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Potential use of hyperspectral data to
classify forest tree species
Tomasz Hycza* , Krzysztof Stereńczak and Radomir Bałazy

Abstract

Background: Remote sensing techniques and data are becoming increasingly popular in forest management, e.g.

for change detection and health condition analysis. Tree species recognition is a fundamental issue in taking forest

inventories, especially in carbon budget modelling. Hyperspectral imagery provides an accurate classification results

for large areas based on a relatively small amount of training data.

Results: A hyperspectral image of a forest stand in north-eastern Poland taken using an AISA (Airborne Imaging

Spectrometer for Application) Eagle camera was transformed to extract the most valuable spectral differences and

was classified into seven tree types (birch, European beech, oak, hornbeam, European larch, Scots pine, and Norway

spruce) using nine classification algorithms. The highest overall accuracy and kappa coefficient were 90.3% and 0.9

respectively using three minimum noise fraction bands and maximum likelihood classifier.

Conclusions: Hyperspectral imaging of forests can be used to classify major forest tree species with a good degree

of accuracy. It is time-efficient and user-friendly; however, the data and software required means that this approach

is still expensive at present.
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Background

Remote sensing is the science of acquiring information

about objects or areas from a distance, typically from

aircraft or satellites.

In tree canopies, the amount of radiation reflected in

regions of different wavelengths is related to the chem-

ical and physical properties of single trees as well as bi-

otic and abiotic characteristics of an entire stand.

Among the chemical properties of single trees are the

levels of lignin, cellulose, nitrogen, chlorophyll, caroten-

oids, anthocyanins (Asner 1998; Clark et al. 2005; Grant

1987; Clark and Roberts 2012; Ustin et al. 2009), and

water (Asner 1998, Gao and Hoetz 1990, Zarco-Tejada

et al. 2003, Lee et al. 2010); these affect the health status

of the trees (Waser et al. 2014). Among the physical

properties of single trees are leaf and wood morphology,

transmission characteristics (Asner 1998; Clark et al.

2005; Grant 1987; Clark and Roberts 2012; Ustin et al.

2009), vertical leaf area density (Treuhaft et al. 2002),

and age (Ghiyamat et al. 2013; Roberts et al. 1997;

Einzmann et al. 2014). The biotic characteristics of the

whole stands include leaf and branch density, angular

distribution, clumping, tree size compared to neighbours

(Leckie et al. 2005, Korpela et al. 2011), and lichens,

mosses, herbaceous vegetation, lianas, or other epiphytes

(Clark and Roberts 2012). The abiotic characteristics of

whole stands include topography, soil type (and its influ-

ence), moisture, and microclimate (Portigal et al. 1997).

It is hardly feasible to identify species-specific absorp-

tion features in the visible and near-infrared (VIS-NIR)

spectral region; however, this is much easier in the

shortwave infrared (SWIR) spectral region (Asner 1998).

Salisbury (1986) presented leaf-level thermal infrared

(TIR) spectra of four species and identified well-defined

and notably different spectral features. Salisbury and

Milton (1998) obtained close-range thermal reflectance

measurements for several other species and reported dif-

ferences in the spectra in most of them. Ribeiro da Luz

and Crowley (2007) found that TIR spectra were associ-

ated with several chemical and structural compounds of

plants such as cellulose, silica, xylan, and oleanolic acid

levels, and reported that TIR signals were much more

species-specific than the reflectance signals observed in
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the visible, shortwave, and infrared regions. Many plants

develop chemical and aromatic compounds that might

help define species-specific middle infrared and TIR sig-

natures (Ribeiro da Luz and Crowley 2007; Ullah et al.

2012).

Identifying tree species using remote sensing data is use-

ful in the context of detecting changes (Adams et al. 1995)

and managing water stress (Cho et al. 2010; Fassnacht et al.

2016). It helps in the development of sustainable manage-

ment policies (Dalponte et al. 2012, Jones et al. 2010,

Plourde et al. 2007, Heinzel and Koch 2012, Kennedy and

Southwood 1984) and performance of forest resource (Van

Aardt and Wynne 2007) and single tree inventories (Kor-

pela and Tokola 2006; Immitzer et al. 2015; Tompalski et

al. 2014). It enables the assessment and monitoring of bio-

diversity, species compositions (Shang and Chisholm 2014;

Wulder et al. 2006), wildlife habitats (Jansson and Angel-

stam 1999; Pausas et al. 1997), invasive species migrations

(Chambers et al. 2013; Van Ewijk et al. 2014), and in the

understanding of tree ecology (Chambers et al. 2013, Van

Ewijk et al. 2014). It can also be applied to the estimation of

insect abundance in forests (Kennedy and Southwood

1984) and the development of species-specific growth and

yield models as well as allometric equations (Ørka et al.

2013; Vauhkonen et al. 2014).

Proper forest management and planning based on accur-

ate distinction of tree species requires highly accurate clas-

sification maps that cannot yet be produced using the

multispectral images typically acquired in four to eight wide

spectral bands. Hyperspectral data are more useful for clas-

sifying tree species: the only condition is that the species

must appear significantly different in the spectral reflect-

ance measured in dozens of narrow spectral intervals (Clark

et al. 2005, Heinzel and Koch 2012, Carlson et al. 2010,

Dalponte et al. 2010, Dalponte et al. 2011, Stavrakoudis et

al. 2014, Farreira et al. 2016). The reflectance of individual

tree species is dependent on numerous factors, and the dif-

ferences are sometimes too subtle to be observed using

wide, multispectral bands (Dalponte et al. 2009; Mickelson

et al. 1998). Since the technology was released, the cost of

hyperspectral images has decreased gradually. It is expected

that it will be soon possible to use hyperspectral imagery to

study forest ecology and develop management and planning

techniques (Innes and Koch 1998; Dalponte et al. 2008;

Voss and Sugumaran 2008).

However, hyperspectral images contain a huge amount

of auto-correlated data. Principal component analysis

(PCA) is often used to solve this problem (Zagajewski

2010; Olesiuk and Zagajewski 2008; Bartold 2008). This

widely known technique creates a set of artificial bands

in which each band is less informative than the previous

one. The minimum noise fraction (MNF) transformation

works in a similar manner but reduces the noise first.

More detailed information on these transformations is

provided later in this paper. This method (MNF) was used

by Zagajewski (2010) to classify vegetation in the Tatra

Mountains, by Olesiuk and Zagajewski (2008) to classify

the land cover of the Bystrzanka river drainage basin, and

by Bartold (2008), Dian et al. (2014), and Han et al. (2004)

to classify forest tree species. Han et al. (2004) compared

the results with those obtained by canonical transform-

ation, while Harsanyi (1994) used the ‘orthogonal sub-

space projection’ method. This method eliminates the

response from non-targets while applying a filter to match

desired targets in the data, and is most efficient and effect-

ive when the target signatures are distinct.

Algorithms such as the Pixel Purity Index (PPI)

(Zagajewski 2010, Olesiuk and Zagajewski 2008, Bartold

2008) or linear spectral unmixing (LSU), which produces

‘maps of abundance’ in which each pixel is assigned to

more than one class with a specified probability level (Luo

and Chanussot 2009; Villa et al. 2013; Li et al. 2014), can

be used to extract the pixels most useful for the classifica-

tion (endmembers). Schull et al. (2010) also used pure

spectral pixels to classify forests in the north-eastern USA

and achieved an overall accuracy of 92%.

The ability to successfully classify forest tree species

using hyperspectral data was proven for forests in the

equatorial zone (Clark et al. 2005; Mickelson et al. 1998;

Peerbhay et al. 2013; Goodwin et al. 2005), when seven

tree species were classified using linear discriminant ana-

lysis (LDA), maximum likelihood (ML), and spectral angle

mapping (SAM) methods, with accuracies of 80 to 100%.

The hyperspectral data were also used in the tropical and

sub-tropical zones (Dalponte et al. 2008, Dian et al. 2014,

Dennison and Roberts 2003, Lucas et al. 2008, Yang et al.

2009, Gong et al. 1997, Van Aarst and Norris-Rogers

2008, Bellanti et al. 2016) with accuracies of over 90% and

in the temperate zone (Zagajewski 2010; Olesiuk and

Zagajewski 2008; Bartold 2008; Dian et al. 2014; Martin et

al. 1998; Dalponte et al. 2013; Dmitriev 2014; Tarabalka

2010; Richter et al. 2016) with accuracies of 74 to 93%.

Classification results may be improved using hyper-

spectral data with light detection and ranging (LIDAR)

data (Alonzo et al. 2014). For the temperate and

sub-tropical (Hainzel and Koch 2012; Dalponte et al.

2008; Caiyun and Fang 2012) zones, the accuracies were

over 80%. Passive optical systems, particularly hyper-

spectral ones, generally showed higher potential for tree

species classification than active synthetic aperture radar

(SAR) or LIDAR sensor systems. However, LIDAR data

have proven suitable for regions with a low number of

species (Fassnacht et al. 2016). Forest stands classified

with the highest accuracy in the European temperate

zone include mostly homogenous ones, dominated by

Scots pine (Pinus sylvestris L.) and Norway spruce (Picea

abies L.). Of the broadleaved species, European beech

(Fagus sylvatica L.) and oak (Quercus spp. L.) are
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classified with the highest accuracy, but these classifica-

tions have lower accuracies than those of coniferous spe-

cies (Wietecha et al. 2017).

The aim of this study was to evaluate the accuracy

of tree species classification methods using a hyper-

spectral Airborne Imaging Spectrometer for Applica-

tion (AISA) Eagle image for a forested area in

northern Poland. The following algorithms were eval-

uated in the study: PCA and MNF transformation (to

reduce noise and auto-correlated data), parallelepiped

(P), minimum distance (MD1), Mahalanobis distance

(MD2), ML, SAM, spectral information divergence

(SID), neural net (NN), and support vector machine

(SVM) to perform the supervised classification). The

results were evaluated using a set of 300 test pixels,

deployed randomly across the study/sample plots area,

to achieve the most reliable assessment of accuracy.

Materials and methods

Study area

The survey was performed in the Miłomłyn Forest District

in the north-eastern Poland (Fig. 1). Background

information about this area was obtained from www.mi-

lomlyn.olsztyn.lasy.gov.pl/zasoby-lesne. The size of the

area and relative tree composition is given in Table 1 and

detailed information is listed in Appendix 1. The individ-

ual compositions of Scots pine (Pinus sylvestris L.) and

European larch (Larix decidua L.) were not provided. The

study area was a 15 km2 (10 km long and 1.5 km wide)

rectangle including three lakes: Szeląg Wielki, Tabórz

(southern part), and Długie (northern part) (Fig. 2.).

A local survey was performed on 9.85 ha of the

Miłomłyn Forest District using a series of circular test

plots (radius: 12.62 m; area: 500.34 m2) in March 2014.

The sample plots were surveyed individually to achieve

the highest level of diversity for various forest character-

istics (e.g. age, species, forest type), where the influence

of slope was minimal (Fig. 2). We corrected for the in-

fluence of slope on the tree-position measurements.

Each tree with a diameter at breast height (dbh) over 5

cm was inventoried and had the following information

recorded: distance from centre of the plot, azimuth

(measured from the centre of the plot to each tree), de-

foliation (assessed using an expert method), and height.

Fig. 1 The study area
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The centre of the test plot was determined using the

Pathfinder ProXT (Trimble, Sunnyvale, California), Glo-

bal Navigation Satellite System (GNSS) which functions

in the DGPS (Differential Global Positioning System)

mode. Its vertical and horizontal accuracy was estimated

to be 1.4 m and 0.97 m respectively. Tree heights were

measured using a Vertex IV device (Haglof Sweden AB,

Langsele, Sweden) and dbh was measured using a Codi-

mex calliper (Codimex, Warsaw, Poland). The data col-

lected were used to calibrate and verify the hyperspectral

image classification process. No grey alder trees were

found in the plots so this species was not considered fur-

ther. Although hornbeam occurs only occasionally in the

forest, it was found in one plot so was included in the

analysis.

Data and software

The hyperspectral image was provided by MGGP AERO

and taken by the AISA Eagle camera (SPECIM) on 3

August 2013 at an altitude of 2303–2328m (single

flight). The spectral resolution of the image was 400–

970 nm (129 spectral bands, 4–5 nm wide); the radio-

metric resolution was 12 bits, while the spatial reso-

lution was 1.5 m. The lens size was 18.5 mm and the

field of view (FOV) was 37.7°.

The hyperspectral image classification process (as de-

tailed below) was performed using ENVI 5.0 (developed

by Exelis Inc.), ArcGIS 10.3 (developed by ESRI), and

Statistica 8.0 (developed by StatSoft). The atmospheric

correction was carried out using a Quick Atmospheric

Correction (Quack) method, radiometric calibration,

data reduction (PCA and MNF transformations), band

selection, and classifications using nine different algo-

rithms; the accuracy analysis was performed using ENVI

5.0, and ArcGIS 10.3 was used to select training and test

pixels. Figures were created using the ETRS 1989 Poland

C92 Projected Coordinate System.

Pre-processing

The image was geometrically corrected by MGGP AERO

(UTM, Zone 34N, WGS-84). It was also subject to

radiometric calibration (using the ENVI ‘Radiometric

calibration’ tool–calibration type: reflectance, output

interleave: BSQ (band sequential), output data type:

float, scale factor: 1.00) and ‘Quick Atmospheric Correc-

tion–Quack’ atmospheric correction (Sensor Type:

AISA) (Dalponte et al. 2012; Bernstein et al. 2005) (Ap-

pendix 2).These procedures were performed using ENVI

5.0.

Data reduction

After the atmospheric correction, the amount of data

was reduced. The image containing 129 bands was not

an ideal data set with which to perform supervised clas-

sification, because it contained too much auto-correlated

data. The reduction of the data may be performed using

one of two types of methods: data transformation (PCA

or MNF transformation) (Clark et al. 2005) or band se-

lection. Data transformation is fully automatic but is

based on artificial bands. Band selection is based on ori-

ginal bands but is also very subjective. Both methods

were tested. The data reduction was performed using

ENVI 5.0 software.

Classification

Finally, four sets of data were classified (using four

algorithms):

– The result of the PCA transformation—first three

bands

– The result of the MNF transformation—first seven

bands

– All 129 bands

– 36 original bands with the largest differences in the

spectral profiles generated from training pixels for

each tree species

To perform the supervised classification, it was im-

portant to choose representative pixels with which to

train the algorithm. This was performed using two

MNF band compositions and the data from the test

plots. A total of 260 training pixels were selected: 15

of which represented birch, 80—European beech, 30—

European larch, 30—Scots pine, 30—oak, 10—horn-

beam, 15—Norway spruce, and 50—no forest. The

pixels of each class were randomly divided into train-

ing and validation sets within each plot. There was

no spatial distinction between individual plots of

training and test pixels; however, in some cases, only

training or only test pixels might have been chosen

for a single plot.

Table 1 Basic information about the Miłomłyn Forest District

(source: www.milomlyn.olsztyn.lasy.gov.pl/zasoby-lesne)

Parameter Amount

Forest area (ha) 19,000

Total area (ha) 48,000

Most common tree species (%)

Scots pine, European larch 71

European beech (Fagus sylvatica L.) 12

Grey alder (Alnus glutinosa L.) 6

Birch (Betula spp. L.) 5

Oak (Quercus spp. L.) 4

Norway spruce (Picea abies L.) 1

Other (e.g. hornbeam Carpinus betulus L.) 1
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The spectral reflectance of more than one object (tree,

bare ground, or any other) could have been contained in

a single 1.5-m pixel. The GNSS device could also have

introduced an error. Therefore, the normalised Digital

Surface Model (nDSM) was used to overcome this prob-

lem. All areas below 1m were removed. The spatial

resolution of the nDSM was 0.5 m, so it was possible to

choose training and test pixels containing a single tree

or at least a group of trees of a single species. The spe-

cies were identified using data points representing the

location of tree tops. We assumed that they were

directly above the section of trunks that had their loca-

tion mapped during field measurements. By the end of

the classification process, the entire area was classified

since all pixels, not only the ‘clear’ ones, were used. The

classifications were verified on separate data sets and

evaluated at the sample plot level.

To perform the supervised classification, nine algo-

rithms were used on three out of four datasets: P, BE,

SID, MD1, MD2, ML, SVM, SAM, and NN. The settings

for the algorithms are provided in Appendix 2. The clas-

sification was performed using ENVI 5.0 software.

Fig. 2 AISA EAGLE hyperspectral image (natural colour composite) constructed by MGGP AERO; the sample plots
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Accuracy assessment

The accuracy analysis was performed using 300 test pixels

and 2 MNF-band compositions (5-4-3 and 4-3-2) in which

the differences in colour among the species were most ob-

servable. Some of the pixels representing trees in the sam-

ple plots were used as test pixels, but only those that were

most recognisable were used (European beech: 50, birch:

20, oak: 50, hornbeam: 10, European larch: 50, no forest:

50, Scots pine: 50, and Norway spruce: 20).

The pixels of each class within each plot were ran-

domly divided into training and validation data sets.

There was no spatial distinction between the plots of in-

dividual training and test pixels; however, in some cases,

only training or only test pixels might have been chosen

for a single plot. Nevertheless, both data sets covered

the entire study area randomly.

A normalised Digital Surface Model was used to

choose the test pixels representing only one particular

species and to overcome inaccuracies caused by the

spatial resolution of the image and the GNSS device.

Only pixels in which a tree top was located close to the

centre were selected as test pixels. The accuracy assess-

ment was performed using ENVI 5.0 software.

The classification results of 98 individual sample plots

(values represented in %) were compared to the number

of trees (values represented in %) belonging to individual

species on each plot using the coefficient of determin-

ation (R2) calculated in Statistica 8.0. Only trees from

the upper canopy were taken into consideration.

Results

The highest accuracy was obtained by the ML algorithm

and the data set of the seven MNF bands. The final map

was subjected to Majority Filter analysis. The overall ac-

curacy was 91.3% (Kappa—0.9) (Fig. 3.).

The classification performed on all 129 bands ranged

from 31 (BE) to 76.7% (SVM), excluding P and NN

(below 10%). Spectral Information Divergence also per-

formed relatively well (64.7%). There were not enough

training pixels to perform ML and MD2. The classifica-

tion performed on the 36 original bands ranged from

33.6 (BE) to 66.3% (NN), excluding P (below 20%).

Support vector machine also performed relatively well

(58.7%). There were not enough training pixels to per-

form ML and MD2. The classification performed on the

first three PCA bands ranged from 30.3 (P) to 88.3%

(ML). NN, SAM, and MD2 ranged from 68.3 to 72.7%.

The classification performed on the first seven MNF

bands ranged from 10.3 (P) to 90.7% (ML). Spectral in-

formation divergence and SAM also performed relatively

well (84.7%–85%) (Table 2).

The producer’s and user’s accuracy for the four best

classification results (each based on a different data set)

is provided in Table 3. The producer’s accuracy is the

fraction of correctly classified pixels with regard to all

pixels of that ground truth class. The user’s accuracy is

the fraction of correctly classified pixels with regard to

all pixels classified as this class in the classified image.

For the classification based on all 129 spectral bands

performed with the SVM algorithm, the highest pro-

ducer’s accuracy was observed for European larch,

no-forest, and Scots pine (92–98%) and the lowest was

for birch and hornbeam (10%). The highest user accur-

acy was observed for Scots pine and hornbeam (94–

100%) and the lowest was for European beech (52.4%).

For the classification based on 36 spectral bands per-

formed with the NN algorithm, the highest producer’s

accuracy was observed for European larch, no-forest,

and Scots pine (94%) and the lowest was observed for

birch and hornbeam (0%). The highest user accuracy

was observed for Scots pine and hornbeam (71.2–77.4%)

and the lowest was for birch, hornbeam, and Norway

spruce (0%).

For the classification based on three PCA spectral

bands performed with the ML algorithm, the highest

producer’s accuracy was observed for European larch

and no-forest (100%) and the lowest was for birch (10%).

The highest user’s accuracy was observed for Scots

pine and Norway spruce (100%) and the lowest was for

birch (40%).

For the classification based on 7 MNF spectral bands

performed with the ML algorithm, the highest pro-

ducer’s accuracy was observed for beech, European

larch, and no-forest (100%) and the lowest was for birch

(10%). The highest user’s accuracy was observed for

hornbeam, European larch, Scots pine, and Norway

spruce (100%) and the lowest was for birch (33.33%)

(Table 3). Birch was spread across the study area with no

observable concentration while hornbeam was very rare;

only one sample plot contained enough of the latter

(85%) to be observable from the aerial ceiling.

The visual comparison of these four classification ap-

proaches on a single-plot scale is shown for two chosen

plots in Figs. 4 and 5. The best results were achieved

using the ML algorithm.

The coefficient of determination between the number

of trees and the classification results of individual sample

plots ranged from 0.68 (birch) to 0.99 (European larch),

while those of Norway spruce, hornbeam, and oak were

approximately 0.9 (Table 4).

Discussion

Hyperspectral images are difficult to use for classifica-

tion purposes because they contain several narrow bands

that are correlated with one another. It is important to

reduce both the amount of data and the noise before

performing classifications. Clark et al. (2005) observed a

general increase in accuracy of up to 30 input bands
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when using a feature selection algorithm combined

with a linear discriminant analysis classifier; including

more bands produced a lower or equal accuracy when

classifying tree species in a tropical environment. Dal-

ponte et al. (2009) reported a slight decrease in ac-

curacy when dropping several bands from the initial

126 in a tree-species classification that combined an

SVM classifier with a feature-selection procedure.

These findings were most likely also connected to the

classifiers applied, given that SVM is known to handle

high-dimensional data well without the need for a

large training sample size. Thus, it is not strongly af-

fected by the Hughes phenomenon (Dalponte et al.

2009, Hughes 1968), which states that as the number

of hyperspectral narrow bands increases, the number

of samples (i.e. training pixels) required to maintain a

minimum statistical confidence and functionality in

hyperspectral data for classification also increases ex-

ponentially, making it very difficult to address this

issue adequately.

Fig. 3 Classification results (maximum likelihood on seven minimum noise fraction bands). Legend: red—birch, orange—European beech,

yellow—oak, pink—hornbeam, pale blue—European larch, green—Scots pine, dark blue—Norway spruce
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The compositions made from the PCA or MNF

bands may be useful to distinguish tree species and

create a layer of training pixels or polygons used to

perform the supervised classification. However, PCA is

not the most suitable method to reduce multidimen-

sionality when the objective is to classify remotely

sensed data (Cheriyadat and Bruce 2003). Principal

component analysis identifies variabilities that may not

perform well in multi-class discrimination and does not

differentiate between within-group and between-group

variations (Hobro et al. 2010).

The classification of the first seven MNF bands using

the ML algorithm resulted in the best overall accuracy

(91.3%) and kappa (0.9). The results are comparable to

those obtained for a forest species in an equatorial zone

(Clark et al. 2005; Mickelson et al. 1998; Peerbhay et al.

2013; Goodwin et al. 2005) at 80–100%, in a tropical and

sub-tropical zone (Carlson et al. 2010; Dian et al. 2014;

Goodwin et al. 2005; Dennison and Roberts 2003; Lucas

et al. 2008; Yang et al. 2009; Gong et al. 1997; van Aardt

and Norris-Rogers 2008) at over 90%, and in a temperate

zone (Zagajewski 2010; Olesiuk and Zagajewski 2008;

Bartold 2008; Dian et al. 2014; Martin et al. 1998;

Dalponte et al. 2013; Dmitriev 2014; Tarabalka 2010;

Richter et al. 2016) at 74–93%.

Our results have a high correspondence with tree

species frequencies at the sample-plot level. Differences

between the classification results and data from the local

survey may be explained by the leaves and branches of

the trees growing near, but outside the borders of, the

testing areas. Stumps were observed in the field, so it is

possible that some parts of unmapped trees were

Table 2 Classification results

Parameter Classification

All 129 bands 36 chosen bands First three Principal component
analysis bands

First seven minimum noise
fraction bands

Algorithm Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa

Parallelepiped 5.3 0.005 15.3 0.05 30.3 0.23 10.3 0.06

Minimum Distance 62.7 0.56 40.3 0.3 61.7 0.55 84.7 0.82

Mahalanobis distance NETP NETP NETP NETP 72.7 0.68 81.3 0.78

Maximum likelihood NETP NETP NETP NETP 88.3 0.86 90.7 0.89

Spectral angle mapping 75 0.7 39.3 0.3 69.3 0.64 85 0.82

Spectral information divergence 64.7 0.58 38.3 0.28 37 0.27 81.3 0.78

Binary encoding 31 0.22 33.6 0.23 11.7 0.05 44 0.37

Neural networks 6.7 0.0004 66.3 0.6 68.3 0.62 63.7 0.56

Support vector machine 76.7 0.72 58.7 0.5 61 0.53 72.7 0.68

NETP not enough training pixels

Table 3 The producer’s and user’s accuracy for each class using different datasets and algorithms

Classification

Support vector machine over
129 bands

Neural net over 36 bands Maximum likelihood over first
three principal component
analysis bands

Maximum likelihood over
first seven minimum noise
fraction bands

Species Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Birch 10.00 66.67 0.00 0.00 10.00 40.00 10.00 33.33

European
beech

86.00 52.44 76.00 59.38 84.00 76.36 100.00 70.42

Oak species 68.00 82.93 80.00 55.56 92.00 85.19 94.00 95.92

Hornbeam 10.00 100.00 0.00 0.00 70.00 63.64 60.00 100.00

European
larch

92.00 83.64 66.00 73.33 100.00 90.91 100.00 100.00

No-forest 98.00 83.64 82.00 77.36 100.00 96.15 100.00 98.04

Scots pine 94.00 94.00 94.00 71.21 98.00 100.00 98.00 100.00

Norway
spruce

40.00 88.89 0.00 0.00 95.00 100.00 90.00 100.00
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included in the sample. It is also possible that the re-

flectance of the input image was disturbed by the plants

growing in the lower canopy layers of the stand. Add-

itionally, even the same tree species may have different

values of spectral reflectance depending on their age,

weather and soil conditions, moisture, vegetation period,

and many other factors (Ghiyamat and Shafri 2010),

which is the premise for using hyperspectral imagery to

detect disease and nutrient deficiencies in even-aged

single-species stands.

The set of training polygons used in this study was

suitable for performing the classification on a neighbour-

ing area using the same type of data (AISA Eagle hyper-

spectral image), acquired at the same flight height,

during the peak of the vegetation season (July and

August), when the weather conditions were similar

(although the atmospheric correction was performed).

Otherwise, the set of training polygons used should be

separate because the spectral signatures of the different

tree species varied due to the study area, data type, ac-

quisition date, weather conditions, altitude, and other

factors (Ghiyamat and Shafri 2010). However, this is a

common issue when dealing with remotely sensed data.

Unfortunately, more issues can be expected with hyper-

spectral data; for example, a comparison to satellite im-

ages and reference data is needed. This is due the fact

that flight strips are relatively narrow and a longer time

is needed to cover large areas. As the result, there will

be large differences between single strips or groups of

strips. In these cases, a smaller part of the data set is re-

quired for training, and verification can be undertaken

immediately.

It is also important to select the training and test

pixels from the same (or at least neighbouring) areas,

using the same methodology, and with a similar propor-

tion of class samples to avoid differences between the

accuracy assessment and the true classification results.

Conclusions

The classification based on 7 MNF spectral bands per-

formed with the ML algorithm was found to be the most

Fig. 4 Comparison of the results of four classification techniques

(SVM-129, NN-36, ML-PCA, ML-MNF) on a single sample plot (Adams

et al. 1995). Legend: red—birch, orange—European beech,

yellow—oak, pink—hornbeam, pale blue—European larch,

green—Scots pine, dark blue—Norway spruce

Fig. 5 Comparison of the results of four classification techniques

(SVM-129, NN-36, ML-PCA, ML-MNF) on a single sample plot (Alonzo

et al. 2014). Legend: red—birch, orange—European beech,

yellow—oak, pink—hornbeam, pale blue—European larch,

green—Scots pine, dark blue—Norway spruce

Table 4 Coefficient of determination between the number of

trees (%) and the classification results (%) of individual species

on individual test plots

Species R2

European beech 0.79

Birch 0.68

Oak 0.93

Hornbeam 0.9

European larch 0.99

Scots pine 0.81

Norway spruce 0.89
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Appendix 1

Table 5 Detailed information on the Miłomłyn Forest District

Forest area (ha) 19,000

Total area (ha) 48,000

Forest area (FA)/total area (TA) % 39.6

Mean FA/TA in Poland % 29.1

Abundance of forest site types (%)

Fresh* mixed forest 42

Fresh* deciduous forest 23

Fresh* mixed coniferous forest 22

Other forest types 13

Abundance of forest species group types (%)

Coniferous trees 71

Deciduous trees 29

Most common tree species (%)

Scots pine (Pinus sylvestris L.) and European larch (Larix decidua L.) 71

European beech (Fagus sylvatica L.) 12

Grey alder (Alnus glutinosa L.) 6

Birch species (Betula spp. L.) 5

Oak species (Quercus spp. L.) 4

Norway spruce (Picea abies L.) 1

Other (e.g. hornbeam Carpinus betulus L.) 1

Age classes (%)

I (0–20) 7

II (20–40) 14

III (40–60) 23

IV (60–80) 17

V (80–100) 17

VI (100–120) 8

VII (120–140) 7

VII + (> 140) 7

Mean volume for species (m3/ha)

Scots pine (Pinus sylvestris L.) 241

Norway spruce (Picea abies L.) 216

European beech (Fagus sylvatica L.) 260

Oak species (Quercus spp. L.) 310

*According to the soil moisture level, forests are divided into dry, fresh, wet, and swampy
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accurate method for classifying species (overall accuracy

of 90.3%), with the highest kappa coefficient of 0.9. The

results from the study reported here showed that this

method is sufficiently reliable, accurate and user-friendly

to be used in practice. However, the data and software

required are still expensive, which may limit its practical

use by forest managers at present.
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Table 6 Algorithm settings
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Sensor type AISA

PCA transformation

Stats X resize factor 1

Stats Y resize factor 1
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Output data file Floating point

Select subset from eigenvalues No

Number of output PC bands 129

MNF transformation
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Number of output MNF bands 129
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Max standard deviation from mean 3
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Max distance error 0

Mahalanobis distance
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Maximum likelihood
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Data scale factor 255
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