
3 

Powder Injection Molding 
 of Metal and Ceramic Parts 

Joamín González-Gutiérrez, Gustavo Beulke Stringari and Igor Emri 
Center for Experimental Mechanics, University of Ljubljana, Ljubljana, 

 Slovenia 

1. Introduction 

Powder injection molding (PIM) is a technology for manufacturing complex, precision, net-
shape components from either metal or ceramic powder. The potential of PIM lies in its 
ability to combine the design flexibility of plastic injection molding and the nearly unlimited 
choice of material offered by powder metallurgy, making it possible to combine multiple 
parts into a single one (Hausnerová, 2011). Furthermore, PIM overcomes the dimensional 
and productivity limits of isostatic pressing and slip casting, the defects and tolerance 
limitations of investment casting, the mechanical strength of die-cast parts, and the shape 
limitation of traditional powder compacts (Tandon, 2008).  

Due to the demand of high performance materials and the miniaturization of complex 
components in various fields, PIM market has exceeded the $ 1 billion mark in 2007, 
becoming approximately six times larger than 15 years before (German, 2008). This 
impressive growth rate is not expected to slow down in the next few years, as a recent report 
from Global Industry Analysts announced that together, world metal and ceramic PIM 
market is forecast to reach $ 3.7 billion by the year 2017 (Global Industry Analysts [GIA], 
2011). Metal powder injection molding (MIM) is still considered the largest segment of this 
market, accounting for more than 70% of global output. Although PIM is globally 
widespread, Europe and Asia-Pacific account for a major share of MIM segment, while USA 
is still the largest market for Ceramic Injection Molding (CIM) (GIA, 2011). 

In Europe, the MIM production is dominated by automotive applications and the so called 
consumer market (which includes watches and eyeglasses), while the North American 
production is mainly applied to the medical/healthcare field. On the other hand, the Asian 
production, considered the largest one, is dominated by consumer electronics and 
information technology applications. The consumer electronics market is, indeed, one of the 
drivers behind MIM, whose growth is largely taking place in Asia, specifically in Taiwan, 
Malaysia, Thailand, China, Singapore and South Korea. Another growth factor is the 
expansion of medical component production also in Asia, as a larger population gains 
access to improved health care (German, 2008). 

A recent increase in MIM sales has generated a need for new equipment, with a 
simultaneous investment in research and development. Typically, leader companies invest 
an average of 10.5% of sales in the combination of capital expansion and research. Besides 

www.intechopen.com



 
Some Critical Issues for Injection Molding 

 

66

this, several contract electronic assembly firms that used to purchase MIM components from 
custom molders have now elected to make from MIM a captive operation (German, 2008). 
This could lead to rapid growth for those operations since the relationship between design 
and production can be improved. 

Stainless steel continues to dominate MIM applications, accounting for around half of the 
global production, reflecting the capture of components that would have otherwise gone to 
investment casting. Nevertheless, other materials as copper, nickel alloys, bronze and more 
recently tungsten alloys and titanium also represent important markets (German, 2008). On 
the other hand, the CIM market is mainly dominated by products made out of alumina, 
zirconia, and silicon or aluminium nitride powders (Ruprecht et al, 2002).  

Typical components produced by PIM, either MIM or CIM, range from 0.002 to over 100 g 
(German, 2008). Furthermore, in both segments it is clear the progressive move towards 
smaller products, demanding improved technologies regarding machinery, process, and 
materials, hence leaving a still open field for applied research.  

2. Overview of process 

The PIM process presents countless variations which are used in the industry today. 
Invariably, it consists of four steps (Gonçalves, 2001; Tay et al, 2009): 

 Feedstock preparation; 
 Injection molding; 
 Debinding; 
 Sintering. 

In Fig. 1 a flow chart illustrating the main stages of PIM is presented. 
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Fig. 1. Flow chart illustrating the main stages of PIM. 
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The starting material for PIM, usually termed feedstock, is a homogeneous pelletized 

mixture of metal or ceramic powder and an organic multi-component binder. The binder 

and the powder are combined in a variety of compounding equipment, such as extruders 

and mixers. The mixture is then pelletized to an appropriate shape for feeding into the 

molding machine. The binder is simply a carrier medium for the powder and once a part is 

molded, the binder is removed in a subsequent step.  

The injection molding process is mainly identical to conventional plastic injection molding. 

Nevertheless, some machine hardware changes are usually required to process a specific 

feedstock based on their compressibility and viscosity. Control of the molding process is 

vital for maintaining tight tolerances in subsequent steps. Most design advantages of PIM 

technology are captured during molding by relying on the flexibility of incorporating 

complexities in the tool. A molded part is called a “green part” and is oversized to allow 

shrinkage during sintering (Tandon, 2008). 

Before sintering, it is necessary to remove the binder from the molded part. The debinding 

is the most expensive and time-consuming stage in the PIM technology. This removal 

process should be based on a progressive opening of the surface channels to facilitate the 

removal of vapors inside the nucleus (Gonçalves, 2001). Three main methods can be 

applied depending on the composition of the binder: thermal, solvent, and catalytic. In 

thermal debinding, the binder is removed by degradation, evaporation, or liquid 

extraction, at temperatures ranging from 60 to 600 °C. The relatively long time associated 

with thermal debinding is greatly reduced using an organic solvent or in some cases even 

water to dissolve the soluble components of the binder, in the so called solvent debinding 

(Tandon, 2008). The catalytic debinding, in turn, focus in a solid-to-vapor catalytic 

degradation, as it is the case of exposing acetal-polyolefin-based feedstocks to acid 

vapors, resulting in much faster binder removal and superior handling strength when 

compared to thermal or solvent debinding (Krueger, 1996; Mathew & Mastromatteo, 

2003). Nevertheless, it is worth to point out that in all debinding methods, a skeleton of 

backbone binder often remains to impart adequate strength and shape retention up to the 

onset of sintering. This remaining backbone is thermally removed between 200 °C and 600 

°C in a pre-sintering step (Tandon, 2008). 

Sintering is the last stage of the process, providing the inter-particle bonding that generates 
the attractive properties from otherwise loose powder mass. Depending on the material, 
debound parts or “brown parts” are sintered at temperatures ranging from 1200 to 1600 °C. 
It is essentially a removal of pores, accompanied by growth and strong adhesion among the 
adjacent particles, causing the retraction of the product whose dimensions usually reduce 
between 14 and 20% (Gonçalves, 2001; Krug, 2002; Tandon, 2008). Therefore, green parts are 
oversized to compensate for the sintering shrinkage. The fine particle size used in the PIM 
process results in high sintered density ranging from 95% to 99.5% of theoretical, thus 
providing superior mechanical and corrosion properties as compared to press and sinter 
technology.  

The following sections of this chapter have the goal to describe in more detail the different 
steps of the PIM and the desired characteristics of raw materials to be used during this 
process. 
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3. Feedstock preparation 

The first step in the powder injection process is the preparation of feedstock materials. The 
powder and binder are hot mixed above the softening point of the binder constituents to 
provide a uniform coating on the powder surface (Fig. 2A). The feedstock is prepared by 
compounding polymeric binders with fine metallic or ceramic powders. Commercially 
available feedstock material is generally supplied in the shape of pellets (Fig. 2B), so that is 
easy to handle before and during the injection molding step.  

       
(A)           (B) 

Fig. 2. (A) Micrograph of feedstock material showing metallic particles surrounded by 
polymeric binder, (B) Pellets of commercially available feedstock material Catamold® by 
BASF. 

The powder content usually ranges from 50 to 65% in volume, although there are claims of 
optimized commercial formulations in which even more than 80% is used. If the powder 
content is found to be lower than 50 vol.%, the sintering ability of the feedstock and the final 
density of the part are significantly lowered. From another standpoint, it is also important to 
keep the viscosity of the feedstock as low as possible in order to facilitate the injection 
molding process, reason for why a powder content higher than 65 vol.% should be handled 
with care (Merz et al, 2002).  

One of the most important properties of the feedstock is certainly its homogeneity. A 
homogeneous distribution of powder particles and binder in feedstock is important as it 
helps to minimize segregation during the injection molding stage and later on to obtain 
isotropic shrinkage after debinding and sintering (Quinard et al, 2009). Avoiding segregation 
of feedstock components is necessary to prevent visual defects, excessive porosity, warpage 
and cracks in the sintered part (Thornagel, 2010).  

The technique used for mixing binder and powder can influence the homogeneity of 
feedstock materials. Feedstock materials can be either produced in a batch process or 
continuously. Four different types of machines are generally used: high-shear mixers, roll 
mills, screw extruders and shear rolls. The first two are examples of batch operations while 
the last two are continuous. Which approach to take depends on the details of the 

www.intechopen.com



 
Powder Injection Molding of Metal and Ceramic Parts 

 

69 

application and the materials to be used to prepare the feedstock (Clemens, 2009). When 
using fine particles, which have a tendency to agglomerate batch mixing in planetary or z-
blade mixers (Fig. 3) is preferred, even though the process can take a couple of hours. In 
high volume productions, twin-screw extruders or shear rolls (Fig. 4) are employed for 
feedstock preparation (Hausnerová, 2011). 
 

   

Fig. 3. Z-blade mixers for batch production of feedstock materials (courtesy of Winkworth 
Mixer Co., UK, www.mixer.co.uk). 

 

    

Fig. 4. Shear rolls for continuous production of feedstock materials (courtesy of Bellaform 
GmbH, Germany, www.bellaform.com). 

The following sections have the purpose to further describe the two main components of the 

feedstock material: binder and powder. The binder formulation, powder synthesis 

processes, and their desirable properties are indicated below. 

3.1 Binder formulation 

Binder vehicles used for PIM are usually designed as multi-component systems. One of the 

main components is termed backbone, which is a thermoplastic polymer that supports and 

maintains the shape of the molded part until the last stages of debinding (Thomas-Vielma et 

al, 2008). As examples of currently used backbones, it is possible to mention ethylene vinyl 
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acetate (EVA), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene glycol 

(PEG), polymethyl methacrylate (PMMA) among others (Ahn et al, 2009; Chuankrerkkul et 

al, 2007; Krug et al, 2002; Thomas-Vielma et al 2008; Yang et al, 2002) (Fig. 5). 

 

Fig. 5. Examples of polymers used in different binder formulations. 

The second component, usually in a proportion similar to the backbone is commonly a wax, as 
paraffin or carnauba wax, or in some cases even agarose, that improves the material 
flowability (Ahn et al, 2009). Besides improving flowability, such component should be easily 
removed in early stages of debinding, in general via solvent methods, leaving open pores that 
will allow the gaseous products of the remaining polymer to diffuse out of the structure 
(Thomas-Vielma et al, 2008). Even though this low-melting temperature component has an 
important role in the process, it is worth to mention that the mechanical integrity of the final 
product is reduced as its proportion increase after certain limits (Tseng & Hsu, 1999). 

The importance of each of these two main binder components can be better understood with a 
further description of the debinding mechanism. It is worth to remember that at the beginning 
of debinding no pores or free space are shown in the molded part, hence the backbone 
component has a crucial role retaining the shape of the part, and avoiding cracks while the 
low-melting component leaves this molded structure (Thomas-Vielma et al, 2008). In the last 
stages of debinding, it is due to the open porous created by this second component that the 
backbone can diffuse out without damaging the structure of the product. If not by these pores, 
an excessive pressure would easily build up within moldings from the degradation species 
during burnout, causing distortions and cracks (Tseng & Hsu, 1999). 

However, the emergence of a POM-based binder system for PIM has made it possible to 
remove the polymer vehicle from up to 35 mm thick sections without the use of any wax or 
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low molecular weight component (Krug et al, 2000). As previously described, POM (Fig.5)  
decomposes predominantly to formaldehyde in the presence of an acid vapor (as oxalic or 
nitric acid) well below its softening point, that is, in the solid state, avoiding the cracks and 
bloating that can be caused by the boiling of the binder (Krug et al, 2001). It is also important 
to mention that the polymer is not penetrated by the gaseous acid and the decomposition 
proceeds exclusively at the gas-binder interface with a nearly planar debinding front 
moving through the compact. In this sense, gas exchange is limited to the already porous 
shell and the buildup of an internal pressure is avoided. Nevertheless, POM-based binder 
systems often contains up to 30% of polyethylene which does not react with acid vapors, 
acting as a backbone until being burned out during the sintering cycle. 

Finally, additives as surfactants can compose the binder, being stearic acid the most 

common example of them. These surface-active dispersants normally present a low melting 

temperature and affinity to preferentially adsorb onto powder surfaces, forming a densely 

thin outer layer on a particle surface which leads to a more homogeneous packing structure 

(Chan & Lin, 1995). However, bubbles and cracks were reported to occur as the amount of 

the surfactants increases, presumably owning to the reduced vaporization temperature since 

the surfactants are composed of mostly short molecules (Tseng & Hsu, 1999). 

3.2 Powder manufacturing  

It is from the powder material that the final product will be constituted, and its selection 

often involves the combination of a tailored particle size distribution to maximize packing 

densities. Powders for ceramics and metals can be obtained from a variety of methods; the 

following section will describe some of the methods used for obtaining ceramic and metallic 

powders of various shapes and sizes. 

3.2.1 Ceramics 

The methods used for synthesis of ceramic powders range from mechanical methods that 
involve grinding or milling (commination) for size reduction of a coarse, granular material 
to chemical processes involving chemical reactions under carefully controlled conditions. 
Generally speaking, mechanical methods are considerably cheaper than chemical methods. 
However, chemical methods offer better control of the powder characteristics, such as shape 
and size (Rahaman, 2003). 

Mechanical methods are generally used to prepare powders from naturally occurring raw 
materials. Operations such as crushing, grinding and milling are classified as mechanical 
methods. Machines like jaw, gyratory and cone crushers are used to produce powders in the 
size range from 0.1 to 1mm. In order to achieve particles with less than 1 mm milling is 
generally used. Mills used today include high-compression roller mills, jet mills and ball 
mills (Rahaman, 2003). 

Chemical methods are generally used in the synthesis of powders of advanced ceramics 
from synthetic materials or from naturally occurring materials with a significant chemical 
refinement. The most common chemical methods are summarized in Table 1. It is important 
to mention that many chemical methods require a milling step to break down agglomerates 
and for determining the average particle size and particle size distribution (Rahaman, 2003). 
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Method Advantages Disadvantages 

Solid-state reactions: 
- Decomposition 

- Reactions between solids 

Inexpensive,  simple 
equipment used 

Agglomerated powders, 
limited homogeneity for 

multicomponent powders 
Liquid solutions: 

-Precipitation 
-Solvent vaporization 

-Gel routes 

Small particles, chemical 
homogeneity, high purity, 

composition control 

Agglomerated powders, poor 
for non-oxides, expensive 

Non-aqueous liquid reaction Small particles, high purity Limited to non-oxides 

Gas-solid reactions 
Inexpensive for large particle 

sizes 
Low purity, expensive for fine 

powders 

Gas-liquid reactions Small particles, high purity 
Expensive, limited 

applicability 

Reaction between gasses 
Small particles, high purity, 

inexpensive for oxides 
Agglomerated powders, 
expensive for non-oxides 

Table 1. Commonly used chemical methods for manufacturing of ceramic powders 
(Rahaman, 2003). 

3.2.2 Metals 

Most metal powders can be produced by comminution of the refined ore. Milling and 
grinding are methods to produce powders of any degree of fineness from friable or 
malleable metals (e.g. titanium or steel). However not all particle sizes are sinterable, in 
general particles have to be below 45 m. Currently, there is a tendency to use submicron 
and nanoparticles, since a better packing density can be achieved, their activation energy is 
higher and their sintering temperature is lower (Shearwood et al, 2005). Nevertheless, care 
must be taken when handling nano powders since they can be explosive or can easily 
oxidize; therefore most of the time powder metallurgy utilizes particles in the 1 to 45 m 
range (Hartwig et al, 1998). In particular, for metal injection molding the mean particle size 
ranges from 5 to 15 m (Krug et al, 2002). This type of size particles can generally be 
achieved in ball mills, rotary mills, planetary mills, jet mills, vibrating grinders, stampers 
and crushers (Schrader et al, 2000).   

Nickel or iron can react with carbon monoxide to form metal carbonyls; carbonyl vapors 
undergo decomposition by instantaneous mixing with a large volume of hot inert gas followed 
by quenching the aerosol formed by diluting and cooling. Metal powders from carbonyls have 
high purity, small and uniform grain size, and particles that are dense and round (Neikov et al, 
2009; Schrader et al, 2000). The most commonly used powders in today’s MIM production are 
carbonyl powders. Simple mixtures of iron and nickel carbonyl powders are the basis of 
powder mixtures for metal injection molding; other metals included in these mixtures include 
heat treatable steels and stainless steels (Hartwig et al, 1998). 

Metals or alloys that may be homogeneously melted can also be atomized in a stream or air 
or an inert gas (often argon). Some metals are melted first and later injected through an 
orifice into the stream to later be dropped in water, such process is called shotting. Other 
metals like iron and stainless steel may be fused in an electric arc and refractory metals in a 
plasma arc. For example, titanium droplets freeze to powder after being thrown from the 
end of a rapidly rotating bar heated by a plasma arc in a helium atmosphere (Schrader et al, 
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2000). Water atomization leads to irregular particles with a good yield of particles below 45 
m. Gas atomized powders leads to mostly spherical particles (Fig. 6) but the yield of 
particles below 45 mm is limited (Hartwig et al, 1998). 

 

Fig. 6. SEM micrograph of gas atomized stainless steel powder (Hartwig et al, 1998). 

Metal powder can also be electrolytically deposited under the right conditions. The 
deposited material may have to be broken up and ground to achieve the desired fineness, 
heated to be annealed, drive off hydrogen, sorted and blended. Electrodeposited powders 
are among the purest powders available, but they are pricier (Schrader et al, 2000). 

Other less common methods of manufacturing metallic powders include vapor 
condensation, chemical decomposition, ordinary machining, impacting of chips and scrap, 
and granulation by stirring vigorously during solidification (Schrader et al, 2000). The most 
common methods applied for obtaining powders of different metals can be found in Table 2. 
 

Production method Used for 

Chemical Tantalum, tungsten 
Electro-chemical Copper, iron, nickel 
Thermo-chemical Carbonyl-iron, nickel 

Mechanical (comminution & atomization) Steels, titanium, intermetallics 

Table 2. Common production methods for metal injection molding powders  
(Hartwig et al, 1998). 

3.2.3 Submicron powders 

With the growing demand for microparts (Fig.7) to be used in consumer electronics, 
automotive parts and in the biomedical field, there is also a requirement to use powders 
with smaller particles and perform what is called micro-PIM. It is generally accepted that 
the smallest feature of a part can only be ten times larger than the mean particle diameter, 
thus in order to obtain microparts with good edge definition and shape retention, 
submicron or nanoparticles need to be used. Also, submicron powders have an enhanced 
sintering activity, which is beneficial for attainment of high-density bodies at lower sintering 
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temperatures. Such powders are still under development since there are many issues that 
need to be resolved. 

 

        
 

Fig. 7. Ceramic microparts produced by PIM (Pioter et al, 2001). 

Submicron powders tend to be pyrophoric and therefore it is essential to avoid any oxidation 

during handling. One way to avoid oxidation is to handle submicron powders in a glove box 

under argon; inside this box powders are coated with a binder constituent, in order to avoid 

oxidation in the subsequent processing steps of feedstock compounding and injection molding 

(Zauner, 2006). Another issue that arises as the particle size decreases below 1 m is the greater 

tendency for particle-particle interaction, which results in agglomerates. If many agglomerates 

are present, the final sintered part could have a non-uniform distribution of particles and little 

benefit is achieved compared to coarse particles. Therefore, the use of submicron powders 

requires special handling and mixing procedures in order to minimize detrimental effects due 

to the presence of agglomerates (Rahaman, 2003). 

3.3 Desired properties of feedstock 

A homogeneous distribution of powder particles and binder in feedstock is important as it 
helps to minimize segregation during the injection molding stage and later on to obtain 
isotropic shrinkage after debinding and sintering (Quinard et al, 2009). Avoiding segregation 
of feedstock components is necessary to prevent visual defects, excessive porosity, warpage 
and cracks in the sintered part (Thornagel, 2010). The technique used for mixing binder and 
powder can influence the homogeneity of feedstock materials. As shown by Quinard et al 
(2009), using a twin-screw extruder yielded a better binder distribution. However, when 
using a z-blade mixer a better binder volume distribution around the powder particles was 
achieved, that would lead to an isotropic shrinkage after sintering. 

Understanding which the desired properties are for a binder is a crucial step in the 

optimization of PIM regarding both productivity and quality of the final product. Only a 

few authors have been working in this direction and not all of them agree in their 
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conclusions. For example, regarding the flow characteristics, German (1990) highlighted the 

importance of low viscosity at the molding temperature, a characteristic stressed by Liu et al 

(2001) as even more important in the case of micro moldings. Ahn et al (2008) mentioned 

that a high drop in viscosity at the high shear rates (shear-thinning behavior) is also a 

desired property for cavity filling with less energy, especially for complicated geometries. 

However, stability of the mixture should be taken into account in order to avoid powder-

binder separation. 

The binder should also be strong and rigid after cooling and present small molecules to fit 

between particles (German, 1990). No agreement is found regarding the viscosity-

temperature dependence, which is suggested to be the least as possible by German (1990) 

but high by Thomas-Vielma et al (2007). Nevertheless, Ahn et al (2009) shown that contrary 

to the viscosity-shear rate dependence, the viscosity-temperature dependence is more 

influenced by the powder selection than the selection of the binder itself. 

High thermal conductivity, low thermal expansion coefficient, short chain length, no 

orientation, low contact angle and good adhesion with powder, capillary attraction of 

particles and be chemically passive with respect to the powder are also desired properties 

that should be taken into account when selecting binder components (German, 1990). 

Thomas-Vielma et al (2007) reported that defects as cracking (Fig. 8), slumping and sagging 

are partly related to the swelling of the binder component during solvent debinding, a 

problem that can be reduced by increasing the crystallinity of the polymer acting as a 

backbone. Besides this, the decomposition of such polymer should be non-corrosive, non-

toxic, and having low ash content (German, 1990). 

 
(A)  (B) 

Fig. 8. Appearance of (A) cracks and (B) transverse cracks after thermal debinding on 
alumina parts (Thomas-Vielma et al , 2007). 

As can be observed in this section, the thermal and time-dependent properties of the 

different components of the binder play an important role in the quality of the final product. 

Furthermore, it also influences the choice of process parameters, as injection pressure and 

heating ramp, determining the cost and the productivity of the process. In this sense, 

understanding and improving the properties of this multi-component system or its single 

components have a great importance to the optimization of the PIM technology. 

1

100 μm

1

100 μm 
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3.4 Possible feedstock optimization 

Rheological and time-dependant properties represent powerful tools for optimizing the PIM 
process. The binder’s rheological properties (flowability) are important to determine the 
optimal binder formulation or selecting a proper additive. It has been suggested in the 
literature that the viscosity of the binder should be less than 0.1 Pa · s in order to provide the 
PIM feedstock with a viscosity below 1000 Pa · s (German, 1990). Having low viscosity allows 
for easy molding. However, it is generally known that low viscosity materials have also low 
mechanical properties when solidified. Having low mechanical properties transforms into a 
“green part” which is prone to deformation and breakage if not handle with care, especially 
right after molding when the binder is still soft. For this reason a compromise has to be made 
between the molten rheological properties and the solid mechanical properties of binder.  

Bimodality in the molecular mass distribution (Fig. 9) of binders is still an issue that has not 
been extensively studied. Nevertheless, recent investigations have shown its potential to 
bring two main benefits to the process of PIM: lower the viscosity of the feedstock in the 
molten state and maintaining the mechanical strength of the green part, all of this without 
modifying the chemistry of the binder.  

 

Fig. 9. Schematic representation of bimodal and monomodal molecular mass distribution in 
polymeric materials. 

It has been observed that bimodality in the molecular mass distribution improves the shear 
relaxation modulus (Emri & von Bernstorff, 2006) and the shear creep compliance 
(Kubyshkina et al, 2011) of polyamide 6 in the solid state. Based on those results, Stringari et 
al (2011) studied the effect of bimodal molecular mass distribution in POM and it was 
shown that bimodality decreases viscosity without significantly affecting the mechanical 
properties (shear creep compliance) of the potential PIM binder. The mechanisms for such 
behavior could be explained as follows: The addition of small polymer chains through 
bimodality increases the flowability of the binder in the molten state, since such small 
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molecules can act as internal lubricants for the larger molecules facilitating their movement. 
However, when in the solid state the smaller molecules could fit between the larger ones, 
creating a closely packed structure that cannot be deformed as easily, translating into 
improved mechanical properties. 

Once good flowability of the binder has been obtained it is important to check the 
flowability of the feedstock material. The flowability of feedstock will not only depend on 
the viscosity of binder but also on the powder loading. The optimal powder loading refers 
to a concentration of powder for which a compound exhibits good flow properties, good 
dispersion and distribution, and flow stability in the shear rates applied during injection 
molding (102 - 105 s-1). Rheological data represents an extremely useful tool to evaluate 
optimum powder loading. The ratio of feedstock’s viscosity to binder’s viscosity known as 
the relative viscosity is an important parameter used to determine the maximum packing 
fraction for a particular powder-binder compound. As the powder concentration reaches the 
maximum level the flow of feedstock material is restrained and a sharp increase in relative 
viscosity is observed (Hausnerová, 2011). 

The maximum loading level in a feedstock material is dependent on the characteristics of 
the powders and how these particles are packed. The packing behavior of particulate 
materials depends largely on their particle size, shape and surface characteristics. Packing 
behavior has been explained by model systems with closely defined size and shape 
distributions. Even though real materials do not have a well-defined shape and size 
distribution, the principles derived from models appear to work reasonably well. 
Theoretical maximum packing has been studied for spherical, smooth, regular, mono-sized 
particles, which can readily move past another. With these particles a maximum ordered 
packing fraction of 0.74 has been established from geometrical principles. In order to 
increase the packing fraction of powders, small particles to fill in the pores in the packed 
structure obtained from larger particles are used and then use even smaller particles to fill in 
the remaining pores and so on. This approach is known as multimodal packing and much 
effort has been devoted to find the optimal particle size ratios that yield maximum packing 
fractions in the field of particulate composites (Rothon, 2003). German (1990) has already 
pointed out that an ideal PIM powder should combine large and small particles in a tailored 
size distribution. Hausnerová et al (1999) showed that feedstock material containing 
particles with a monomodal particle size distribution exhibit higher viscosity compared to 
feedstock with bimodal powder. The current explanation for this behavior is that the smaller 
particles fill the inter-particle voids created by large particles, thereby releasing previously 
immobilized molten binder (Hausnerová, 2011). 

4. Injection molding 

The second step in the PIM process is molding the feedstock into the desired shape. The 
most popular method is to use a reciprocating screw, horizontal, hydraulic or electric 
machine in which a screw stirs the feedstock inside the barrel while it is melting. After 
melting the feedstock the screw acts as a plunger to generate the pressure to fill the die 
(Stevenson, 2009). Conventional screw-type injection molding machines consist of a 
clamping unit, injection unit and control system. The clamping unit houses the mold which 
is generally comprised of two halves. When the clamping unit is closed, material can be 
injected into the mold, when the clamping unit is open the molded part can be removed. 
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The injection unit consists of a screw, a heating system and a nozzle. The screw transports 
the material inside a barrel, compresses it and removes any bubbles. The heating system 
brings the material to an appropriate temperature for easy flow. The nozzle is the conduct 
through which the heated feedstock is injected into the mold under pressure. The control 
system of a modern injection molding machine includes hardware and software where the 
processing conditions are set and saved to ensure the reproducibility of previously 
employed production cycles (Arburg, 2009). 

Molding of the feedstock is comparable to the injection molding of plain thermoplastics and 
it has the following stages (Arburg, 2009; German & Bose, 1997): 

a. The pelletized feedstock is placed in the hopper of the injection molding machine. 
b. The binder in the feedstock is melted by the heating system. 
c. The molten material is injected under high pressure (60 MPa or even more) into the 

mold cavity which is mounted in the clamping unit. The feedstock must have low 
enough viscosity that it can flow into the die cavity under pressure. 

d. The mold remains closed while cooling channels in the die extract heat from the molten 
feedstock and solidify the polymer to preserve the molded shape. 

e. After solidification of the binder, the nozzle of the injection die is pulled away from the 
mold by moving the injection unit. The clamping unit opens and the molded part is 
ejected by the ejector system of the machine. 

f. The green part is removed from the mold. Due to the fragile nature of most green parts, 
the removal process is done by hand or by a robotic system in order to prevent shocks 
or impacts which could deform or even break the molded part. 

The shaping equipment used in PIM is the same as the one used for plastic injection 
molding. Due to the size of molded parts, injection molding machines used for PIM are in 
the lower range, with clamp force typically less than 100 tons, 18 to 25 mm screws and shot 
size of less than 30 cm3 (Stevenson, 2009). However, the main important difference when 
dealing with injection molding of any powdered part is that many of the components of the 
molding machine are subject to a more intense wear, particularly screws, non-return valves, 
cylinders and molds (Rosato & Rosato, 1995).  

Injection molding machines for processing of powdery materials are optimized with wear-
resistant components, through special hardening processes or utilization of alloys. For 
example, when dealing with stainless steel feedstock materials, hardening with carbon 
nitride is recommended by feedstock manufacturers. And when working with ceramic and 
hard metals, boride cladding or carbide hard facing are recommended. Since harder screws 
are more brittle, lower torque limits during startup are used to prevent screw breakage in 
PIM. The solid feedstock pellets cause the most abrasive wear in the feed section of the 
screw, thus the feedstock should be melted as early as possible in the injection cycle 
(Stevenson, 2009).  

Screw geometry of PIM machine is adopted to lower the compression rate and extend the 
compression zone as compared to screws used for thermoplastics (Hausnerová, 2011). 
Compression ratios used in PIM tend to be in the lower range. Ratios between 1.2 and 1.8 
are considered acceptable and a ratio of 1.6 is considered to be optimal for the removal of air 
between granules. It is also important to mention that when calculating the barrel capacity 
of the injection unit, the barrel rating must be scaled up to take into account the higher 
density of the PIM feedstock (Stevenson, 2009). 
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The injection molding step can create undesirable features such as gate and ejection pin 
marks, which must be located in non-critical locations otherwise they must be removed after 
fabrication. Other design limitations include gradual thickness changes, minimized wall 
thickness, round corners to reduce stress concentrations and risk of crack appearance, and 
minimum undercuts on internal bores. Whenever possible, it is important to design PIM 
parts with one flat surface, which allows the use of standard trays during sintering, 
otherwise special trays are required (Hausnerová, 2011).  

5. Debinding 

Before sintering, the organic binder must be removed without disrupting the molded 
powder particles; this process is commonly referred as debinding. Organic polymers have to 
be removed completely from the “green part”, since carbon residues can influence the 
sintering process and affect the quality of the final product negatively. Moreover, binder 
removal is one of the most critical steps in the PIM process since defects can be produced by 
inadequate debinding, like bloating, blistering, surface cracking and large internal voids. It 
has been shown that the rate of binder removal plays a main role in the defect production 
due to structural changes in capillaries inside the green part (Oliveira et al, 2005). 

The most commonly used debinding techniques include: thermal, solvent and catalytic. 
However there also exist some experimental techniques such as plasma debiding (dos 
Santos et al, 2004). The following sections have the aim to provide the reader with a 
description of the different debinding techniques showing their benefits and limitations. 

5.1 Thermal debinding 

Thermal debinding utilizes the mechanisms of thermal degradation of organic binders, 
which is based on the successive dissociation of polymers to produce light molecules that 
are later evaporated out of the surface of the molded part. Since the thermal degradation 
process is different for different polymers then thermal debinding time is greatly 
influenced by the type of polymer used. The binders developed in the original PIM 
process were a mixture of polyethylene or polypropylene, a synthetic or natural wax and 
stearic acid. Feedstock materials based on such binders can be removed thermally. 
However, it has been shown in the literature that POM and polybutyl-methacrylate 
(PBMA) have a much faster degradation than other polymers such as polypropylene (PP) 
and ethylene-vinyl-acetate (EVA) (Kankawa, 1997). It should also be noted that the choice 
of atmosphere under which thermal debinding is performed influences the rate of binder 
removal and some characteristics of the final piece such as density, carbon or oxygen 
content (Quinard et al, 2009). 

In general, it can be said that thermal debinding is an inefficient process that can result in a 
poor etching of the piece surface if not properly controlled. Additionally, increasing the 
temperature too fast may produce an excessive increase of vapor pressure in the core of the 
molded piece leading to defects. Consequently, in order to reduce the risk of cracks or shape 
deformation, low heating rates are generally used, resulting in a long debinding time, 
ranging from 10 to 60 h (dos Santos et al, 2004). However, thermal debinding is still selected 
due to its simplicity, safety and respect for the environment as compared to solvent and 
catalytic binder removal (Quinard et al, 2009).  
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In order to increase the efficiency of the thermal debinding process a vacuum pump is used 
to continuously pull binder vapor away from the heated parts. Initially, the heating rate is 
typically 0.5 C/min or less until a temperature of 100 C is reached; this temperature is 
hold for approximately 4 h and later it is increased to 400 C using a heating rate close to 1 
C/min, this temperature is maintained for 2 h. During the entire process the pieces are 
constantly exposed to a gas flow, in order to remove the binder vapors, which are 
condensed and collected in a trap. Finally when all the binder is removed the temperature is 
increased and the sintering process can begin. This is one of the main advantages of vacuum 
debinding. However, the debinding process is still around 10 hours long, since the main 
mechanisms of debinding is still thermal degradation (dos Santos et al, 2004). 

Another variant of the thermal debinding process includes the use of a wicking material 
(porous substrate) which is in contact with the “green part” or compact. In industrial 
practice the compact is buried in the wicking material and therefore the binder is removed 
from the compact in all directions (Somasundram et al, 2008). A simplified model is shown 
in Fig. 10. The porous substrate provides a medium for capillary flow as the binder viscosity 
decreases due to the increase of temperature. Wicking thermal debinding is performed at 
temperatures where the binder melts, therefore the binder can flow out of the component 
into the pores of the contacting substrate. Wicking involves liquid extraction; while other 
thermal process requires the binder to be in gaseous state and thus the temperatures are 
generally lower but the process is slower due to the slower transport of liquid compared to a 
gas (German & Bose, 1997). 

 

Fig. 10. Schematic cross-section of compact (green part) surrounded by wicking powder 
during thermal debinding (adapted from Somasundram et al, 2008).  

5.2 Solvent debinding 

Solvent debinding is done by immersing the molded part in a gaseous (Fig. 11) or liquid 
solvent such as ethanol, hexane, heptanes and acetone, at low temperature, typically 50 to 60 
C (Torralba et al, 2011). The solvent removes at least one of the binder components and 
produces an open porosity. The next step in solvent debinding is binder burnout to remove 
the backbone of the binder that provides adequate shape retention up to the onset of 
sintering (dos Santos et al, 2004; Aggarwal et al, 2007). Binder backbone removal is generally 
done thermally between 200 and 600 °C in a pre-sintering step (Tandon, 2008). 

The effectiveness of solvent debinding is strongly related to the geometry of the “green 
part” in particular to the surface to volume ratio, since the solvent needs to penetrate the 
part. Other factors that influence solvent debinding include temperature and porosity  
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Fig. 11. Solvent vapor debing process (adapted from German & Bose, 1997). 

evolution. The temperature effect is related to an increase in interaction between soluble 
binders and solvents as temperature increases, in other words temperature changes the 
solubility and diffusion coefficient of the binder (Oliveira et al, 2005).  

There is a tendency to try to use binders that are soluble in water, since handling the 
aqueous solvent is much easier than handling organic solvents. Good examples of water-
soluble binders include polyethylene glycols, polyethylene oxide, polyvinyl alcohols, 
starches and polyacrylamide. All of these polymers have monomers containing oxygen and 
nitrogen that are hydrophilic. The time to debind is a function of the powder material, 
particle size, part geometry, water temperature, water circulation and water volume relative 
to mass of the “green part”. All of these variables are interrelated with each other and must 
be optimized for a particular piece. After debinding, parts are usually dried in a forced air 
furnace at 65 to 75 C for at least three hours. The drying step can be included as part of the 
sintering program. Water can be regenerated after debinding by distillation and therefore a 
closed process water circuit can be used (Auzene & Roberjot, 2011).  

Another type of solvent debinding is the use of a supercritical process. When applying 
supercritical extraction, the operative pressures of solvents such as carbon dioxide or 
propane are kept around 10 MPa and temperatures are less than 100 C. The use  
of low temperatures results in slow diffusion of the binder to the surface of the  
green part, resulting in long processing times. Super critical debinding is not widely 
employed in commercial operations due to the long processing times and elevated cost of 
the necessary equipment, which require high precision control in temperature and pressure 
(dos Santos et al, 2004). 

5.3 Catalytic debinding 

Catalytic debinding can be used for binders that decompose into smaller molecules in the 
presence of a catalyst when exposed to the appropriate temperature. The most common 
example is a binder based on POM sometimes also referred as polyacetal. A commercial 
example of a feedstock with a POM based binder is Catamold® produced by BASF. By using a 
catalyst, the polymer at the surface of the “green part” is cracked into monomers and 
evaporates. As the monomers evaporate, pores are created that expose the polymer beneath 
the surface and the depolymerization process continues deeper into the molded part. Thus the 
debinding occurs from the outside inwards. Shorter debinding times are achieved with the use 
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of the catalytic process, since the rate of diffusion of monomers is high due to the small size of 
their molecules (Clemens, 2009). Furthermore, the small molecules generated have a high 
vapor pressure, which greatly minimizes the potential for capillary condensation and allows 
thick part sections to be debound (Krueger, 1996). 

Polyacetal-based binders depolymerizes catalytically under acidic conditions yielding 

formaldehyde, a direct solid to gas transition (Fig. 12). Temperature and catalyst 

concentration play a key role in determining the rate of debinding, as well as the particle 

size of the powder and geometry of the molded part. This type of debinding is performed 

below the melting temperature of POM, generally between 110 and 150 C. The use of these 

relative low temperatures prevents the formation of a liquid phase and thus prevents 

deformation of the “green part” due to gravitational distortion or stress relaxation (Fu et al, 

2005). Also the internal gas pressure is low, which minimizes the danger of crack formation 

and propagation. For POM, 100% nitric acid (HNO3) is the most suitable catalyst. Even 

though nitric acid is a strongly oxidizing agent, its anhydrous form does not react with most 

of the commonly used metal powders (Krueger et al, 1993).  

 

Fig. 12. Decomposition of POM in the presence of nitric acid. 

The debinding time depends on the quantity of catalysts and temperature used. An increase 

of these two factors can shorten the time of depolymerization. However, there are some 

limitations as to how much temperature and catalyst content can be increased, not only due 

to possible damage to the molded part but also due to health concerns. As previously 

mentioned, POM decomposes into formaldehyde, which due to its toxicity has limitations in 

the allowable quantity (0.1 kg/h) and concentration (20 mg/m3) that can be present in the 

working environment (Goyer et al, 2006). The exhaust from the debinding oven must be 

treated in two steps to get rid of the toxic bi-product of the depolymerization of POM, which 

are nitrogen dioxide (NO2) and formaldehyde (CH2O). First the exhaust is burned in a 

reducing atmosphere (no oxygen and rich in nitrogen) at a temperature of 600 C, 

transforming nitric dioxide into nitrogen gas (N2). The second step consists of burning in an 

oxidizing atmosphere at 800 C to transform formaldehyde into water and carbon dioxide 

(Torralba et al, 2011). If properly treated, the exhaust fumes coming out of the debinding 

oven does not represent a health hazard. 

It is important to mention that binders based on POM usually have a backbone polymer 
which is not susceptible to catalytic debinding. Such backbone polymer helps retain strength 
and shape stability in the “brown part”. However, sintering cannot begin in the presence of 

this backbone polymer and thus a thermal treatment between 200 and 600 C is applied to 
the part prior to the start of the sintering process (Tandon, 2008). 
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5.4 Comparison between debinding processes 

The major differences, advantages and disadvantages between the three types of debinding 
techniques are summarized in Table 3. 
 

Debinding 
Technique 

Key Features Advantages Disadvantages 

Thermal 

Slowly heat green part 
to melting or 
degradation 
temperatures with a 
continuous sweep gas 
to remove binder. 

One-step process, no 
need to handle product 
between debinding and 
sintering (unless wicking 
is used). Low cost 
installation. Applicable to 
a wide range of binders. 

Soft binder allows warpage, 
poor dimensional control 
and relatively slow process 
(up to 60 h). If a wick is used 
problems to separate part 
from it. 

Solvent 

Green part is placed in 
a solvent in gaseous or 
liquid state to extract 
binder via dissolution.

Component remains rigid 
without chemical 
reactions. Lower 
temperatures minimize 
defects and distortions. 
Faster than thermal 
debinding (around 6 h) 

Solvent hazard, chemical 
handling and environmental 
concern (unless water 
soluble binder is used). 
Expensive equipment if 
using supercritical 
extraction. Drying before 
sintering required if using 
liquid solvent. 

Catalytic 

Heat green part in 
atmosphere 
containing catalyst to 
depolymerize binder 
and sweep away 
monomers. Binder 
goes from solid to gas.

Rapid process (4 to 6h) 
that works well on thick 
and thin sections with 
excellent shape retention.

Possible hazards with acid 
catalysts and decomposition 
products. Exhaust products 
must be treated properly to 
prevent health and 
environmental hazards. 

Table 3. Comparison between three major debinding techniques. 

6. Sintering 

The last step of the PIM process is sintering. Sintering is one of the oldest human technologies, 
originating in the prehistoric era with the firing of pottery. After the 1940s sintering has been 
studied fundamentally and scientifically leading to remarkable developments in sintering 
science. Nowadays, sintering can be used for the fabrication of all kinds of parts, including 
powder-metallurgical parts and bulk ceramic components (Kang, 2005). 

Sintering is a thermal treatment that transforms metallic or ceramic powders into bulk 
materials with improved mechanical strength that in most cases have residual porosity. 
Sintering is performed at temperatures below the melting temperature of the major 
constituent in the metal or ceramic powder, generally within 70 to 90% of the melting point 
(Lame et al, 2003). The temperature inside the sintering furnace is high enough to start the 
recrystallization process of the metal or ceramic particles, but low enough so that the 
particles remain unmelted. At such temperatures, the particles recrystallize into each other 
causing them to fuse together (Boljanovic, 2010). 
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During sintering, solid-state atomic diffusion takes place, followed by recrystallization and 
grain growth. When the temperature exceeds one half to two thirds of the melting 
temperature of the powder material, significant atomic diffusion occurs and some chemical 
changes may happen on the surface of the particles, such as the vaporization of chemically 
bounded water. As temperature keeps increasing, thermolysis occurs which is a process that 
burns out the organic components such as remaining binder, dispersant, etc. During 
sintering there is a great deal of particle movement and mass transport. It has been 
identified that there are at least six different mechanisms for mass transfer involved in 
sintering, which are surface diffusion, evaporation-condensation, grain boundary diffusion, 
lattice diffusion, viscous flow, and plastic flow. These mechanisms lead to growth of necks 
between particles and thus increase the strength of the consolidated powders. However 
some mechanisms also lead to shrinkage (more than 10%) and densification. Surface 
diffusion is the mechanism that produces surface smoothing, particle joining and pore 
rounding, but not volume shrinkage. If the material has high vapor pressure, sublimation 
and vapor transport produce the same effects as surface diffusion. Diffusion along the grain 
boundaries and through the lattice produces both neck growth and volume shrinkage. Bulk 
viscous flow plays an important role in densification when a wetting liquid is present, while 
plastic deformation is important when a mechanical pressure is applied (Kang, 2007).  

Fusing of the metallic particles during the sintering process has been observed using 
synchrotron microtomography as shown in the figures below for copper particles. It is clearly 
observed that during sintering the particles get closer to each other as interparticle necks grow 

and the porosity is reduced. From room temperature (Fig. 13A) to 1000 C (Fig. 13B) there is no 
significant shrinkage but the neck formation causes small displacements and rotations of the 
particles that lead to a different particle packing. As a result of this rearrangement, some pores 

decrease in size but others increase. After sintering for 120 min at 1050 C, the interparticle 
necks have grown up and it is harder to distinguish individual particles (Fig. 13C). Finally, 
(Fig. 13D) after the part was sintered for an additional 100 min and cooled down to room 
temperature, most pores have vanished but some large pores remain (Lame et al, 2003).  

 

Fig. 13. Non-compacted copper particles at different stages of the sintering process, (A) at 
room temperature before sintering, (B) after heating to 1050 C from room temperature in 45 

min, (C) at 1050 C after 120 min of sintering, and (D) after sintering for 220 min at 1050 C 
and cooling to room temperature in 15 min (Lame et al, 2003). 

Depending on the size of the part and the material used, the sintering time can vary. For small 
parts such as bushings, the average time varies from 1 to 1.5 h. For average-size ferrous parts, 
the sintering time can be 3 h. However tungsten parts can have a sintering time of up to 8 h. In 
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order to harden sintered parts, a controlled cooling rate must be carried out in a separate 
section of the sintering furnace. Cooling is done in a protective atmosphere in order to prevent 
oxidation of sintered parts. Dissociated ammonia and nitrogen-based atmospheres are 
commonly used, however vacuum atmospheres are also used for stainless steel and tungsten 
parts for example. The cooling rate is critical since the mechanical properties of the sintered 
parts is affected by the phase transformation of the material (Boljanovic, 2010).  

7. Conclusion – Closing remarks 

PIM is a powerful process for the manufacturing of parts with complex geometry. It 
combines the design benefits of thermoplastic injection molding and the efficiency of 
powder metallurgy. Due to its capability is expected that PIM will growth in importance. 
However the current state of the art does not allow for PIM to be widely used and therefore 
there is a need to optimize the process to increase its efficiency and productivity, as well as 
the quality of the final parts. For instance, there is still room for improving the performance 
of binders as to obtain excellent flowability in the molten state while having high 
mechanical properties in the solid state. Optimization can also be brought into the powder 
design as to obtain the most adequate particle size distribution and size ratios for 
multimodal powders. Also, it has been shown that using nanoparticles brings many benefits 
into the PIM process, but handling procedures of these materials and their processing to 
avoid agglomeration is still far from optimal. In summary, PIM technology still offers a 
broad field of opportunities for improvement through applied research. 
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