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1. Introduction

It is well-known that the conception of da Costa algebra [3] renders the
majority of the logical properties of paraconsistent propositional calculus
Cn, 1 ≤ n ≤ ω introduced by N.C.A. da Costa. In [10] the construction
of the topos of functors from a small cateory to Set was proposed which
allows to obtain the categorical semantics of da Costa’s paraconsitent
logics. Another categorical semantics of Cn would be introduced con-
sidering the construction of a potos or da Costa topos — a categorical
equivalent of da Costa algebra.

1This resarch is supported by RFH grant № 16-03-00364.
2The paper is an improved, extended and modified English version of early

published in “Logical Investigations” (vol. 17) paper “Paraconsistent Categories for
Paraconsistent Logic” (in Russian).
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A potos is a paraconsistent universe in which paraconsistent math-
ematics would be developed the way it was done in case of intuitionistic
mathematics in topos. But while in case of [10] all paraconsistency
instances appear only as partial constructions in the intuitionistic uni-
verse (as some local artefacts) in a potos this paraconsistency is abso-
lutely immanent and, moreover, it underlies all the constructions, it is
global and fundamental. Here the classical mathematics emerges now
as an artefact in paraconsistent universe, as some local deviation from
paraconsistent regularity. Thus e.g. interpreting Cn-systems one would
implement non-truth-functional valuation while truth-functional valu-
ation becomes featuring just the case of Boolean toposes which are now
only the particular case of potoses.

In [11] the construction of a potos as the Cartesian closed category
(with the initial object 0 and the terminal object 1) along with distin-
guished object Ω which is an implicit da Costa algebra was proposed, i.e.
there are arrows true : 1 → Ω,false : 1 → Ω,¬ : Ω → Ω,∩ : Ω× Ω →
Ω,∪ : Ω × Ω → Ω,⊃: Ω × Ω → Ω which satisfy da Costa algebra con-
ditions from [1, p.81] But the shortcoming of such a definition of potos
is that the arrow of negation instead of other arrows is introduced only
“locally” and has no connections with any categorical constructions.

In order to overcome this shortcoming we introduce the notion of
so-called complementary closedness of Cartesian closed category. This
allows to yield the arrows of negation “globally” following the recipe of
the definition of other truth-arrows.

As the consequence of the new construction introduced we need to
consider a new category of paraconsistent sets PSet where as the objects
the ZF1-sets of paraconsistent set theory are exploited. The system
ZF1 is correlates with Zermelo–Fraenkel set theory ZF0 the same way
the paraconsistent first-order predicate calculus with identity correlates
with the classical one. And at the same time category PSet turns out
to be not a topos but a potos of sets.

Such type of considerations is based on J. Benabou’s proposal
(cf. [1]) to accept as minimal set-theoretical basis of category theory
any set theory in ZF0-language exploiting only the extensionality axiom
and the comprehension scheme. For any model of such a theory its ele-
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ments will be the sets while the “meta-sets” of the universe of discourse
(where the model is chosen) will represent the classes. Following Ben-
abou we can define the set theory required as any theory formulated in
ZF1 and choose any model of such a theory from the universe of dis-
course (in fact, extending our universe to the universe of all non-classical
“meta-sets”). Then so-called Yoneda’s map will assign to every set its
representative class relative to our “paraconsistent” model while our sets
will be exactly the sets we need for considering PSet.

In section 2 the minimal information concerning the theory of da
Costa algebras is adduced which is required for the further considerations
since the last are essentially exploited and substantially determine the
potos construction itself.

In section 3 the notion of a potos is introduced, its properties and
set-theoretical foundations are analyzed and the potos PSet is consid-
ered.

In section 4 an algebraic interpretation of da Costa systems Cnin
terms of da Costa algebra is yielded along with potos-theoretic inter-
pretation of those essentially based on this algebra. The completeness
of the systems is proved in respect to the interpretation given. Besides,
non-truth-functional valuation of C1 is considered and the completeness
of this system is proved exploiting this valuation.

Finally in section 5 the interpretation in potos PSetA is considered
and the completeness of C1 in respect to such semantics is proved.

2. Da Costa Algebras

W.A. Carnielli and L.P. Alcantara in 1984 [3] formulated the notion of
da Costa algebra reflected the most of logical properties of logic Cn. It
was shown that da Costa algebra is isomorphic to a paraconsistent set al-
gebra which would be counted as an counterpart of Stone representation
theorem for Boolean algebra. However, such an analogy works only if we
takes a non-classical point of view: some operations in paraconsistent
set algebra are formulated not in usual set-theoretical terms.

Since our theoretic-categorical constructions are essentially based
on da Costa algebra then for the further proceedings the complete defi-
nitions are adduced.
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Definition 1. [3, p. 81] By a da Costa algebra we mean a structure

A = ⟨S, 0, 1,≤,∧,∨,⊃,′ ⟩

such that for every a, b, c in S the following conditions hold:

1. ≤ is a quasi-order;

2. a ∧ b ≤ a, a ∧ b ≤ b;

3. if c ≤ a and c ≤ b then c ≤ a ∧ b;

4. a ∧ a = a, a ∨ a = a;

5. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);

6. a ≤ a ∨ b, b ≤ a ∨ b;

7. if a ≤ c and b ≤ c then a ∨ b ≤ c;

8. a ∧ (a ⊃ b) ≤ b;

9. if a ∧ c ≤ b then c ≤ (a ⊃ b);

10. 0 ≤ a, a ≤ 1;

11. xo ≤ (x′)o, where xo = (x ∧ x′)′;

12. x ∨ x′ ≡ 1, where a ≡ b iff a ≤ b and b ≤ a;

13. x′′ ≤ x, where x′′ abbreviates (x′)′;

14. ao ≤ (b ⊃ a) ⊃ ((b ⊃ a′) ⊃ b′);

15. xo ∧ (xo)′ ≡ 0.

If there exists x ∈ S such that it is not true that x ∧ x′ ≡ 0 the algebra
A is said to be a proper da Costa algebra.

Let us note that it would be much more natural to consider congru-
ences instead of equations in items 4 and 5 in definition 1. This is the
choice made e.g. by Carlos Caleiro and Ricardo Gonçalves developed
so-called Behavioral algebraization of da Costa’s C-systems (cf. [2]).

Proposition 1. [3, p. 82] If A = ⟨S, 0, 1,≤,∧,∨,⊃,′ ⟩ is a da Costa
algebra then the following properties are verified:

(C1) y ≤ x iff x ∧ y ≡ y;

(C2) x ∧ 0 ≡ 0, x ∨ 1 ≡ 1;

(C3) x ∨ 0 ≡ x, x ∧ 1 ≡ x;

(C4) x ∨ y ≡ y ∨ x, x ∧ y ≡ y ∧ x;

(C5) if x = y then x ≡ y;

(C6) if a ≡ b and x ≡ y then x ∧ a ≡ y ∧ b;

(C7) if a ≡ b and x ≡ y then x ∨ a ≡ y ∨ b;

(C8) y ≤ x iff y ∨ x ≡ x;
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(C9) if x ∨ y ≡ 0 then x ≡ 0 and y ≡ 0;
(C10) if x ≤ yo and x ≤ (yo)′ then x ≡ 0;
(C11) p ∨ (p′ ∧ po) ≡ 1, p′ ∨ (p′ ∧ po) ≡ 1;
(C12) x ∧ y ≡ 0 iff x ≤ y′ ∧ yo;
(C13) x ∧ (y ∧ yo) ≡ 0 iff x ≤ y′;
(C14) x ∧ x′ ∧ xo ≡ 0;
(C15) if x ∧ (x′)o ≡ 0 then x ≡ x′′;
(C16) if x′ ∧ (x′)o ≡ 0 then x ≡ x′′;
(C17) if x ∧ y ≡ 0 then x ≤ y′;
(C18) if y ≡ yo then x ∧ y ≡ 0 iff x ≤ y′;
(C19) x ∧ y′ ∧ yo ≡ 0 iff x ≤ y.

Proof. Obvious. ✷

Hereafter ✷ means the end of the proof.

Theorem 1. [3, p. 83] Every proper da Costa algebra has at least three
elements.

Definition 2. [3, p. 83] A paraconsistent algebra of sets is a structure
A = ⟨S,∅, I,≤ ∩,∪,⇒,′ ⟩
where
1. ∩ and ∪ are the set operations of intersection and union;
2. ≤ is a preorder;
3. S ⊆ ℘(I);
4. S is closed with respect to the binary operations ∩, ∪, and the

unary operation ′;
5. a ∩ b ≤ a, a ∩ b ≤ b;
6. if c ≤ a and c ≤ b then c ≤ a ∩ b;
7. a ≤ a ∪ b, b ≤ a ∪ b;
8. a ∩ (a ⇒ b) ≤ b;
9. if a ∩ c ≤ b then c ≤ (a ⇒ b);
10. ∅ ≤ a, a ≤ I;
11. x ∪ x′ ⇔ I, where a ⇔ b iff a ≤ b and b ≤ a;
12. x′′ ≤ x;
13. xo ≤ (y ⇒ x) ⇒ ((y ⇒ x′) ⇒ y′), where xo = (x ∩ x′)′;
14. xo ∩ (xo)′ ⇔ ∅;
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15. xo ≤ (x′)o;

Let S0 = {x : x ∈ S and x ∩ x′ < ∅}. If S0 ̸= ∅, we have a
proper paraconsistent algebra of sets. Every paraconsistent algebra of
sets is a proper da Costa algebra while every Boolean algebra of sets is
a non-proper paraconsistent algebra of sets.

If one consider a natural notion of congruence on da Costa algebra
and then to define the notion of homomorphic image of a da Costa
algebra (= isomorphism (projection on quotient by a congruence)) then
the following result obviously will take place:

Theorem 2. Every proper da Costa algebra is isomorphic to a quotient
to a proper paraconsistent algebra of sets.

In [3, p. 84], in fact, more weaker notion of isomorphism was con-
sidered which is not symmetric indeed. Given an equivalence relation
∼ two da Costa algebras A and B are said to be ∼-isomorphic if there
exists a function f from A onto B preserving the operations and being
∼ −injective that is, if x ≁ y then f(x) ̸= f(y). And the following
result take place

Theorem 3. [3, p. 84] Every proper da Costa algebra is ≡ −isomorphic
to a proper paraconsistent algebra of sets.

In [9, p. 273] the following theorem was proved:

Theorem 4. A set of principal filters of the proper da Costa algebra is
≡ −isomorphic to a proper da Costa algebra.

Taking into account that every principal filter is determined by the
single element of a da Costa algebra then this ≡ −isomomorphism will
be symmetric one.

3. Potoses

A potos is, in fact, a topos with some additional structure. In essence,
we would equally well use the name “paraconsistent topos” or “da Costa
topos”. The name “potos” was borrowed from W.Carnielli’s story of the
idea of such kind of categories originated from some Brasilian mathe-
matician.
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Definition 3. A potos C is a Cartesian closed category which is also
complementary closed and has a subobject classifier. That is:

(i) C has finite products ⟨−,−⟩,[−,−] and C is distributive relative
to those, i.e. ⟨[a, b], [a, c]⟩ ∼= [a, ⟨b, c⟩] for any objects a, b, c in C;

(ii) C allows an exponentiation;
(iii) C has a terminal object 1 and an initial object 0;
(iv) a → b is an arrow in C iff a ⇒ b ∼= 1, for any two objects a, b

in C where a ⇒ b is an exponential;
(v) for any object a of C there is an object a′ with the respective

operations (functions) in C :
()′ : obj(C) → obj(C) such that a 7→ a′,
dn : obj(C) → Hom(C) such that a 7→ dn(a) : a′′ → a,
hdn : Hom(C) → Hom(C) such that d → a 7→ hdn(a, d) :

d → a′,
()o : obj(C) → obj(C) such that a 7→ ao = ⟨a, a′⟩′,
cert : obj(C) → Hom(C) such that a 7→ cert(a) : ao → (a′)o,
hcert : Hom(C) → Hom(C) such that d → ao 7→ hcert(a, d) :

d → (a′)o,
where dn(a) and cert(a) are monic and we have a fixed choice of co-
products [−,−] and of products ⟨−,−⟩ for each pair of objects in the
respective operations in C;

(vi) there is an operation triv : obj(C) → Hom(C) in C such that
a 7→ triv(a) : ao → (b ⇒ a) ⇒ ((b ⇒ a′) ⇒ b′) and triv(a) is monic;

(vii) 1 ∼= [a, a′], 0 ∼= ⟨ao, ao′⟩(with, possibly, binary coproducts and
products);

(viii) a subobject classifier for C is a C-object Ω together with an
arrow true : 1 → Ω that satisfies the following axiom: for each monic
f : a  d there is one and only one arrow χ

f
: d → Ω such that

fa> ✲ d

χ
f

!

❄

1 ✲ Ω
❄

true

is a pullback square.
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Here complementary closedness of C is given by (v)− (vii). To put
this another way, complementary closedness is given by:

(v) for any object a of C there is an object a′, such that :

for any arrow f : d → a we have monos f ′ : d →
a′, dn(f) : a′′ → a and cert(f) : ao → (a′)o where ao = ⟨a, a′⟩′,

(vi) for any two objects a, b in C there is a mono triv(a, b) :
ao → (b ⇒ a) ⇒ ((b ⇒ a′) ⇒ b′);

(vii) 1 ∼= [a, a′], 0 ∼= ⟨ao, ao′⟩(with, possibly, binary coproducts
and products).

Proposition 2. In a potos C the set Sub(d) of subobjects of d (= set
of equivalence classes of monos with codomain d) is a da Costa algebra.

Proof. Since any potos C is a Cartesian closed category then for any
object d in C the collection Sub(d) of all C-arrows that are monic with d
as codomain will be preordered bounded distributive lattice. This gives
us that the conditions 1-7 and 10 of the definition of da Costa algebra
are fulfiled in Sub(d). The conditions 8-9 are the consequences of the
exponentiation diagram. The conditions (v)-(vii) of the definition of
potos provides us the conditions 11–15 are to be held. ✷

It is easy to see that in potos we have Sub(d) ∼= Hom(d,Ω) and thus
Hom(d,Ω) will be a da Costa algebra. But in this case the problem arises
concerning the category Set of sets. The matter of fact is that in Set
we have Sub(D) ∼= ℘(D) where ℘(D) = {x : x is a subset of the set D}
Since ℘(D) is a Boolean algebra of subsets and not the paraconsistent
algebra of sets as we can expect from the theorem 5, then we come to
the conclusion that Set cannot be a potos. But according the definition
of a paraconsistent algebra of sets there are some sets which form such
an algebra. So either such sets generates the subcategory PSet of Set
or Set is, in a sense, a subcategory of PSet.

It is known (cf. [5]) that there is a system ZF1 of paraconsistent set
theory that related to Church’s version of Zermelo–Fraenkel set theory
ZF0 with a universal set as a da Costa paraconsistent first-order logic
C=
1 is related to the clasical first-order predicate calculus C=

0 . In essence,
“ZF1 should be ‘partially’ included in ZF0, though the latter is is also
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to be contained, in a certain sense, in the former” [5, p. 170]. The basic
set-theoretic concepts of ZF1 are analogous to those of ZF0, although
the concepts involving negation give rise to two notions: one involving
the weak negation (¬) and the other the strong negation (¬∗). As a
result we have, for instance, two empty sets: ∅ = {x : x ̸= x} and
∅∗ = {x : ¬ ∗ (x = x)}.

The collection of all sets, plus ∅, V,∩,∪,C (where V = {x : x = x}
and xC = {y : y /∈ x}) form in ZF0 a complete Boolean algebra. For
ZF1 we obtain the following result:

Proposition 3. In ZF1 the collection of all sets, plus ∅∗, V,∩,∪,C
∗

form a paraconsistent algebra of sets.

Proof. By immediate checking (putting x ⇒ y = {z : z ∈ x → z ∈ y}).
✷

Each axiom scheme of ZF0 generates two corresponding axiom
schemes of ZF1, one with the strong negation and another with the
weak one. Thus, we can say that ZF1 includes ZF0 and hence, Set is
actually, in a sense, a subcategory of PSet. But what does it means to
be a category of sets other than Set?

Shepherdson in 1952 [9] introduced a notion of an “inner model” of
a logic L. He means a model whose universe is a subset of the universe
of L, and in which the “true” statements are those statements of the
model which are provable in L. Shepherdson assumes that the universe
of L contains classes, sets, and possibly additional objects. The models
have classes and sets and a membership relation ∈m. For every non-
empty class A of L, there is a member y ∈ A such that z ∈m y for every
member z of A.

Later J. Benabou in [1, p. 18] trying to find the minimal set theoret-
ical foundations for category theory defines a set theory as any theory T
written in the language of Zermelo–Fraenkel set theory ZF and satisfy-
ing at least the extensional axiom E and the comprehension scheme CS.

Let us for any model M of such a theory the elements of M will
be called sets and denoted by S, T, ... and the formal membership and
equality of sets will be denoted by S ∈∗ T and S ⊜ T . Then the “meta-
sets” of the universe of discourse U where the model M is taken will
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be called classes and denoted by S,C,... while the membership and
equality in U is denoted by the usual notations ∈ and =. A subclass S
of M will be representable if there is a set S, called a representative of
S, such that for all T ∈ M we have T ∈ S iff T ∈∗ S. The Yoneda map
assign to each set S the representative class Ŝ = {T ∈ M : T ∈∗ S}

The extensionality axiom, for example, read thus:

(E) For all sets S and T , Ŝ = T̂ iff S ⊜ T .

Unfortunately, it is known that such naive set theory is inconsistent
and the source of it is the exploitation of classical logic underlying such
theory. To overcome this troublesome case we can e.g. use in the role
of T Grishin’s LST theory (cf. [8]) which is the set theory with the
unlimited comprehension scheme based on the modified linear Girard’s
logic and which is free of the mentioned shortcomings. But in our case
it does not matter since we have to consider paraconsistent set theory
and we are concerned just with the universe of discourse U which is
hypothetically contains any kind of sets.

Following Benabou’s course we can now define a set theory as any
theory T written in the language of ZF1 and choose any model M of
such a theory from the universe of discource U (in fact, extending it
to the universe of all non-classical “meta-sets”). Then Yoneda map will
assign to each set S the representative class Ŝ = {T ∈ M : T ∈∗ S}
relative to our “paraconsistent” model M and our sets will be exactly
the sets we need for considering the category PSet.

Proposition 4. PSet is a potos.

Proof. According to proposition 10 for any set I we always have [3,
p. 84] a paraconsistent algebra of sets ⟨S,∅, I,≤ ∩,∪,⇒,′ ⟩ where ∩
and ∪ are the set operations of intersection and union, ≤ is a preorder,
S ⊆ ℘(I), S is closed with respect to the ∩, ∪, and the unary operation ′.
If we consider inclusion functions as arrows then we can define x ≤ y iff
x →֒ y ∪ {b}, where b ∈ S. We define x′ = xc if x /∈ S0 and x′ = xc ∪ τ
if x ∈ S0, taking S0 = {x ∈ S: there exists τ = {a, b} such that
x ∩ τ ̸= ∅, xc ∩ τ ̸= ∅ and ¬(x ⊂ {a, b})} ≠ ∅, xc being the set-
theoretical complement of x. Finally, we define x ⇒ y is x′ ∪ y.
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It is easy to see that in our algebra xo = I if x /∈ S0 and xo = I−{b}
if x ∈ S0, for b ∈ x ∩ τ . Also ≤ is a proper preorder for if b ∈ x then
we have x ∪ {b} ≤ x and x ≤ x ∪ {b} but x ∪ {b} ̸= x. Hence, defining
x ⇔ y iff x ≤ y and y ≤ x we get an equivalence relation other than
equality. Moreover, if x ⊆ y (and thus there is an inclusion arrow x →֒ y)
then x ≤ y and x = y imply x ⇔ y. Our equivalence relation is ⇔
is not compatible with ′, since if we take x such that ¬(τ ⊂ x) then
x ∪ τ ⇔ x ∪ {a} where τ = {a, b}. But (x ∪ τ)′ = (x ∪ τ)c = xc − τ and
(x ∪ {a})′ = (x ∪ {a})c ∪ τ = xc = τ . Thus, xc − τ < xc ∪ τ .

So, we can conclude that in PSet we have Sub(d) ∼= ℘(d) and Sub(d)
will be a paraconsistent set algebra and so do ℘(d). But in this case we
cannot take 2 as the classifying object exploiting the fact that℘(d) ∼= 2d

because this gives rise to the Boolean algebra of characteristic arrows as
in Set. Actually, if we will try to define

χ
A
(x) = {1, if x ∈ A0, if x /∈ A

then we need to take into account that in PSet we have two negations
and hence the right definition will be

χ
A
(x) =







1, if x ∈ A
2, if x /∈ A
0, if ¬ ∗ (x ∈ A)

This means that in the role of classifying object in PSet we should
take not the two-element Boolean algebra but the three-element da
Costa algebra (according theorem 3 every proper da Costa algebra has
at least three elements). An example of such an algebra would be found
in [1, p. 83] where the operations are defined by the following tables:

∧ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

∨ 0 1 2

0 0 1 2
1 1 1 1
2 2 1 2

⊃ 0 1 2

0 1 1 1
1 0 1 0
2 0 1 1

0′ = 1, 1′ = 0, 2′ = 1; 0 ≤ 2 ≤ 1.

So, we have ℘(d) ∼= 3d and the set 3 = {∅∗,∅, {∅∗}} together with
the function true : 1 → 3 such that true(∅∗) = 1 (where 1 := {∅∗})



Potoses: Categorical Paraconsistent Universum for Paraconsistent. . . 87

playing the role of the subobject classifier in PSet. Also here we have
arrows, false : 1 → 3 (such that false(∅∗) = ∅) and false∗ : 1 → 3
(such that false∗(∅∗) = ∅∗). ✷

We define now truth-arrows in potos in general case. Let us C will
be a potos with the subobject classifier true : 1 → Ω. Then the negation
¬ : Ω → Ω will be the unique arrow for which the diagram

false1> ✲ Ω

¬

❄

1 ✲ Ω
❄

true

will be the pullback in C. Thus, ¬ = χ
false

. The negation ¬∗ : Ω → Ω
will be the unique arrow for which the diagram

false∗1> ✲ Ω

¬∗

❄

1 ✲ Ω
❄

true

will be the pullback in C. In this case we have ¬∗ = χ
false∗

1. Since potos is a Cartesian closed category then other truth-arrows
will be defined standardly:

∩ : Ω×Ω → Ω is a character of the product of arrows ⟨true, true⟩ :
1 → Ω× Ω in a potos C;

∪ : Ω×Ω → Ω is by definition a character of the image of C−arrow
[⟨trueΩ, 1Ω⟩, ⟨1Ω, trueΩ⟩] : Ω + Ω → Ω× Ω ;

⇒: Ω×Ω → Ω is a character of the monic c : ⊛  Ω×Ω, which is
an equalizer of the pair

Ω× Ω
∩
⇒
pr1

Ω

where pr1 is a projection on the first member of the product Ω× Ω.
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4. An Interpretation of Paraconsistent Logic in a Potos

Let us give an interpretation in terms of potoses of the following list of
axioms and rule of inference [4, p. 3790]:

A1. α ⊃ (β ⊃ α)
A2. (α ⊃ β) ⊃ ((α ⊃ (β ⊃ γ)) ⊃ (α ⊃ γ))
A3. α ∧ β ⊃ α
A4. α ∧ β ⊃ β
A5. α ⊃ (β ⊃ α ∧ β)
A6. α ⊃ α ∨ β
A7. β ⊃ α ∨ β
A8. (α ⊃ γ) ⊃ ((β ⊃ γ) ⊃ (α ∨ β ⊃ γ))
A9. α ∨ ¬α
A10. ¬¬α ⊃ α
A11. βo ⊃ ((α ⊃ β) ⊃ ((α ⊃ ¬β) ⊃ ¬α))
A12. αo ∧ βo ⊃ (α ∧ β)o

A13. αo ∧ βo ⊃ (α ∨ β)o

A14. αo ∧ βo ⊃ (α ⊃ β)o

A15. αo ⊃ (¬α)o

R1.
α α ⊃ β

β
Here αo is an abbreviation for ¬(α∧¬α).This axiomatic describes,

in fact, the system C1 of da Costa paraconsistent logic.
We can define a valuation v : Φ0 → A of the system C1 in da Costa

algebra A assigning to an every propositional letter πi some truth-value
V (πi) ∈ A. It uniquely would be extended in a following way:

(1) v(¬α) = v(α)′;
(2) v(α ∧ β) = v(α) ∧ v(β);
(3) v(α ∨ β) = v(α) ∨ v(β);
(4) v(α ⊃ β) = v(α) ⊃ v(β).

to the function v : Φ → A. The sentence α such that v(α) = 1 for every
A-valuation v is called A-valid and this is denoted as A |= α.

Theorem 5. For any da Costa algebra A, A |= α iff ⊢C1
α.

Proof. From left to right we check immediately C1-validity of all C1-
axioms and detachement rule. For obtaining the proof of the claim from
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right to left we will use the theorem 6. Putting into the correspondence
to each element x of an algebra A the principal filter [x) = {q : x ≤ q}
where q ∈ A we come to the conclusion that an algebra A+ of prin-
cipal filters will be ≡ -isomorphic da Costa algebra. Let us define
A+-valuation as a function vc : Φ0 → A+ by means of the formula
vc(πi) = [v(πi)). The rest is obvious.

There is one more way to prove this theorem if we will use the
non-truth-functional valuation of C1. Following [6] we can introduce a
valuation V ′ : Φ0 → A where Φ0 is a set of propositional letters and
extend this to the set Φ of all formulas in the following way:

(5) V ′(α) = 0 ⇒ V ′(¬α) = 1;

(6) V ′(¬¬α) = 1 ⇒ V ′(α) = 1;

(7) V ′(β◦) = V ′(α ⊃ β) = V ′(α ⊃ ¬β) = 1 ⇒ V ′(α) = 0;

(8) V ′(α ⊃ β) = 1 ⇔ V ′(α) = 0 or V ′(β) = 1;

(9) V ′(α ∧ β) = 1 ⇔ V ′(α) = V ′(β) = 1;

(10) V ′(α ∨ β) = 1 ⇔ V ′(α) = 1 or V ′(β) = 1;

(11) V ′(α◦) = V ′(β◦) = 1 ⇒ V ′((α ⊃ β)◦) = V ′((α ∧ β)◦) =
V ′((α ∨ β)◦) = 1.

According to [6, p. 623] A |= α iff ⊢C1
α i.e. α is valid for every

valuation V ′. ✷

Let us define now an interpretation of the system considered in an
arbitrary potos C. The truth-value in potos we will call an arrow of
the type 1 → Ω and the collection of all such C-arrows will be the set
C(1,Ω).

C-valuation will be a function V : Φ0 → C(1,Ω) assigning to an
every propositional variable πi some truth-value V (πi) : 1 → Ω. This
function might be extended to the set Φ of all formulas in the following
way:

(12) V (α) = false ⇒ V (¬α) = true :

(13) V (¬¬α) = true ⇒ V (α) = true;

(14) V (β◦) = V (α ⊃ β) = V (α ⊃ ¬β) = true ⇒ V ′(β◦) = V ′(α ⊃
β) = V ′(α ⊃ ¬β) = 1;

(15) V (α ⊃ β) = true ⇔ V (α) = false or V (β) = true;

(16) V (α ∧ β) = true ⇔ V (α) = V (β) = true;
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(17) V (α ∨ β) = true ⇔ V (α) = 1 or V (β) = true;
(18) V (α◦) = V (β◦) = true ⇒ V ′(α◦) = V ′(β◦) = 1.

Thus, we extend the valuation V in such a way that to each sentence
α corresponds some C-arrow V (α):1 → Ω. C-validity of α (which is
denoted C |= α) means that V (α) = true : 1 → Ω for all V .

Since a potos is a particular kind of topos, we have Sub(d) =
C(1,Ωd) then Sub(d) = C(d,Ω) (Sub(d) and not its quotient is
≡-isomorphic to C(d,Ω), using the definition of ≡-isomorphism given
above), i.e. taking into correspondence to some subobject f its charac-
ter χ

f
we transfering the structure of da Costa algebra from Sub(d) on

C(d,Ω). The connection between potos semantics and considered theory
as in case of Heyting algebra (cf. [7]) consists in that for any potos

C |= α iff C(1,Ω) |= α iff Sub(1) |= α
Hence, the validity in any potos C is equal to the validity in da Costa
algebras C(1,Ω) and Sub(1). This implies the following theorem:

Theorem 6. If ⊢C1
α then for any potos C we have C |= α.

Proof. Let α be some C1-theorem. Then α is valid in da Costa algebra
by theorem 12. In particular, C(1,Ω) |= α from which C |= α according
to the previous claim.

We would define the way V relates to V ′ from above while putting
V (πi) = true if V ′(πi) = 1, and V (πi) = false otherwise. Then we
extend this to the set Φ of all formulas in the following way:

(19) V (α) = false ⇔ V ′(¬α) = 1 :
(20) V (¬¬α) = true ⇔ V ′(¬¬α) = 1;
(21) V (β◦) = V (α ⊃ β) = V (α ⊃ ¬β) = true ⇔ V ′(β◦) = V ′(α ⊃

β) = V ′(α ⊃ ¬β) = 0;
(22) V (α ⊃ β) = true ⇔ V ′(α ⊃ β) = 1;
(23) V (α ∧ β) = true ⇔ V ′(α ∧ β) = 1;
(24) V (α ∨ β) = true ⇔ V ′(α ∨ β);
(25) V (α◦) = V (β◦) = true ⇔ V

′

((α ⊃ β)◦) = V ′((α ∧ β)◦) =
V ′((α ∨ β)◦) = 1.

It is easy to prove that V (α) = true iff V ′(α) = 1 that allows us to
obtain the proof of

Lemma 1. V (α) = true iff V ′(α) = 1.



Potoses: Categorical Paraconsistent Universum for Paraconsistent. . . 91

Proof. In case α = πi lemma is true by the definition.
Let α = ¬β and V (β) = false. Then V ′(¬β) = 1 and V ′(α) = 1

and the other way round.
In case of α = ¬¬β and V (¬¬β) = true we have V ′(¬¬β) = 1 and

V ′(α) = 1.
For α = β◦ and V (β◦) = V (α ⊃ β) = V (α ⊃ ¬β) = true we have

V ′(β◦) = V ′(α ⊃ β) = V ′(α ⊃ ¬β) = 0 and thus V ′(α) = 0.
For α = γ ⊃ β we have V (α ⊃ β) = true ⇔ V ′(α ⊃ β) = 1.
In case of α = γ ∧ β we have V (γ ∧ β) = true ⇔ V ′(γ ∧ β) = 1.
In case of α = γ ∨ β we have V (γ ∨ β) = true ⇔ V ′(γ ∨ β) = 1.
Finally, taking V (α◦) = V (β◦) = true we obtain V

′

((α ⊃ β)◦) =
V ′((α ∧ β)◦) = V ′((α ∨ β)◦) = 1.

The rest we obtain in a similar way. ✷

✷

Theorem 7. For any potos C and propositional fromula α the following
statement is true:

C |= α iff ⊢C1
α.

Proof. Suppose 0C1
α then, by the completeness result in [6], there is

a valuation V ′ such that V ′(α) ̸= 1 and, by Lemma 4.3, the associated
V is such that V (α) ̸= true, and this means C 1 α. ✷

5. An Interpretation of Paraconsistent Logic in a Potos

PSet
A

For obtaining an interpretation of C1 in a topos SetA in [10] as the cat-
egorical counterpart of da Costa algebra so-called CN -categories have
been implemented. But since x ≤ y ⇒ y′ ≤ x′ is not a valid property
concerning the paraconsistent negation in C1 then we need to reformu-
late the definition of CN -categories.

Definition 4. A CN -category C is a preorder category such that
(i) C has finite products ⟨−,−⟩, coproducts [−,−] and C is dis-

tributive relative to those, i.e. ⟨[a, b], [a, c]⟩ ∼= [a, ⟨b, c⟩] for any objects
a, b, c in C;
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(ii) C allows an exponentiation;
(iii) a → b is an arrow in C iff a ⇒ b ∼= 1, for any two objects a, b

in C where a ⇒ b is an exponential;
(iv) C has a terminal object 1 and an initial object 0;
(v) for any object a of C there is an object Na such that we have

arrows NNa → a and ao → (Na)o in C where ao = N⟨a,Na⟩ and for
any arrow d → a there is an arrow d → Na in C;

(vi) for any two objects a, b in C there is an arrow ao → (b ⇒ a) ⇒
((b ⇒ Na) ⇒ Nb);

(vii) 1 ∼= [a,Na] and 0 ∼= ⟨ao, Nao⟩.

It is easy to check that any CN -category has the following properties:a
an exponential a ⇒ b in C will be a residual,
C is cartesian closed,
y → x is an arrow in C iff ⟨x, y⟩ ∼= y and [x, y] ∼= x,
⟨⟨Na, ao⟩, a⟩ ∼= 0, [⟨Na, ao⟩, a] ∼= 1,
every CN -category has at least three objects.
In order to build the category PSetA as a potos we will use the

theorem 7. According to this theorem a set A+ of all principal filters
i.e. of sets [p) = {q : p ≤ q} is a da Costa algebra ≡-isomorphic to A
and this will be true for [p)+ where [p)+ is the relativization of A+.

Now we consider the functor Ω : A → PSet which will represent
the classifying object in potos PSetA. Hereafter we will use A both as
an algebra and the category. For any functor F : A → PSet we denote
by Fp the value F(p) of functor F for object p from A. For any q and p
such that p ≤ q a functor F defines the function from Fp to Fq which we
denote Fpq. A functor F will be treated as the collection {Fp : p ∈ A}
of sets indexed by elements of the set A from an algebra A and endowed
with the transition mapping Fpq : Fp → Fq under p ≤ q (in particular,
Fpp will an identity function on Fp).

We continue in this fashion putting Ωp = [p)+ and for p and q
such that p ≤ q the function Ωpq : Ωp → Ωq maps every S ∈ [p)+ into
S ∩ [q) ∈ [q)+, i.e. Ωpq(S) = Sq.

A constant functor 1 : A → PSet which is a terminal object of the
category PSetA might be defined with a help of conditions 1p = {0} for
p ∈ A and 1pq = id{0} under p ≤ q. A subobject classifier true : 1 → Ω
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is a natural transformation whose p-th component truep : {0} → Ωp will
be determined by the equality truep(0) = [p). Thus, the function true
chooses the greatest element from every da Costa algebra of [p)+ type.

Let τ : F 
•
.

G be an arbitrary subobject of PSetA-object G.

An every component τp is injective and can be treated as the inclu-
sion function Fp →֒ Gp. The p-th component (χτ )p : Gp → [p)+ of a
characteristic arrow χτ : G 

•
.

Ω will be defined by the equality

(χτ )p(x) = {q : p ≤ q and Gpq(x) ∈ Fq}

for every x ∈ Gp.

Now we construct truth arrows in a potos PSetA. Let us start with
an arrow false.

An initial object 0 : A → PSet of category PSetA is the constant
functor such that 0p = ∅∗ and 0pq = id∅∗ for p ≤ q. Components of a
natural transformation 0 

•
1 are the inclusions ∅∗ →֒ {0} (the same

component for any p). According to the usual definition an arrow false
is the characteristic arrow of subobject ! : 0 

•
1. For its component

falsep : {0} → Ωp we have falsep(0) = {q : p ≤ q and 1pq(0) ∈ 0q} =
{q : p ≤ q and 0 ∈ ∅∗} = ∅∗ and hence a natural transformation chooses
the null element from an every da Costa algebra.

Conjunction and disjunction can be handled in same way as in case
of topos SetP (cf. [7]), i.e. we, in fact, need for ∩ : Ω × Ω → Ω and
∪ : Ω×Ω → Ω the definitions of their p-th components in a form of

∩p(⟨S, T ⟩) = S ∩ T ;

∪p(⟨S, T ⟩) = S ∪ T .

The negation is ¬ : Ω 
•

Ω whose p-th component ¬p : Ωp → Ωp

in case of indentifying falsep with the inclusion {∅∗} →֒ Ωp (and since
¬ : Ω 

•
Ω is a characteristic arrow of subobject false) is as follows:

¬p(S) = {q : p ≤ q and Ωpq(S) ∈ {∅∗}} = {q : p ≤ q and
S ∩ [q) = ∅∗} = [p) ∩ ¬S = (¬S)p.

A negation ¬∗ : Ω 
•

Ω is obtained by deducing that the p-th

component ¬∗
p : Ωp → Ωp of negation satisfies equality

¬∗
p(S) = (¬S)p ∩p (¬S

o)p = ∩p(⟨¬p(S),¬p(S
o)⟩) = (S′)p.
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An implication ⇒: Ω×Ω 
•

Ω we have by defining the p-th com-

ponent as

⇒p (⟨S, T ⟩) = (S ⇒ T )p.

Finally, we will call PSetA-valuation a function V : Φ0 →
PSetA(1,Ω) assigning to every propositional variable πi some truth-
value V (πi) : 1 

•
Ω. This function might be extended to the set Φ of

all formulas in the following way:

(12) V (α) = false ⇒ V (¬α) = true :

(13) V (¬¬α) = true ⇒ V (α) = true;

(14) V (β◦) = V (α ⊃ β) = V (α ⊃ ¬β) = true ⇒ V ′(β◦) = V ′(α ⊃
β) = V ′(α ⊃ ¬β) = 1;

(15) V (α ⊃ β) = true ⇔ V (α) = false or V (β) = true;

(16) V (α ∧ β) = true ⇔ V (α) = V (β) = true;

(17) V (α ∨ β) = true ⇔ V (α) = 1 or V (β) = true;

(18) V (α◦) = V (β◦) = true ⇒ V ′(α◦) = V ′(β◦) = 1.

We say that the formula α be PSetA-valid (we write PSetA |= α) if
V (α) = true : 1 → Ω for all PSetA-valuations V .

Using da Costa-Alves valuation V ′ : Φ0 → {0, 1} from above it is
easy to prove at the same way the following theorem:

Theorem 8. For any potos PSetA, PSetA |= α iff ⊢C1
α (i.e. α is

provable in C1).
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