within the tissue bed of the intima

(innermost layer of the artery wall) to oxidized LDL (oxLDL).
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OxLDL is readily taken up by macrophages via scavenger

receptors in a relatively non-regulated process. The uptake

of oxLDL causes the macrophages to differentiate into

cholesterol-loaded macrophages often referred to as ‘foam

cells’ due to their foamy appearance (Goldstein et al., 1979;

Hoff et al., 1989; Steinbrecher et al., 1989). A number of the

oxidized fatty acids within oxLDL are chemotactic to

monocytes while the oxysterols and fatty acid peroxides

are toxic to macrophages, fibroblasts, smooth muscle cells

and endothelium, all of which make up advanced plaques

(Lassila, 1993; Hegyi et al., 1996). The death and lysis of

all these cells, especially lipid-loaded macrophages, results

in the formation of a lipid-rich necrotic core region within

atherosclerotic plaque. Atherosclerotic plaques containing

lipid-rich necrotic cores are prone to rupture and thrombus

formation (Van Der Wal and Becker, 1999). The finding that

plasma neopterin levels increase with atherosclerotic plaque

formation shows a direct link between macrophage activa-

tion and plaque development.

This oxidative model of heart disease has been heavily

criticized in recent years due to the failure of various

antioxidant intervention trials to demonstrate a significant

level of protection. This criticism ignores the fact that

ascorbate and tocopherol levels are tightly controlled in vivo

as both are potent pro-oxidants in elevated concentrations

(Bowry and Stocker, 1993; Clement et al., 2001). Therefore,

neither are good therapeutic agents from a pharmacological

point of view. The criticism also ignores the fact that

oxidized lipids and proteins are both found within plaques

and these agents have reasonably well-defined inflammatory

effects on cells (Carpenter et al., 1995; Woods et al., 2003).

LDL oxidation may not initiate plaque formation, but its

presence will significantly and detrimentally affect the

functioning of cells within the artery wall. The rise of C-

reactive protein and neopterin clearly show atherosclerosis

has a significant inflammatory component. It is therefore

possible that agents which alter this inflammatory process

will slow or prevent plaque growth, or the formation of more

complex plaques. In vitro both neopterin and its reduced

form 7,8-dihydroneopterin have been shown to have

significant effects on oxLDL formation and cell death.

Unlike ascorbate, tocopherol or dietary flavonoids, neopterin

and 7,8-dihydroneopterin are generated within the plaque

and therefore do not need to be delivered to the site of

artherogenesis.

Neopterin and 7,8-dihydroneopterin synthesis

Neopterin is the oxidized product of 7,8-dihydroneopterin, a

pterin synthesized by primate macrophages when stimulated

with g-interferon (Muller et al., 1991; Wachter et al., 1992).

GTP-cyclohydrolase is one of the many enzymes upregulated

by g-interferon. The enzyme catalyses the breakdown of GTP

to 7,8-dihydroneopterin triphosphate. In primate macro-

phages, low levels of the enzyme 6-pyruvoyltetrahydropterin

synthetase causes a build up of 7,8-dihydroneopterin triphos-

phate which is then released as 7,8-dihydroneopterin due to

the action of intracellular phosphatases (Schoedon et al.,

1987). 7,8-Dihydroneopterin diffuses out of the activated

macrophages into the intracellular spaces and finally the

plasma (Figure 1). Some of the 7,8-dihydroneopterin is

oxidized to the highly fluorescent neopterin. The release of

7,8-dihydroneopterin and neopterin is specific to mono-

cytes, macrophages and dendritic cells (Wirleitner et al.,

2002) although kidney epithelial cells have also been

observed to release neopterin (Moutabarrik et al., 1994).

Primate macrophages (including human) are unique in

this response, as non-primate macrophages convert 7,8-

dihydroneopterin-triphosphate into inducible nitric oxide

synthase (iNOS) cofactor 5,6,7,8-tetrahydrobiopterin. As a

result primate macrophages, unlike mouse macrophages, do

not generate significant levels of nitric oxide when stimu-

lated with interferon but release the highly fluorescent

neopterin.

Interestingly, the main reaction generating neopterin from

7,8-dihydroneopterin is oxidation by hypohalous acids

such as HOCl (Widner et al., 2000). Proton abstraction from

carbon-7 and nitrogen-8 of 7,8-dihydroneopterin generates

neopterin. Neutrophils and possibly macrophages release

significant amounts of HOCl during inflammation (Schrauf-

statter et al., 1990) suggesting much of the neopterin

measured in plasma has come from sites of inflammation

where HOCl is being released. The presence of neopterin

within plasma is further indication of the inflammatory

origin of these pterins.

Clinical measurement

The central role of g-interferon communicating between

T cells and macrophages with the subsequent release of

neopterin make plasma neopterin measurements an ideal

method for gauging immune activation within a patient

(Wachter et al., 1989, 1992). The injection of g-interferon

causes a rapid and sustained rise in plasma neopterin levels

(Muller et al., 1991). Neopterin is easily measured in plasma

and urine by HPLC due to its extremely high fluorescence

Figure 1 g-Interferon stimulation of macrophages causes the
enzymatic breakdown of intracellular GTP to dihydroneopterin
which can diffuse from the cell and either be oxidized to the high
fluorescent neopterin by HOCl or to 7,8-dihydroxanthopterin by
reactive oxygen species.
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(Werner et al., 1987; Rippin, 1992) although many clinical

laboratories also use immuno-based methods such as

enzyme-linked immunosorbent assay to measure neopterin

(Westermann et al., 2000).

In response to infection, plasma neopterin levels rise

rapidly in parallel with C-reactive protein levels, well before

a patient becomes sero-positive. Measurements of plasma

neopterin levels are used as a clinical tool to assess efficacy

of treatments for a range of infections including malaria

(Reibnegger et al., 1984; Awandare et al., 2006), tuberculosis

(Fuchs et al., 1984; Yuksekol et al., 2003) and human

immunodeficiency virus (Fuchs et al., 1988) to name a few.

As elevated neopterin levels appear to occur with most

inflammatory conditions, some hospitals measure plasma neop-

terin as a primary screen for blood donations (Strohmaier

et al., 1996). The monitoring of plasma neopterin has also

been used in the study and management of cancer

(Reibnegger et al., 1991), autoimmune disease (Reibnegger

et al., 1986; Schroecksnadel et al., 2003) and transplant

patients (Margreiter et al., 1983; Yokoyama et al., 2002)

where the rise in plasma or urine neopterin levels can give

clinicians adequate warning of allograft rejection enabling

them to alter immunosuppressant treatment.

Although plasma neopterin is not generally used in the

management of vascular disease, there is a growing amount

of knowledge on its value. Serum neopterin is elevated in

patients with unstable angina and acute myocardial infarc-

tion (Tatzber et al., 1991; Schumacher et al., 1992, 1997).

There is also a strong correlation between serum neopterin

and the thrombolysis in myocardial infarction risk score in

patients with unstable angina, or acute myocardial infarc-

tion (Johnston et al., 2006). The anti-inflammatory affects of

HMG-CoA inhibiting statin drugs is also demonstrated by

the lowering of serum neopterin levels (Neurauter et al.,

2003; Walter et al., 2003).

Surprisingly, although the Web of Science lists over 2000

references relating to neopterin, the exact role of neopterin

synthesis and release by monocyte-derived cells is not

understood. It has been suggested that neopterin and 7,8-

dihydroneopterin are synthesized as pro-oxidants, enhan-

cing oxidant production and cell death in combination with

tumour necrosis factor (TNF). In contrast, 7,8-dihydroneop-

terin has also been reported to act as an antioxidant,

protecting biomolecules and macrophages from oxidants

released during inflammation. Neopterin release has also

been suggested to provide a feedback to T cells on the level of

immune activation occurring. There is good experimental

evidence supporting all these mechanisms and all have the

potential to alter atherosclerotic plaque development.

Inhibition of LDL oxidation

Like many reducing agents, 7,8-dihydroneopterin rapidly

reacts with free radical and oxidizing species. This was first

noted with chemiluminescence-based assays where reduced

pterins, including 7,8-dihydroneopterin, were found to

inhibit the luminescence signal from superoxide and hydro-

gen peroxide (Shen, 1994). When 7,8-dihydroneopterin was

sent to Esterbauer’s laboratory in Graz, Austria, it was soon

found that 7,8-dihydroneopterin was a potent inhibitor of

metal ion and aqueous peroxyl radical (2,20-azobis(amidino-

propane) dihydrochloride (AAPH))-mediated LDL oxidation

(Gieseg et al., 1995). A few years earlier, tetrahydroneopterin

had been shown to inhibit xanthine/xanthine oxidase and

phorbol myristate acetate stimulated macrophage super-

oxide production (Kojima et al., 1992) and inhibiting linoleic

acid oxidation, so in hindsight it was not a surprising

finding. What was unexpected was that 7,8-dihydroneopterin

could out-compete the LDL tocopherol (vitamin E) for the

primary propagating lipid radical. 7,8-Dihydroneopterin had

a high reaction rate with peroxyl radicals, but this did not

explain how a water-soluble compound could react with the

lipid radicals within the LDL particle (Oettl et al., 1997). This

mechanism remains unresolved but it has been suggested

that 7,8-dihydroneopterin may bind or become compart-

mentalized on the LDL (Gieseg et al., 1995, 2003). Studies on

the inhibition of peroxynitrite oxidation of LDL by 7,8-

dihydroneopterin suggested that 7,8-dihydroneopterin

might diffuse into the phospholipid layer of the LDL particle

(Herpfer et al., 2002). With both peroxynitrite and copper-

mediated LDL oxidation, the protective effect of 7,8-

dihydroneopterin was enhanced by preincubation before

addition of the oxidant. Nitric oxide and peroxynitrite have

been implicated in modification of LDL within plaques,

especially the nitration of some amino-acid side chains like

tyrosine which is effectively blocked by 7,8-dihydroneopterin

(Widner et al., 1998; Oettl et al., 2004). Protein hydroper-

oxides and their decay product carbonyls make a large and

significant contribution to the oxidative damage occurring

on the LDL particle (Yan et al., 1997; Gieseg et al., 2003). This

protein oxidation on the ApoB100 moiety of the LDL particle

is effectively inhibited by 7,8-dihydroneopterin through

scavenging of lipid peroxyl radicals.

Although oxidative levels of transition metals and peroxyl

radicals appear to exist within atherosclerotic plaques,

copper ion and AAPH-peroxyl radical-mediated LDL oxida-

tion appears relatively artificial when carried out in dilute

buffers. There is evidence that ceruloplasmin-bound copper

ions alone maybe able to oxidize LDL within atherosclerotic

plaques (Shukla et al., 2006). Macrophages and other cells

are considered by many to be the key mediators of oxLDL

formation within atherosclerotic plaques. In vitro cell-

mediated oxLDL formation is either superoxide dependent

or independent depending on the cell type and condition

used (Jessup et al., 1993; Aviram et al., 1996). With

monocyte-like THP-1 cells and human monocyte-derived

macrophages (HMDM), oxLDL formation is totally inhibited

by micromolar concentrations of 7,8-dihydroneopterin

(Gieseg et al., 2003; Gieseg and Cato, 2003). As THP-1 cell-

mediated oxidation is independent of superoxide formation,

it is likely inhibition is due to scavenging the lipid peroxyl

radicals in the LDL.

However, 7,8-dihydroneopterin can also accelerate LDL

oxidation if added after initiation of the oxidation process

due to its role as a reducing agent (Herpfer et al., 2002;

Greilberger et al., 2004). 7,8-Dihydroneopterin reduces

oxidized metal ions, which increases the pool of reduced

copper ions available to react with polyunsaturated lipids

and peroxyl radicals within the LDL. The same effect was
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reported in phosphate-buffered solution containing low

levels of iron where 7,8-dihydroneopterin enhanced the rate

of hydroxyl radical generation (Oettl et al., 1999). So like

tocopherol, under the right conditions, 7,8-dihydroneopterin

may actually accelerate oxLDL formation within plaque

(Bowry et al., 1992; Niu et al., 1999).

It is interesting to note that 7,8-dihydroneopterin is not

the only compound generated by g-interferon-stimulated

macrophages, which can inhibit LDL oxidation. The enzyme

indoleamine 2,3-dioxygenase (IDO) is also upregulated by

interferon stimulation. IDO catalyses the degradation of the

amino-acid tryptophan to a range of products including

kynurenine and 3-hydroxyanthranilic acid (3HAA) (Werner-

Felmayer et al., 1990). Like 7,8-dihydroneopterin, 3HAA

inhibits copper and AAPH-peroxyl radical-mediated LDL

oxidation at micromolar concentrations. At high tryptophan

concentrations, interferon-stimulated macrophages gener-

ated enough 3HAA to inhibit macrophage-mediated LDL

oxidation (Christen et al., 1994; Thomas et al., 1996).

In vitro, interferon stimulation of macrophages fails to

generate enough 7,8-dihydroneopterin to inhibit the LDL

oxidation. Tissue culture levels are in the low nanomolar

range although can be elevated to over 100 nM with the

addition of either colony-stimulation factor (GM-CSF),

phorbal esters, or IL-6 to the interferon-containing media.

Yet our studies have shown the level of neopterin within

atherosclerotic plaques is in the micromolar range (Figure 2).

This suggests that additional factors are involved within

plaques to generate these elevated levels of neopterin. The

fact that the plaques appear to be the source of serum

neopterin also suggests a high level of 7,8-dihydroneopterin

synthesis within the plaque.

On this basis 7,8-dihydroneopterin and 3HAA, generated

by the interferon-stimulated macrophages should inhibit

plaque formation and LDL oxidation. Yet oxidized lipids and

proteins can be detected within atherosclerotic plaques and

high levels of neopterin. This suggests there is some sort of

balance between oxidant and antioxidant, which becomes

disturbed in regions of the artery wall. The correction of this

balance through the control of macrophage antioxidant/

oxidant generation may slow or inhibit plaque growth.

Protection from cellular toxicity

Sites of inflammation, including atherosclerotic plaques,

contain a range of reactive oxidants which can trigger

apoptotic and necrotic death within cells (Martinet and

Kockx, 2001). OxLDL is particularly cytotoxic to a range of

cells including macrophages (Clare et al., 1995; Marchant

et al., 1995). The finding that reduced pterins such as 7,8-

dihydroneopterin can protect LDL and other biomolecules

leads to the hypothesis that 7,8-dihydroneopterin was

synthesized by interferon-stimulated macrophages to protect

these antigen-presenting cells from the oxidants encoun-

tered within an inflammatory site (Schroder et al., 1987;

Kojima et al., 1992; Gieseg et al., 1995, 2002). The fact that

3HAA is also generated by macrophages during inflamma-

tion further supports this hypothesis (Christen et al., 1990;

Werner-Felmayer et al., 1990). Micromolar concentrations of

7,8-dihydroneopterin do inhibit cellular damage to red

blood cells and the monocyte like human-derived U937

cells, from a range of oxidants including hydrogen peroxide,

hypochlorite, aqueous peroxyl and direct plasma membrane

oxidation by ferrous ions (Gieseg et al., 2000, 2001a, b).

There is evidence that all these oxidants occur within sites of

inflammation and atherosclerotic plaques (Brown et al.,

1997; Leeuwenburgh et al., 1997; Hazen et al., 2000; Stadler

et al., 2004).

OxLDL-induced necrosis in monocyte like U937 cells is

inhibited by micromolar concentrations of 7,8-dihydroneop-

terin (Baird et al., 2005). The mechanism appears to involve

the protection of the intracellular glutathione pool thus

maintaining the redox status of the cell. The same mechan-

ism also appears to occur with 7,8-dihydroneopterin protec-

tion of HMDM cells where necrosis is triggered by the loss of

glutathione by oxLDL exposure (unpublished data).

Surprisingly, 7,8-dihydroneopterin does not protect THP-1

cells, another human-derived monocyte-like cell line, from
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Figure 2 Concentration of neopterin across the length of a carotid
atherosclerotic plaque. The plaque was removed via carotid
endarterectomy from the left common carotid artery. The plaque
was sectioned longitudinally into six slices, 2–3 mm thick, from the
proximal to the distal end (a). Sections 1–2 represent the pre-
bifurcation region, sections 3 and 5 the bifurcation, section 4 the
secondary branch and section 6 the post-bifurcation of the primary
branch. The sections were homogenized and neopterin levels
measured using HPLC (high-performance liquid chromatography)
with fluorescence detection (b). The plaque sample was highly
calcified and caused a 90% stenosis in the artery.
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oxLDL or AAPH-peroxyl radical-induced cell death (Baird

et al., 2005). Although 7,8-dihydroneopterin protects

HMDM cells from oxLDL, it provides little or no protection

against AAPH-peroxyl radicals (Firth et al., 2007). Serum

albumin oxidation by AAPH-peroxyl radicals is completely

inhibited by 7,8-dihydroneopterin through scavenging of

aqueous peroxyl radicals (Platt and Gieseg, 2003), yet with

THP-1 cells and HMDM cells this inhibition did not appear

to occur. This suggests that 7,8-dihydroneopterin protects

cells through either a specific intracellular radical scavenger

mechanism, or by acting as a form of signal molecule, which

triggers various anti-necrotic processes within the cell.

Although neopterin is described as the oxidation product

of 7,8-dihydroneopterin, the scavenging of hydrogen per-

oxide, superoxide and peroxyl radicals generates 7,8-dihydro-

xanthopterin (Gieseg et al., 2002). This compound forms

through the loss of the trihydroxypropyl side chain attached

to carbon-6 of 7,8-dihydroneopterin (Figure 1). The reaction

appears to occur through a retro–aldol reaction initiated by

the abstraction of an atom of hydrogen from the middle

carbon hydroxyl group on the 7,8-dihydroneopterin side

chain. Unfortunately, 7,8-dihydroxanthopterin is not fluor-

escent and is difficult to detect in plasma. Currently, the only

mechanism to describe the generation of neopterin from 7,8-

dihydroneopterin in vivo is the reaction with hypochlorite.

Hypochlorite is released from activated neutrophils and

possibly macrophages during inflammation (Chisolm et al.,

1999). This highly reactive oxidant has been implicated in

the modification of LDL within plaques and killing cells

(Daugherty et al., 1994; Fabjan et al., 2001; Whiteman et al.,

2005). 7,8-Dihydroneopterin protects cells from hypochlo-

rite by rapidly reacting with it (Gieseg et al., 2001a, b). 7,8-

Dihydroneopterin also appears to inactivate myeloperoxi-

dase, the enzyme responsible for generating hypochlorite in

vivo (Widner et al., 2000; Razumovitch et al., 2004).

Pro-oxidant effects and cell signalling

With macrophages, neopterin has no apparent effect on cell

survival whereas 7,8-dihydroneopterin protects HMDM and

U37 cells from oxLDL and some oxidants (Gieseg et al., 2002;

Baird et al., 2005). At the extremely high concentration of

5 mM, 7,8-dihydroneopterin causes sufficient oxidative stress

to kill monocyte-like U937 cells (Baier-Bitterlich et al., 1995),

neuronal NT2/HNT cells (Spottl et al., 2000) and the rat

pheochromocytoma cell line PC12 (Enzinger et al., 2002b)

but only in the presence of TNF-a. Loss of mitochondrial

dehydrogenase activity only occurs in ovarian carcinoma cell

lines at 7,8-dihydroneopterin concentrations of 1 mM and

higher (Rieder et al., 2006). Likewise, with Jurkart T cells, 7,8-

dihydroneopterin only induces apoptosis above 1 mM (Baier-

Bitterlich et al., 1996; Wirleitner et al., 1998, 2001) via the

redox-sensitive Bcl-2 pathway (Enzinger et al., 2002a). All

these mechanisms seem to involve the direct generation of

oxidants within the tissue culture media due to the reducing

activity of 7,8-dihydroneopterin as first observed in chemi-

luminescence assays (Oettl et al., 1999). 7,8-Dihydroneopter-

in, like ascorbate (Buettner, 1988), may cause the reduction

of redox-active metal ions within the buffers, which will

increase the formation of various reactive oxygen species.

This oxidant generation only becomes significant at extre-

mely high millimolar 7,8-dihydroneopterin concentrations

and in protein-free media. Proteins are very effective radical

scavengers so the high concentration of soluble protein

within plaque may make these reactions unlikely though

still possible.

Neopterin had no effect on cell death in these experiments

but did cause apoptosis at lower micromolar concentrations

with vascular smooth muscle (Schobersterger et al., 1996).

The combination of interferon, TNF-a and between 10 and

100 mM neopterin caused iNOS activation and enhanced

oxidative stress-triggering apoptosis (Hoffmann et al., 1996,

1998). The effect was also seen with 100 mM 7,8-dihydro-

neopterin (Schobersterger et al., 1996). This suggests that

neopterin generated from oxidation of 7,8-dihydroneopterin

during inflammation could trigger the death of the plaque

smooth muscle cells, especially if there was sufficient levels

of TNF-a.

Intracellular calcium in human-derived monocyte-like

THP-1 cells is affected by micromolar levels of both

neopterin and 7,8-dihydroneopterin and effectively inhibits

ATP-induced calcium release from alveolar epithelial cells

(Woll et al., 1993; Hoffmann et al., 2002). At similar

concentrations, neopterin was also reported to cause cardiac

contractile dysfunction in isolated perfused rat hearts

(Margreiter et al., 2000; Balogh et al., 2005). The mechanism

proposed behind this activity was oxidative stress but the

reactive chemistry, and low oxidant yield observed with

neopterin suggests a more direct mechanism in the cells

and the intracellular calcium pools. The study clearly

shows infusion of micromolar levels of pterin may have

adverse clinical outcomes. The capacity of neopterin and

7,8-dihydroneopterin to cause calcium release may be

important in plaque development where the formation of

calcium deposits represents a serious deterioration in patient

prognosis due to the increasing complexity of the plaque

tissue.

Atherosclerotic plaques

From the current literature, a hypothetical model can be

drawn where interferon-stimulated macrophages release

7,8-dihydroneopterin to inhibit oxidation and cell death by

scavenging oxidants generated by metal ions and superoxide

released by cells. The 7,8-dihydroneopterin scavenges the

neutrophil-released hypochlorite-producing neopterin,

which inhibits further hypochlorite release via inhibition

of myeloperoxidase. The neopterin also stimulates cell death

in combination with TNF-a released by the various immune

cells present. In experimental models of sepsis where healthy

volunteers are infused with endotoxin, the peak in neopterin

levels occurs 20 h after the peak in TNF-a (Fijen et al., 2000)

showing that 7,8-dihydroneopterin activity occurs late in the

inflammatory process. But what happens during the chronic

inflammatory process of atherosclerosis? Low levels of

7,8-dihydroneopterin and possibly 3HAA would shift the

redox balance to oxidation causing oxLDL formation and

cell necrosis/apoptosis. High hypochlorite formation would
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generate elevated neopterin levels shutting off myeloper-

oxidase activity and possibly triggering neutrophil apop-

tosis. However, excess 7,8-dihydroneopterin synthesis with

low levels of hypochlorite would give a high localized

7,8-dihydroneopterin concentration which would enhance

the cell stability. Manipulation of this system could prevent

the growth of plaques and their development to complex,

unstable plaques through inhibiting oxLDL formation and

cell apoptosis/necrosis.

The hypothesis that 7,8-dihydroneopterin is generated as

an antioxidant also suggests a reason for the development of

this response. The enzyme IDO which is also upregulated by

g-interferon is rapidly inhibited by nitric oxide (Thomas

et al., 1994). So it is possible that primate macrophages have

evolved to suppress nitric oxide production by macrophages

to preserve the activity of IDO. The result of this is that

interferon stimulation of macrophages causes the synthesis

of two potent antioxidants, 3HAA and 7,8-dihydroneopterin.

This combination of antioxidants may allow primate

macrophages to survive longer within sites of inflammation

although this has yet to be shown. The down side of

this mechanism may mean human macrophages survive

longer within atherosclerotic plaques so enhancing plaque

formation.

The key question is then, what is the in vivo concentration

of neopterin and 7,8-dihydroneopterin? The in vitro studies

clearly show that both 7,8-dihydroneopterin and neopterin

could have significant effects on plaque growth. Our own

studies on atherosclerotic plaques have shown that neopterin

levels can be as high as 2.5 mM within some sections of the

plaque (Figure 2). The labile nature of 7,8-dihydroneopterin

makes it difficult to accurately measure 7,8-dihydroneopterin

levels within plaques but it is possible that the concentra-

tion greatly exceeds the levels of neopterin measured. We

feel it is likely that 7,8-dihydroneopterin/neopterin is being

generated within plaques at concentrations that influence

LDL oxidation and cell survival. The literature also suggests

that where hypochlorite is oxidizing 7,8-dihydroneopterin

to neopterin, the level of neopterin will be sufficiently high

to promote cell death and plaque instability, especially

where elevated levels of TNF-a occur. In support of this

hypothesis, elevated levels of neopterin have been observed

within unstable plaques (Garcia-Moll et al., 2000a, b) and

some correlation between plasma neopterin and TNF-a has

been reported in atherosclerosis patients (Anwaar et al.,

1998). Also the lowering of neopterin levels with statin

treatment is associated with increased patient survival

(Neurauter et al., 2003; Walter et al., 2003). The control of

the neopterin/7,8-dihydroneopterin system through specific

anti-inflammatory agents may prevent the formation of

complex plaques. g-Interferon, GM-CSF and 1,25-dihydroxy-

vitamin D3 all increase 7,8-dihydroneopterin synthesis

within macrophage cells (Schwende et al., 1996) while

histamine inhibits 7,8-dihydroneopterin synthesis (Gruber

et al., 2000). The difference in concentrations we have

measured in plaques and those observed in tissue culture

suggests there are other agents, which promote 7,8-dihydro-

neopterin/neopterin synthesis which may help control

oxidative stress within plaques. The early observation that

treatment of hepatitis C patients with g-interferon decreased

the level of serum lipid peroxides suggests that modulation

of the 7,8-dihydroneopterin/neopterin system to the benefit

of the patient might be possible (Higuras et al., 1994). To

achieve this, a greater understanding of the plaque concen-

tration of 7,8-dihydroneopterin and how this relates to the

other antioxidants and oxidants present is required. The role

of neopterin and TNF-a induced death within plaques also

needs to be further quantified.

Conclusion

In vitro studies have demonstrated that neopterin and 7,8-

dihydroneopterin could alter the redox balance within

atherosclerotic plaques. 7,8-Dihydroneopterin promotes cell

stability while inhibiting oxidative damage. Neopterin

promotes cell apoptosis and changes in intracellular calcium.

The balance between these two pterins in vivo is dependent

on the rate of pterin synthesis in the macrophage and the

level of hypochlorite and other oxidants within the plaque.

Anti-inflammatory agents which promote 7,8-dihydroneop-

terin synthesis while inhibiting hypochlorite production

may move the plaque oxidative environment to a less

oxidative state so limiting oxLDL formation and cell death.
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