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Abstract. We present a collection of fourteen conjectures and open problems in the fields of nonlinear
analysis and optimization. These problems can be classified into three groups: problems of
pure mathematical interest, problems motivated by scientific computing and applications,
and problems whose solutions are known but for which we would like to know better proofs.
For each problem we provide a succinct presentation, a list of appropriate references, and
a view of the state of the art of the subject.
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There are no solved problems, there are only more-or-less solved problems.
–H. Poincaré

Introduction. Conjectures and open problems are motivations and driving forces
in mathematical research, beside other ingredients like applications and the need to
answer questions posed by users of mathematics in other sciences. Each field or
subfield of mathematics has its own list of conjectures, more or less specific to the
area concerned, more or less difficult to explain (due to the necessary background or
technicalities), and more or less known (distinguishing characteristics include whether
or not the question remains unanswered for a long time, and whether answering it
may trigger new problems, solve associated questions, or open new perspectives).

In the present paper we have listed a series of conjectures and open questions in
the field of nonlinear analysis and optimization, collected over recent years. Of course,
they reflect the interests of the author, and a problem one mathematical researcher
finds exciting and deserving of more attention could be considered just boring by
another. Our list of problems can be divided into three groups, but this is not really
a partition of the set: clearly a problem may belong to two different classes.

• Problems of pure mathematical interest. Some scientific colleagues claim that
an incentive for knowing more in science is the desire “to scratch where it
itches . . . .” Hence, some of our problems are of pure mathematical interest:
the eventual answer will not revolutionize the field. Examples belonging to
this category are Problems 4, 5, 6, . . . .
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• Problems motivated by scientific computing and applications. Answering these
problems could provide new solution methods or algorithms or could shed
light on what might be expected from the subject. Examples from our list
are Problems 1, 2, 9, 10, . . . .
• Problems whose solutions are known but for which we would like to have
better (i.e., shorter, more natural, or more elegant) proofs. Some colleagues
expert in evaluating mathematical activities claim that two-thirds of works in
mathematical research consist of synthesizing and cleaning existing results,
and providing new proofs, viewpoints, etc. We also have some questions of
that kind: Problems 2, 7, . . . .

For each of the fourteen problems described in this paper, we provide a clear-cut
presentation and a list of appropriate and recent references; in short, the reader will
find a summary of the state of the art and material for further investigations. For some
famous and long-standing conjectures, we checked by asking specialists if they were
still open. A typical answer is “the experts thought that the conjecture was plausible
until they tried to prove it and couldn’t; therefore now they think it is false, and can’t
prove it.” From experience, we all know that the consensus view on a conjecture can
be dramatically disproved by an original proof or a clever counterexample.

Each of the problems listed below can be read independently, according to the
interest of the reader, which is why we have provided a separate list of references for
each one.

A word about notation: 〈., .〉 denotes the usual inner product in Rd and ‖ · ‖ the
associated norm (same notations in a Hilbert space setting). Sd(R) is the space of
real symmetric (d, d) matrices. When a real-valued function f is differentiable at x,
∇f(x) represents the gradient (vector) of f at x.

Plan.
Problem 1. The d-step conjecture for convex polytopes.
Problem 2. Reducing the number of polynomial inequality constraints.
Problem 3. Bounding the product of the volume of a convex body by that of its

polar.
Problem 4. Darboux-like properties for gradients.
Problem 5. The possible convexity of a Tchebychev set in a Hilbert space.
Problem 6. Is a set with the unique farthest point property itself a singleton?
Problem 7. Solving a Monge–Ampère-type equation on the whole space.
Problem 8. Solving an eikonal-type equation on open subsets of Rn.
Problem 9. Convex bodies of minimal resistance.
Problem 10. J. Cheeger’s geometrical optimization problem.
Problem 11. The Legendre–Fenchel transform of the product of two convex qua-

dratic forms.
Problem 12. Simultaneous diagonalization via congruence of a finite collection of

symmetric matrices.
Problem 13. Solving a system of quadratic equations.
Problem 14. Minimizing a maximum of finitely many quadratic functions.

Problem 1. The d-Step Conjecture for Convex Polytopes. The d-step con-
jecture is one of the fundamental open problems concerning the structure of convex
polytopes (= convex compact polyhedra). First formulated by W. M. Hirsch in 1957,
and later transformed in a d-formulation (whence the name follows; see below), the
conjecture remains unsettled, though it has been proved in many special cases (for spe-
cific classes of polytopes), and counterexamples have been found for slightly stronger
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conjectures [Holt98]. It came from the desire to understand better the computational
complexity of edge-following algorithms in linear programming.

A good way to acquaint oneself with the conjecture is section 3.3 of Ziegler’s
book [Zieg95]; a broad and detailed survey is provided by [Klee97]. We present it
here in a succinct form.

If x and y are vertices of a convex polytope P , let δP (x, y) denote the smallest
k such that x and y are joined by a path formed by k edges. Then, the so-called
diameter of P is the maximum of δP (x, y) as x and y range over all the vertices of
P . For n > d ≥ 2, let ∆(d, n) be defined as the maximal diameter of convex polytopes
P in Rd with n facets (= faces of dimension d − 1). For example, one can easily
check that ∆(2, n) is the integer part of n2 . Also, by considering the convex polytope
[−1,+1]d in Rd (with 2d facets), one realizes that ∆(d, 2d) ≥ d.

Hirsch’s conjecture is as follows:

(1.1) For n > d ≥ 2, ∆(d, n) ≤ n− d.

Although this is not obvious, the Hirsch conjecture would follow if one could
prove it in the special case where n = 2d, that is, ∆(d, 2d) ≤ d, which has become
known as the d-step conjecture. Since ∆(d, 2d) ≥ d (see above), the bound suggested
by the d-step conjecture is certainly the best possible. So the d-step conjecture is
reformulated in an equivalent way:

(1.2) For d ≥ 2, ∆(d, 2d) = d.

Among results that aim to solve these conjectures, we single out the following:
Hirsch’s conjecture (as stated in (1.1)) holds true for d ≤ 3 and all n, for all pairs
(n, d) having n ≤ d+5; and the d-step conjecture (as stated in (1.2)) is true for d ≤ 5.

Rather recently, in [Laga97], the authors reformulated the d-step conjecture in
terms of an operation very familiar in numerical analysis, namely, the Gaussian elim-
ination.

As we said earlier, the d-step conjecture remains open for d ≥ 6. The shared view
among specialists in the subject is that it is false for large d.
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Problem 2. Reducing the Number of Polynomial Inequality Constraints. A
surprising and strong result by Bröcker [Broc91] and Scheiderer [Sche89] states that
a closed set of the form

(2.1) S :=
{
x ∈ Rd | P1 (x) ≤ 0, . . . , Pm (x) ≤ 0

}
,

where m is a positive integer and Pi are polynomial functions of the d variables
x1, . . . , xd, can be represented by at most d(d+1)

2 polynomial inequality constraints,
i.e., there exist polynomial functions Q1, . . . , Qd(d+1)/2 such that

(2.2) S =
{
x ∈ Rd | Q1 (x) ≤ 0, . . . , Qd(d+1)/2 ≤ 0

}
.
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The result has now spread from the field of algebraic geometry to that of poly-
nomial optimization. It is, as yet, an existence result, so the proofs proposed by the
authors are not constructive (no explicit construction of the Qi); in particular, the
degrees of the Qi are not controlled.

It is indeed a striking result: imagine a compact convex polyhedron in R2 with
106 vertices or boundary line segments—this can be described via only 3 polynomial
inequalities. When the Pi are affine,

Pi (x) = 〈ai, x〉 − bi
(
ai ∈ Rd, bi ∈ R

)
=

d∑
j=1

(ai)j xj − bi,

Grötschel and Henk [Grot03] derived some basic properties necessarily satisfied by
polynomial functions Qi, such as

{Ax ≤ b} =
{
x ∈ Rd | 〈ai, x〉 − bi ≤ 0 for i = 1, . . . ,m

}
(2.3)

=
{
x ∈ Rd | Q1 (x) ≤ 0, . . . , Qν(d) (x) ≤ 0

}
,(2.4)

and constructed (exponentially many) Qi for which (2.4) holds true. When d = 2 or 3,
they succeeded in achieving the “reduced” upper bound d(d+1)

2 . In [Lass02], Lasserre
showed that, under additional assumptions on S (like compactness), the polynomial
functions Qi in the representation (2.2) of S could be chosen as affine combinations
(with coefficients Pi) of sums of squares.

Several questions arise:
• Even in the polyhedral case (2.3), how does one explicitly construct polyno-

mial functions Qi such that (2.3)–(2.4) hold true, with their number ν (d)
polynomially bounded in the dimension d? A step further would be to obtain
the “reduced” upper bound ν (d) = d(d+1)

2 .
• (Very likely difficult). How does one prove constructively the theorem of

Bröcker and Scheiderer, i.e., how do we derive Q1, . . . , Qd(d+1)/2 (in (2.2))
from P1, . . . , Pm (in (2.1)) in a way amenable to an effective computation?

• The “magic” number d(d+1)
2 is the dimension of the vector space Sd (R) of

real symmetric (d, d) matrices. Knowing the recent impact of SDP optimiza-
tion (optimization problems where constraints invoke the semidefiniteness of
some matrices) and the relations between SDP and polynomial optimiza-
tion, a question comes naturally to mind: What is the relation between the
Bröcker–Scheiderer theorem and SDP relaxations of polynomial optimization
problems?

After completing the presentation of this problem (in 2004), we became aware of a
new publication on the subject [Bosse05], where further results and conjectures were
laid down. If S is an n-dimensional polytope (described as in (2.3)), then ν (d) =
2d − 1 is possible in (2.4) and, moreover, the authors gave an explicit description
of the polynomial functions Qi they employed (for (2.4)). They conjectured that the
dimension d itself is the right value for a general upper bound ν (d) for this special case.
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Problem 3. Bounding the Product of the Volume of a Convex Body by That of
Its Polar. The problem considered concerns the compact convex sets of Rd, symmetric
with respect to the origin O of Rd and containing O in their interior. We call C0 the
collection of such convex bodies.

If K belongs to C0, so does its polar set K0. For example, if ξA is the elliptic
convex set associated with the symmetric positive definite (d, d) matrix A such that
(its boundary is the ellipsoid associated with A)

ξA :=
{
x ∈ Rd | 〈Ax, x〉 ≤ 1

}
,

then ξA ∈ Co and
(i) ξ oA = ξA−1 ;
(ii) the volume (d-dimensional Lebesgue measure) of ξA is Vd

/√
detA, where Vd

is the volume of the unit Euclidean ball in Rd (that is, πd/2
/
Γ
(
d
2 + 1

)
).

As a result, Vol(ξA) ·Vol(ξoA) = V 2
d .

Another basic example is provided by the unit �1 and �∞ balls. The �∞ unit ball
(or unit cube) B∞ := [−1,+1]d and the �1 unit ball (also called cross polytope) B1 :=
convex hull of {± ei | i = 1, . . . , d} belong to C0 and are mutually polar. Looking at
their volumes, since

Vol(B∞) = 2d and Vol(B1) = 2d
/
d !,

their product Vol(B∞) ·Vol(B1) equals 4d
/
d!.

It was conjectured by Mahler (1939) that, in any Rd,

(3.1) V 2
d ≥ Vol(K) ·Vol(Ko) ≥ 4d

/
d! for all K ∈ Co,

the left inequality being characteristic of elliptic sets and the right one of �1 or �∞

balls (up to images by invertible linear mappings); cf. [Berg90].
As for Mahler’s double conjecture above, the situation today is as follows. Ques-

tions concerning the left part have been answered; see [Schn93, Grub93, Sant04] for
this development. The exact right-hand bound is unknown today for d ≥ 3, and in
fact has only been known since Mahler for d = 2. In 1985 (see [Bour87]), Bourgain
and Milman showed that there exists c > 0 such that

(3.2) Vol(K) ·Vol(K0) ≥ cd
/
d! for all K ∈ Co.

Passing from c to the conjectured value 4 is still an open problem.
A simpler (but related) question we would like to raise is that of the proof of the

expression of Vol(K0) in terms of the support function σK of K. Indeed, for K = ξA
we note that

(3.3) Vol(ξoA) = Vol(ξA−1) = Vd
√

det A,

while

(3.4)
∫
Rd

e−
√
〈A−1u,u〉 du = d! Vd

√
det A.
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Here u �→
√
〈A−1u, u〉 is nothing other than the support function of ξA. A

generalization to K ∈ Co is as follows (mentioned in [Barv89, p. 207]):

(3.5) Vol(K0) =
1
d!

∫
Rd

e−σK (u) du.

We know of only one way of proving this, via a change of variables in properly
chosen integrals. We would like a short and clear-cut proof of (3.5) using techniques
and results from modern convex analysis.
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Problem 4. Darboux-like Properties for Gradients. An old result due to Dar-
boux asserts that for a differentiable function f : R → R, the image by f ′ of any
interval I ⊂ R is an interval of R (even if f ′ is not continuous). The Darboux prop-
erty fails for vector-valued functions: there are differentiable f : R→ R

2 and intervals
I ⊂ R such that f ′(I) is not connected.

In recent years, there has been a revival of interest in Darboux-like properties for
differentiable functions f : X → Y . Generalizations of the aforementioned theorem
can be foreseen in several directions, depending on

• the topological structure of X and Y (but we only consider here real-valued
functions; see [Sain02] for some Darboux-like properties of differentiable vector-
valued functions);
• the degree of smoothness of the function f ;
• the kind of topological properties of Df(C) ⊂ X∗ (C ⊂ X and Df is the

differential of f) we are looking for: connectedness of Df(C) whenever C is
connected, its “semiclosedness”(i.e., Df(C) is the closure of its interior), etc.

Here are some results achieved recently and open questions raised.
Malý published in [Maly96] the following interesting result.
Theorem 4.1. Let X be a Banach space, and let f : X → R be a (Fréchet-)differ-

entiable function. Then, for any closed convex subset C of X with nonempty interior,
the image Df(C) of C by the differential Df of f is a connected subset of X∗ (the
topological dual space of X).

The result does not hold true if C has an empty interior (there are counterex-
amples even with functions f of two variables). The first question we raise is the
following: Could we replace the convexity assumption on C by one on the connected-
ness of C (is such a context more natural)?

Malý’s result can be rephrased in terms of the so-called bump functions (f is
called a “bump” when it has a nonempty bounded support); in fact, most of the
results in the area we are exploring are stated for bump functions [Azag02a, Azag02b,
Azag03, Borw01, Borw02, Fabi05, Gasp02, Kolar02, Kolar05, Riff89].

Theorem 4.2. If f : X → R is a differentiable bump function, then Df(X) is a
connected subset.
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Now we give two results by Gaspari [Gasp02]:
• If f : R2 → R is a C2 bump function, then ∇f

(
R

2
)

equals the closure of its
interior.
This is a specific result for functions of two variables. Question: Do we
really need f to be C2, or would just C1 be enough? An improvement was
recently made by Kolář and Kristensen [Kolar05]: the property holds true
if f : R2 → R is C1 and the modulus of continuity ω(·) of ∇f satisfies
ω (t)

/√
t→ 0 as t↘ 0.

• Let Ω be an open connected subset of Rn containing O. Then there exists a
(Fréchet-)differentiable bump function f : Rn → R such that ∇f (Rn) = Ω.

Rifford [Riff89], using tools from differential geometry, proved the following:
• Let f : Rn → R be a Cn+1 bump function. Then ∇f (Rn) equals the closure

of its interior.
Question: Is the smoothness assumption on f optimal when n ≥ 3?

The most intriguing general question remains the following, raised in [Borw01]:
Let f : Rn → R be a C1 bump function; does ∇f (Rn) equal the closure of its

interior?
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Problem 5. The Possible Convexity of a Tchebychev Set in a Hilbert Space.
Let (H, 〈., .〉) be a Hilbert space; we denote by ‖ · ‖ the norm derived from the inner
product 〈., .〉. Given a nonempty closed subset S of H, and any x ∈ H, we denote
by dS (x) the distance from x to S, and by PS (x) the set of points in S which are
“projections” of x onto S:

(5.1) dS (x) := inf {||x− s||; s ∈ S} ,
(5.2) PS (x) := {s ∈ S; dS (x) = ||x− s||} .
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The set S is said to be Tchebychev if PS (x) reduces to exactly one element for
all x ∈ H. A classical result in approximation and optimization is that every closed
convex set in a Hilbert space is Tchebychev. The question we pose here is, What
about the converse? In other words, Is a Tchebychev set necessarily convex? The
answer has been known to be yes if H is finite-dimensional since Bunt (1934) and
Motzkin (1935). What if H is infinite-dimensional? The question was clearly stated
by Klee (circa 1961) and he conjectured the answer would be no: he thought that
there is an infinite-dimensional Hilbert space containing a Tchebychev nonconvex set
(indeed, there are nonconvex Tchebychev sets in pre-Hilbertian spaces). Many works
have been devoted to the subject in the past forty years, but the question, as posed
above, is still unanswered completely. An account of the various contributions can
be found in [JBHU98, Bala96, Deut01]. As far as we are concerned, we prioritize the
point of view of convex and/or differential analysis.

There is a function conveniently associated with S,

(5.3) x ∈ H �−→ fS (x) :=




1
2 ||x||2 if x ∈ S,

+∞ otherwise.

This function fS is lower-semicontinuous on H and convex if and only if S is
convex. The Legendre–Fenchel conjugate f∗S of fS is easy to calculate (due to the
specific calculus rules on the Hilbertian norm ‖ · ‖):

(5.4) p ∈ H �−→ ϕS (p) := f∗S (p) =
1
2
[
||p||2 − d2

S (p)
]
.

The results proven up to now are summarized by the following scheme:

(5.5)


 S is Tchebychev

+
some additional condition (C)


⇒ (S is convex) .

For example, (C) could be “S is weakly closed”; or “the mapping pS (pS (x) stands
for the only element of PS (x)) enjoys some ‘radial continuity property’”; or “conver-
gent subsequences can be extracted from minimizing sequences in the definition of
dS (x).”

If we consider the problem from the angle of differentiability, the main known
result is that if S is Tchebychev, the following statements are equivalent:

(i) d 2
S (or ϕS) is Gâteaux-differentiable on H;

(ii) d 2
S (or ϕS) is Fréchet-differentiable on H;

(iii) S is convex.
So, the following central question remains: Does the Tchebychev property of S

imply that d 2
S (or the convex function ϕS) is Gâteaux-differentiable on H?
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Problem6. Is a Setwith theUnique Farthest Point Property Itself a Singleton?.
One of the oldest questions (dating back to the 1960s) in real analysis and approx-
imation, related to Problem 5, is the so-called farthest point conjecture, which is
formulated as follows: Given a bounded closed subset S of a normed vector space X,
consider the set-valued mapping QS , which assigns to x ∈ X the points in S which are
farthest from x; if QS(x) contains one and only one element for all x ∈ X, could we
assert that S itself is a singleton? More than one hundred papers have been devoted
to this question since its formulation, positively answering the conjecture in rather
general situations (such as when S is compact, if X is finite-dimensional, when X is
a particular normed vector space, etc.) but not in all of them.

The problem can be broached from the point of view of convex and/or differential
analysis; it reduces to answering a question on the Fréchet-differentiability of an ad
hoc convex function. Since the problem, as originally posed by Klee (circa 1961), is
still unanswered in a Hilbert space setting, we consider it in such a context.

For a nonempty bounded closed subset S of a Hilbert space (H, 〈., .〉), for all
x ∈ H let

(6.1) ∆S (x) := sup {‖ x− s ‖; s ∈ S} ,
(6.2) QS (x) := {s ∈ S; ∆S (x) = ‖ x− s ‖} ,

where || · || denotes the Hilbertian norm built up from the inner product 〈., .〉.
Two functions are conveniently associated with S (cf. [JBHU06, section 4.2]):

(6.3) x ∈ H �−→ gS (x) :=



− 1

2 ||x||2 if x ∈ −S,

+∞ otherwise;

(6.4) x ∈ H �−→ θS (x) :=
1
2
‖ x ‖2 −σ−S (x) ,

where σ−S denotes the support function of −S (i.e., σ−S (x) := supσ∈−S〈x, σ〉). This
function θS is finite and continuous on H.

The convexity of θS (or of gS) gives the answer to the farthest point conjecture;
indeed, the following are equivalent:

(i) gS is convex;
(ii) θS is convex;
(iii) S is a singleton.
What does the Legendre–Fenchel transform bring to the understanding of the

conjecture? First of all, the Legendre–Fenchel conjugates of gS and θS are

p ∈ H �−→ ψS (p) := g∗S (p) =
1
2
[
∆2
S (p)− ‖ p ‖2

]
;

θ∗S (p) =
1
2
∆2
S (p) .

Second, the Fréchet-differentiability of the Legendre–Fenchel conjugate h∗ of (an
arbitrary function) h induces the convexity of h (see [JBHU06, section 4.3] and the
references therein). So, the farthest point conjecture boils down to the following
question:(

QS (x) is a singleton
for all x ∈ H

)
?
⇒

(
∆2
S is a Fréchet-differentiable

(convex) function on H

)
.

Finally, it is interesting to draw a parallel between Problem 5 and Problem 6 by
comparing their definitions and results:
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Problem 5 Problem 6

Assumption: PS (x) is a singleton
for all x ∈ H.

QS (x) is a singleton
for all x ∈ H.

Functions involved: fS gS

d2
S ∆2

S

ϕS = 1
2

[
‖ · ‖2 − d2

S

]
ψS = 1

2

[
∆2
S − ‖ · ‖2

]

Desired conclusion: S is convex S is a singleton

Key: differentiability of ϕS
(
or d2

S

)
differentiability of ψS

(
or ∆2

S

)
.
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Problem 7. Solving a Monge–Ampère-Type Equation on the Whole Space.
Monge–Ampère equations are nonlinear partial differential equations (PDEs) of the
form

(7.1) det
(
∇2f

)
= g on Ω,

where ∇2f denotes the Hessian matrix of the desired “smooth” solutions f , g is a
given function, and Ω an open subset of Rd. There are various interpretations of the
wording “f is a solution of (7.1)”; the regularity of solutions f depends heavily on the
behavior of f at the boundary of Ω; for an account of the huge amount of literature
devoted to this subject, consult [Bake94, Guti01, Cafa04] and [Vill03, Chapter 4].

Here we consider a particular case: Ω is the whole of Rd, so that no behavior of f
on the boundary of Ω interferes; this “rigidity” imposed on the problem leads to the
following result.

Theorem 7.1. Let f : Rd −→ R be a C2 convex function satisfying

(7.2) det
(
∇2f (x)

)
= 1 for all x ∈ Rd.

Then f is a quadratic function.
This result was proved for d = 2 by Jörgens in 1954 (using techniques and results

from complex analysis), then for some values of d (3, 5, for example) by Calabi [Cala58]
and Pogorelov (1964). The general result (for any dimension d), as stated in Theorem
7.1, is due to Pogorelov [Pogo72]. The question we pose now is this: How do we prove
Theorem 7.1 using results from modern convex analysis? Several reasons make this
question plausible:

• The “rigidity condition” (7.2) is global; as a consequence, the set of solutions
is invariant under the action of rotations (as changes of variables).
• The eigenvalues of ∇2f (x), ranked like

λ1 (x) ≥ λ2 (x) ≥ · · · ≥ λd (x) ,

are continuous functions (of x ∈ Rd); the condition imposed on them is

(7.3)
d∏
i=1

λi (x) = 1 for all x ∈ Rd,

and the expected result is that the λi do not depend on x.
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• Without loss of generality, we may assume that

(7.4) f (0) = 0, ∇f (0) = 0.

Hence, the convex function f is positive on Rd. The first step then would be to
prove that f is 1-coercive on Rd, that is, f (x)/‖ x ‖→ +∞ as ‖ x ‖→ +∞.

Now the Legendre–Fenchel transformation f �−→ f∗ of convex functions f enters
into the picture. There are precise relations between the gradient vectors and Hessian
matrices of f and f∗ (see [JBHU96, Chapter X] and [Seeg92], for example). Here is
one of them [JBHU96, p. 89]: Let f : Rd → R be convex, twice differentiable, and
1-coercive on Rd; assume moreover that ∇2f (x) is positive definite for all x ∈ Rd.
Then f∗ enjoys the same properties and we have the following parameterizations:

(7.5)
• ∇f

(
R
d
)
= Rd;

• ∇f∗ (p) = x and ∇2f∗ (p) =
[
∇2f (x)

]−1 at p = ∇f (x) .

Thus, f∗ enjoys the same properties as f , notably the “rigidity condition” (7.2).
But there are quite a few classes of convex functions stable under the Legendre–Fenchel
transformation—in fact, 1

2 ‖ · ‖2 is the only convex function satisfying f∗ = f . So, we
are not far from quadratic convex functions x �→ 1

2 〈Ax, x〉, with A symmetric positive
definite. How should this problem be concluded?
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Problem 8. Solving an Eikonal-Type Equation on Open Subsets of Rn. Let
Ω be an open subset of Rn. We are interested in (classical) solutions of the PDE
‖ ∇f ‖= 1 on Ω, i.e., C1-smooth functions f : Ω→ R satisfying

(8.1) ‖ ∇f (x) ‖ = 1 for all x ∈ Ω

(‖ · ‖ denotes the usual Euclidean norm on Rn). We could also add the requirement
that f be continuous on the closure of Ω, but in the present context no condition is
imposed on the boundary of Ω. PDEs of the (8.1) type are called eikonal and have
roots in geometrical optics. There are several possible definitions of “f is a solution
of (8.1)”: classical, generalized, or viscosity solutions [Cann04, Kruz75, Mant03]. We
exclusively consider classical solutions here.

To take a first example, consider Ω = (a, b) ⊂ R and look for f : [a, b] → R,
continuous on [a, b], differentiable on (a, b), and satisfying |f ′ (x)| = 1 for all x ∈ (a, b);
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it is then easy to prove that f is affine on [a, b], i.e.,

f (x) = f (a)± (x− a) for all x ∈ [a, b] .

Let us mention some known results.
• If Ω is the whole of Rn, the “rigidity” imposed on the problem (8.1) (like in

the Monge–Ampère equation; see Problem 7) means that the only solutions
are affine functions on Rn, i.e.,

x ∈ Rn �→ f (x) = 〈µ, x〉 + ν,

with µ ∈ Rn, ‖ µ ‖= 1, and ν ∈ R.
This can be proved by using techniques from differential equations [Epre98]
or applying Cauchy characteristics [Brya82, Theorem 2.4].
• If Ω = Rn\ {a}, where a ∈ Rn, there is an additional solution to (8.1), namely,

(8.2) x ∈ Rn �→ g (x) = g (a)± ‖ x− a ‖ .

• If Ω �= Rn, only partial answers to our problem are known. For example, if C
is any closed convex set contained in Ωc (the complementary set of Ω), then
classical results from convex analysis tell us that the distance function dC is
a solution of (8.1) [JBHU79, Poly84].
Indeed, distance functions dC to C, as well as signed distance functions ∆C ,

(8.3) x ∈ Rn �−→ ∆C (x) := dC (x) − dCc (x)

(studied in [JBHU79] from the convex and nonsmooth analysis viewpoints;
see also [Delf94]), seem to play a key role in answering our questions. Take, for
example, Ω = {x ∈ Rn ; x �= 0 and ‖ x ‖�= 1}. Then, the functions x �−→‖ x ‖
(distance to a single point set contained in Ωc), but also x �−→ ∆B(0,1) (the
signed distance associated with the closed unit ball B (0, 1)) are solutions of
(8.1).

Question: What are the solutions of (8.1)? Are they necessarily of the form
±dS + r (for various S and r) on each connected component of Ω?
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Fig. 9.1

Problem 9. Convex Bodies of Minimal Resistance. In 1686, Newton posed the
following question: Among bodies with the same base (say, a disk of radius R > 0),
limited in its length (an upper bound L > 0 is given), what is the shape of the
body offering the least resistance (at a constant speed) in a fluid (with given specific
physical properties)?

Newton considered only solids of revolution (designed by the graphs of functions
r �→ u (r) rotated around the horizontal axis) and, provided that some assumptions
on the physical context of the problem were made, he was led to the following one-
dimensional variational problem (see Figure 9.1):

(P)




Minimize J (u) :=
∫ R

0

r

1 + |u̇ (r) |2 dr,

u (0) = L, u (R) = 0,

u̇ (r) ≤ 0 on [0, R] .

The solution proposed by Newton is as in Figure 9.2, with a (surprising) flat piece
at the end of the body. One of the standard ways of solving P nowadays is via results
from optimal control (u̇ = v is the control variable and V = R− is the set of admissible
controls). For historical accounts of this problem and classical ways of solving it, see
[Tikh90, eighth story].

Most mathematicians considered Newton’s problem of the body of minimal re-
sistance to be solved. It is indeed the case (this has been proved rigorously) if one
supposes the radial symmetry of the considered bodies. However, it has been recently
shown (in [Guas96], for example) that there exist nonradial convex bodies for which
the resistance is less than the minimum obtained in Newton’s (radial) case. This dis-
covery boosted new research works on the subject; see [Butta93, Broc96, Lach00] and
the website of Lachand-Robert (http://www.lama.univ-savoie.fr/∼lachand/),1 where

1T. Lachand-Robert died tragically in an accident in his home (February 2006); he had just
turned thirty nine. Problems 9 and 10 are dedicated to his memory.

http://www.lama.univ-savoie.fr/~lachand/
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Fig. 9.2

most of the appropriate references and papers can be found. From the mathematical
viewpoint, the variational problem posed is as follows:

(P′)


 Minimize J (u) :=

∫
B(0,R)

1
1+ ‖ ∇u (x) ‖2 dx

over C,

where C :=
{
u ∈W 1,∞

loc | 0 ≤ u ≤ L, u concave
}

(u is a function of two variables x).
The shape condition on u (u must be concave) is strong enough to produce a

compactness assumption which implies the existence of a solution in (P′). Newton’s
case corresponded to the same variational problem but with a smaller constraint set,

Crad := {u ∈ C | u is radially symmetric} .

As we mentioned before, the new fact here is that

(9.1) inf
u∈C

J (u) < inf
u ∈ Crad

J (u) .

To summarize recent works on this subject and still open questions, let us say
that we are faced with a strange mathematical situation:

• A variational problem (P′) which does have solutions (minimizers are un-
known, except in some very particular situations).
• There are infinitely many solutions to (P′) (a solution to (P′) is nonradial

necessarily, so that rotating it around the axis provides another solution).
• (Usual) numerical methods cannot solve (P′) (the concavity of the desired

object is a constraint very difficult to handle in a numerical procedure).
What is conjectured is that the optimal solutions in (P′) are diamond-like bodies

(with a number of flat pieces). Indeed, as for minimal surfaces, there is no subset
on which a minimizer in (P′) is strictly convex; in particular, wherever the Gaussian
curvature is finite, it is null.

Numerical profiles recently obtained by ad hoc methods [Lach04] are better than
any previously conjectured optimal shapes.
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As a whole, the theoretical characterizations of the solutions in (P′) as well as
their effective numerical approximation remain open challenging problems.
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Problem 10. J. Cheeger’s Geometrical Optimization Problem. Consider the
following geometrical optimization problem in R2: given an open nonempty bounded
set Ω ⊂ R2, solve the following minimization problem:

(P)




Minimize
perimeter of X

area of X
,

X open and simply connected,
X ⊂ Ω̄.

If the class of admissible domains X is restricted to smoothly bounded and simply
connected domains which are compactly contained in Ω, then (P) is known as the
Cheeger problem for Ω; cf. [Chee70]. The (positive) minimal value in (P) is achieved
by a subset of Ω̄ which touches the boundary of Ω. The generalization of (P) to
the d-dimensional setting is easy to imagine: given an enclosing open bounded set
Ω ⊂ Rd, what are the subsets X of Ω̄ (if any) which minimize the ratio (surface area
of X) over (volume of X)?

Known results on this problem concern essentially the two-dimensional case:
• When Ω is convex, there is an unique convex minimizer X in (P), denoted

by XΩ. The explicit form of this minimizer XΩ is known only in particular
cases: when Ω is a disk or an annulus (in which case XΩ = Ω), and when Ω is
a triangle or a rectangle (in which case XΩ is obtained from Ω by “rounding
the corners”).
• Still when Ω is convex, a constructive algorithm for numerically approximat-

ingXΩ is provided in [Kawo06]; this paper contains all the references to recent
works on the subject in the two-dimensional case.
In higher dimensions, d ≥ 3, all the questions related to the optimization
problem (P) are unanswered, among them:

- If Ω is convex, is there an unique solution to (P)?
- Still with Ω convex, are all the minimizers in (P) convex? (What is

known is that there exists at least one convex minimizer.)
In [Lach04], an algorithm is proposed (and tested on examples) to approximate

a convex solution XΩ of (P) when Ω is convex in R3. This algorithm also serves for
other optimization problems among convex bodies, like Newton’s problem of the body
of minimal resistance (see Problem 9 above).



270 JEAN-BAPTISTE HIRIART-URRUTY

REFERENCES

[Chee70] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems
in Analysis: A Symposium in Honor of S. Bochner, R. C. Cunning, ed., Princeton
University Press, Princeton, NJ, 1970, pp. 195–199.

[Kawo06] B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets
of the plane, Pacific J. Math., 225 (2006), pp. 103–118.
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Problem 11. The Legendre–Fenchel Transformof the Product of TwoConvex
Quadratic Forms. Let A and B be two symmetric positive definite (n, n) matrices,
and let qA (resp., qB) be the associated quadratic form on Rn, that is,

(11.1) x ∈ Rn �−→ qA (x) :=
1
2
〈Ax, x〉.

It is well known that qA is strictly (even strongly) convex on Rn, and that its
Legendre–Fenchel conjugate is

(11.2) s ∈ Rn �−→ q∗A (s) =
1
2
〈A−1s, s〉.

Now we turn our attention to the product function

(11.3) x ∈ Rn �−→ f (x) := qA (x) qB (x) .

The function f is clearly C∞ on Rn; the second-order Taylor–Young development
of f at x ∈ Rn yields the Hessian matrix of f at x:

(11.4) ∇2f (x) = qB (x)A+ qA (x)B +AxxTB +BxxTA.

Unfortunately, ∇2 f(x) is not positive semidefinite for all x ∈ Rn, even if B = A−1

(contrary to what is stated in [JBHU01, Exercise 18, p. 120]). However, from the
variational analysis point of view, it is interesting to pose the following question:
What is the Legendre–Fenchel conjugate of f?

Most likely, q∗A and q∗B play a part in the expression of f∗(s). A (usable) answer to
the question above would provide interesting (possibly unknown) inequalities involving
convex quadratic forms.

A particular instance of the problem is when B = A−1. Then the Legendre–
Fenchel transform of f (x) = qA (x) qA−1 (x) would allow us to recover inequalities
like that of Kantorovich [Huang05]:

(11.5)


 ‖ x ‖

4 ≤ 〈Ax, x〉〈A−1x, x〉 ≤ 1
4

(√
λ1

λn
+
√
λn
λ1

)2

‖ x ‖4

for all x ∈ Rn,

where λ1 (resp., λn) denotes the largest (resp., the smallest) eigenvalue of A.
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Problem 12. Simultaneous Diagonalization via Congruence of a Finite Co-
llectionof SymmetricMatrices. A collection ofm symmetric (n, n) matrices {A1, A2,
. . . , Am} is said to be simultaneously diagonalizable via congruence if there exists a
nonsingular matrix P such that each of the PTAiP is diagonal. Simultaneous diago-
nalization via congruence corresponds to transforming the quadratic forms qi on Rn

associated with the Ai’s (i.e., qi(x) = 〈Ax, x〉 for x ∈ Rn) into linear combinations
of squares by a single change of variable; it is a more accessible property than the
(usual) diagonalization via similarity (beware of confusion between these two types
of reduction of matrices).

Here as in the next two problems, � 0 (resp., � 0) means positive definite (resp.,
positive semidefinite).

We recall two results pertaining to the case where two symmetric (n, n) matrices
are involved.

• If
(12.1)
there exists µ1, µ2 ∈ R such that µ1A+ µ2B � 0 (for example, if A � 0),

then

(12.2) A and B are simultaneously diagonalizable via congruence.

This is a classical result in matrix analysis; see section 7.6 of [Horn85], for
example.
• Let n ≥ 3. If

(12.3)


 〈Ax, x〉 = 0

and
〈Bx, x〉 = 0


 ⇒ (x = 0) ,

then (12.2) holds true.
This result is proposed on pp. 272–280 of [Greub76]; the proof, due to Milnor,
clearly shows that the assumption n ≥ 3 on the dimension of the underlying
space is essential.

Actually, statements (12.1) and (12.2) above are equivalent whenever n ≥ 3; this
was proved by Finsler (circa 1936) and rediscovered by Calabi (1964). A very good
account of Finsler–Calabi-type results, including the historical developments, remains
the survey paper by Uhlig [Uhlig79].

When more than two symmetric matrices are involved, none of the two aforemen-
tioned results remains true. This is related to the convexity or nonconvexity of the
(image) cone

K := {(〈A1x, x〉, 〈A2x, x〉, . . . , 〈Amx, x〉) | x ∈ Rn}

(see [JBHU02] for developments on this topic). So, the following problem remains a
strong one: Find sensible and “palpable” conditions on A1, A2, . . . , Am ensuring they
are simultaneously diagonalizable via congruence.
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Problem 13. Solving a System of Quadratic Equations. As stated in the pre-
vious problem, when A and B are two symmetric (n, n) matrices with n ≥ 3, the
following are equivalent:

0 is the only solution of the system of two quadratic
equations 〈Ax, x〉 = 0 and 〈Bx, x〉 = 0;(13.1)

µ1A+ µ2B � 0 for some µ1, µ2 ∈ R.(13.2)

(13.2) does not necessarily result from (13.1) when n = 2; a simple counterexample
is provided by A =

[
1 0
0 −1

]
and B = [ 0 1

1 0 ]; indeed, (13.1) holds true, but there is no
way to have µ1A + µ2B � 0. One way of explaining this shortcoming is the lack of
convexity of the image set

B := {(〈Ax, x〉, 〈Bx, x〉) | ‖ x ‖= 1} .

Brickman’s theorem (1961) asserts that B is convex for n ≥ 3 (see [JBHU02]); thus,
“separating” the origin (0, 0) from B in R2 leads to the missing implication (13.1)
⇒(13.2).

When m (≥ 3) symmetric matrices A1, A2, . . . , Am are involved, the condition

(13.3)
m∑
i=1

µiAi � 0 for some µ1, . . . , µm ∈ R

indeed ensures that

(13.4) (〈Aix, x〉 = 0 for all i = 1, . . . ,m)⇒ (x = 0) .

But this is too strong a sufficient condition, by far. So, the following problem is
posed: How do we express equivalently (or give “mild” sufficient conditions for) the
assertion (13.4) in terms of the Ai’s?
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Problem 14. Minimizing a Maximum of Finitely Many Quadratic Functions.
Condition (13.1) in the previous problem could be formulated in a variational fashion
as follows:

(14.1) max {|〈Ax, x〉| , |〈Bx, x〉|} > 0 for all x �= 0 in Rn.

By strengthening this inequality (removing the absolute values in (14.1)), it is
possible to obtain a “unilateral” version of the equivalence between (13.1) and (13.2)
in the previous problem, valid now for any n. This is the so-called Yuan’s lemma
[Yuan90, JBHU02]:
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Let A and B be two symmetric (n, n) matrices. Then the following are equivalent:

(14.2)

• max {〈Ax, x〉, 〈Bx, x〉} > 0 for all x �= 0 in Rn

(resp., ≥ 0 for all x ∈ Rn) ;

• there exist µ1 ≥ 0, µ2 ≥ 0, µ1 + µ2 = 1 such that
µ1A+ µ2B � 0 (resp., � 0).

So, the “unilateral” version of the question posed at the end of the presentation
of the previous problem is as follows: Let A1, A2, . . . , Am be m symmetric (n, n)
matrices. How do we express equivalently (or give “mild” sufficient conditions for)
the following inequality in terms of the Ai’s:

(14.3)
max {〈A1x, x〉, 〈A2x, x〉, . . . , 〈Amx, x〉} > 0 for all x �= 0 in Rn

(resp., ≥ 0 for all x ∈ Rn)?

If a convex combination of the Ai’s is positive definite (resp., positive semidefi-
nite), then we clearly have a sufficient condition for securing (14.3), but not a necessary
one (at least for m ≥ 3).

It is important to note that (14.3) is related to the fields of necessary/sufficient
conditions in nonsmooth optimization: The function x ∈ Rn �→ q(x) := max{〈Aix, x〉
| i = 1, . . . ,m} is globally minimized at x̄ = 0 (under assumption (14.3)); however,
expressing some generalized second-order necessary condition for minimality for q at
x̄ = 0 does not give any interesting information about the Ai’s.

A more general question behind this is that of “second-order approximation
models” or “generalized Hessian operators” for nonsmooth functions of the form
f = max {f1, f2, . . . , fm}, where the fi’s are C2 functions on Rn. For the first-order
approximation model around x̄ or minimality conditions at x̄, there is no ambiguity:

∂f (x̄) := convex hull of all the ∇fi (x̄) for which fi (x̄) = f (x̄)

is an appropriate “multigradient” playing the role of a substitute for the gradient of
f at x̄. As for the second-order approximation model of f around x̄, the Hessian
matrices useful when moving in a direction d ∈ Rn are those corresponding to the
i = 1, . . . ,m for which fi (x̄) = f (x̄) and, moreover,

max {〈∇fi (x̄) , d〉 | fi (x̄) = f (x̄)} = 〈∇fi (x̄) , d〉.

So, in spite of numerous new ideas and works on the subject, no “generalized
Hessian operator” stands out. Actually, in recent years, further different directions
have been taken in order to handle second-order approximation models and resulting
minimization algorithms for functions like max {fi, . . . , fm} [JBHU96, Rock98].
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