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Abstract—The focus of this paper is to investigate the funda-
mental limits of power allocation when taking into account a
dynamic power pricing scheme. This paper proposes an optimal
power allocation analysis for wireless systems when real time
power pricing is available. We propose to minimize the total
power consumption cost while ensuring minimum individual
and total throughput limits. We consider different models for
the power pricing function. Analytic solutions for the power
allocation are derived for each model. The derived solutions are
shown to be modified versions of the water-filling solution. Low-
complexity algorithms are proposed for the resource allocation
with each pricing model. Performance comparison and pricing
effect are shown through simulations.

Index Terms—Energy consumption awareness, spectrum access
efficiency, power pricing.

I. INTRODUCTION

Optimal resource allocation is a crucial task in wireless

communication systems to respond to the continuously in-

creasing demand in terms of target data rates and network

coverage which require higher and higher resources. Thus,

an efficient use of the available resources, mainly the power

and spectrum, became one of the principal challenges for fu-

ture communications. The power consumption concerns were

driven by the growing worries about the effect of this explosive

demand in terms of power which were recognized as a major

threat from environmental and economic perspectives. In fact,

the huge demand in terms of power not only leads to higher

cost but also contributes to the global warming phenomena

through the increase of the carbon footprint. This tradeoff led

to the emergence of the concept of ‘green communication’ [1],

which encourages developing energy-efficient communication

systems. The spectrum awareness was driven by the problem

of spectrum scarcity due to increasing number of wireless

devices as observed by the Federal Communications Com-

mission (FCC) [2]. Cognitive radio systems have attracted a

great interest recently as a means to enhance the spectrum

efficiency and overcome the problem of spectrum scarcity [3–

5]. It enables opportunistic access to the spectrum, and has

then been seen as a key candidate for enabling dynamic spec-

trum access by taking advantage of the awareness about the

surrounding environment. The challenges related to cognitive

networks have been addressed in the literature, ranging from

spectrum sensing and protocol design [6, 7] to spectrum access

and analysis [8–10].

The resource allocation task in cognitive radio systems is

of great importance. This task should allow to maximize spec-

trum utilization efficiency while taking into consideration the

impacts of power consumption expressed in terms of cost and

carbon footprint. Resource allocation has also been intensively

investigated in the literature [11–13]. In [12], the authors

proposed the optimal power allocation in an OFDM based

underlay spectrum sharing by targeting the maximization of

the total rate. The merits of the proposed scheme compared

to the classical water-filling is that the latter does not account

for the interference constraint. In [13], the authors formulated

the problem of secondary users capacity maximization while

considering a given quality of service of the primary user as

well as the SU. They used a geometric program to solve

the problem. Other works considered the power allocation

for joint underlay and overlay in multiband cognitive systems

by considering an auction based approach to deal with the

competition between the secondary users [14]. In [15], the

authors used a game theoretical approach to allocate the power

among the secondary users while accounting for their quality

of service as well as protecting the primary system.

Inspired by the emergence of dynamic pricing in future

power grids (smart grids) as well as the need for providing

green communication, we consider to propose an optimal

power allocation for a cognitive radio system that minimizes a

generic cost function of the allocated power while ensuring the

performance requirements in terms of minimum individual and

total throughput and at the same time protecting the licensed

users by setting a threshold interference temperature. Even

though the targeted power gains are not important to generate

profit in the case of classic wireless systems due to small

power consumption, this work can be of paramount importance

for large wireless systems with high power consumption and

high targeted throughput (60 Ghz communication, free space

optical communication) which are expected to replace back-

haul connections based on wired links. We are targeting ana-

lytical solutions to allow analysis of the system’s performance

and obtained gains. Obtained results can be employed later in

decision algorithms for multiple service providers.

The rest of this paper is organized as follows. In Section II,

we describe the system model and present the dynamic power

cost models used in this work. In Section III, we formulate

the resource allocation problem. In Section IV, we analyze

and propose the power allocation solutions for different cost

functions. Then, simulation results are presented in Section V.

Finally, conclusion is drawn in Section VI.



II. SYSTEM MODEL AND DYNAMIC PRICING

A. System Model

We consider a dynamic spectrum access system where

a cognitive system, called secondary system, is sharing the

spectrum with a licensed system, called the primary system.

The cognitive system is composed of a secondary transmitter

(ST) communicating with its secondary receiver (SR) while the

primary system is composed of a primary transmitter (PT) and

a primary receiver (PR). We assume that the communication

pattern follows an underlay spectrum sharing scheme; the

primary system is operating without paying attention to the

presence of the secondary system while the secondary system

is using power control mechanism to control the interference

caused to the primary receiver (PR). Hence, the caused inter-

ference should be kept below an interference temperature I th.

We assume that N channels are available for the secondary

system. Note that the diversity scheme is not specified in our

work. Thus, it could be applied for various access schemes

(time, frequency, space, etc.). For example, this could be ap-

plied for a multi-antenna system where different channel gains

are present at the secondary system. It can also be applied for a

multi-carrier spectrum access where the secondary could send

its data over more than one band.

We denote the instantaneous channel gains between the

secondary transmitter (ST) and the secondary receiver (SR)

by {h
(c)
1 , ..., h

(c)
j , ..., h

(c)
N } while the instantaneous channel

gains of the interference channels between the secondary

transmitter (ST) and the primary receiver (PR) are denoted by

{h
(p)
1 , ..., h

(p)
j , ..., h

(p)
N }. The received throughput in a channel

j when employing a power Pj is written as

rj(Pj) = log2
(

1 + Pjγ
(c)
j

)

, (1)

with γ
(c)
j =

|h
(c)
j

|2

wjN0
where N0 is the noise power density that

is assumed to be constant for all the channels.

The cognitive user tries to find the optimal power allocation

among the different channels with regards to the given cost

function.

B. Dynamic Power Cost

In conventional power allocation problems, the cognitive

transmitter tries to minimize its used power to meet certain

requirements in terms of throughput. This problem was solved

in different previous works using mainly the well-known

water-filling algorithm [12]. In a more sophisticated set-up,

we consider a more general case where the objective is to

minimize a cost function C that takes into account various

aspects related to economic and/or environment impact of the

used power. For instance, this objective function could model

the cost of the power procured from a utility company with a

dynamic pricing variation depending on demand level. In an-

other context taking into consideration green communications

objectives, the cost function could model the carbon emission

of the used power. For generality purposes, we consider

a generic cost function that could include different parts

modeling both energy consumption, cost, and environment

impact. Our study will not focus on modeling this cost but

rather on proposing an optimal power allocation scheme for

a generic cost function. Thus, Let cj(P1, ..., PN ) be the cost

of the power Pj consumed by the channel j. Hence, the total

cost in this case could be modeled as

C(P1, ..., PN ) =

N
∑

j=1

cj(P1, ..., PN ). (2)

where cj(P1, ..., PN ) is continuously differentiable function,

increasing and convex as of Pj .

III. PROBLEM FORMULATION

The focus of this work is to investigate the optimal power

allocation when taking into account other aspects than the

channel gains. Hence, we are seeking the optimal power level’s

selection that allows to minimize our cost function C with

regards to the different system requirements. Mathematically,

we formulate our optimization problem as follows

min
P1,...,PN

C(P1, ..., PN ) (3a)

Subj. to

N
∑

j=1

rj(Pj) ≥ rthTot (3b)

rj(Pj) ≥ rthj ∀ j ∈ {1...N}, (3c)

Pjg
(p)
j ≤ I th ∀ j ∈ {1...N}, (3d)

where rthTot denotes the required total throughput while rthj
denotes the required individual throughput per channel. Equa-

tion (3b) constrains the system to achieve a total desired

throughput using the N channels while Eequation (3c) re-

quires at each channel to achieve a minimum throughput that

corresponds to a minimum quality of service. However, the

constraint (3d) is the requirement of the underlay paradigm

used to respect the interference level at the primary system

with g
(p)
j = |h

(p)
j |2. From practical considerations, this system

is recurrent in a wide number of applications. An example

of application is when the transmitter have different paths

with his correspondent receiver (different time slots, bands,

antennas). rthTot is the total throughput that the whole system

should reach while rthj is the minimum quality of service at

each path.

In the optimization problem (3), the values for the minimum

total throughput rthTot and the minimum throughput per channel

rthj along with the interference temperature I th may lead to

some conflicting constraints. If
∑N

j=1 r
th
j ≥ rthTot, the constraint

(3b) will automatically be guaranteed. On the other hand,

the problem could be unfeasible in a number of cases; if

rj
(

I th

g
(p)
j

)

< rthj or if
∑

j rj
(

I th

g
(p)
j

)

< rthTot. In these cases, the

interference constraint imposed by the primary system will

limit the maximum transmit power at the cognitive transmitter

side and fails to reach either the minimum throughput per

channel or the minimum total throughput.



IV. PROBLEM ANALYSIS WITH DIFFERENT PRICING

MODELS

Given that the cost function of the power cj(P1, ..., PN )
is continuously derivable and convex, the problem (3) is a

convex optimization problem. Thus, we propose to alterna-

tively solve its dual problem using the Karush-Kuhn-Tucker

(K.K.T) conditions as duality gap is zero under the Slater

condition [16]. For our case, the Slater condition is satisfied

when the problem is feasible. Mathematically, the feasibility

conditions are written as

rj

(

I th

g
(p)
j

)

≥ rthj , ∀j ∈ {1, ..., N} (4)

N
∑

j=1

rj

(

I th

g
(p)
j

)

≥ rthTot. (5)

The dual problem of the category problem (3) can be written

as follows

L

(

{Pj}
N
j=1, λ0, {λj}

N
j=1, {νj}

N
j=1

)

=

N
∑

j=1

cj(P1, ..., PN ) + λ0

(

rthTot −

N
∑

j=1

rj(Pj)
)

+

N
∑

j=1

λj

(

rthj − rj(Pj)
)

+

N
∑

j=1

νj

(

Pjg
(p)
j − I th

)

, (6)

where λ0, {λj}
N
j=1, and {νj}

N
j=1 are the K.K.T. multipliers.

After simplifications, the K.K.T. constraints are written as
follows

N
∑

i=1

∂ci(P1, ..., PN)

∂Pj

=
γ
(c)
j λ0

(1 + Pjγ
(c)
j ) log 2

∀j ∈ {1...N} (7)

λ0

(

rthTot −

N
∑

j=1

rj(Pj)
)

= 0 (8)

Pj ≥ 2
rth
j −1

γ
(c)
j

∀j ∈ {1...N} (9)

Pj ≤ I th

g
(p)
j

∀j ∈ {1...N} (10)

λ0 ≥ 0. (11)

Hence, the optimal power allocation for every channel j is
deduced such that it satisfies the following Equation:

(

1 + Pjγ
(c)
j

)

N
∑

i=1

∂ci(P1, ..., PN )

∂Pj

= λ
′
0γ

(c)
j

Subj. to P
−
j ≤ Pj ≤ P

+
j , (12)

where λ′
0 is a constant proportional to λ0 determined

such that the total throughput constraint is saturated (i.e.,
∑N

j=1 rj(Pj) = rthT ), while P−
j and P+

j are defined as










P−
j = 2

rth
j −1

γ
(c)
j

P+
j = I th

g
(p)
j

.
(13)

Note that uniqueness of Pj could be verified in the interval

[P−
j , P+

j ] if it exists in this interval.

Proof. Let us denote

gj(Pj) =
(

1 + Pjγ
(c)
j

)

N
∑

i=1

∂ci(P1, ..., PN )

∂Pj

− λ′
0γ

(c)
j . (14)

Solving Equation (12) is equivalent to finding the zero of the

function gj in the interval [P−
j , P+

j ]. Thus, we compute its

derivative as follows

g′j(Pj) =
(

1 + Pjγ
(c)
j

)

N
∑

i=1

∂2ci(P1, ..., PN )

∂P 2
j

(15)

+ γ
(c)
j

N
∑

i=1

∂ci(P1, ..., PN )

∂Pj

,

which is positive (since ci(P1, ..., PN ) are by definition

increasing and convex function of Pj , ∀i, j). Thus, we prove

the uniqueness of the solution. The existence of this solution

could be checked by testing the interval bounds (i.e., it exists

if and only if gj(P
−
j )× gj(P

+
j ) ≤ 0).

Depending on the cost function expression, the solution

could be simplified further. Thus, in the following we will

consider some families of cost functions and express the power

allocation for each case starting from the most simple models

to generic expressions.

A. Constant Unit Price

In this section, we consider a cost function with a variable

unitary power price across the channel without depending on

the consumed power. In fact, as specified in the system model,

the channels in our case represent generic diversity of the

paths. Thus, for instance, the variable price could be applicable

when channels represent different time slots or different power

providers. In this case, the power cost function is expressed

as follows

cj(P1, ..., PN ) = µj × Pj , ∀j (16)

where µj is the unitary power cost for the j-th channel.

Given, this model, the allocated power expression is deduced

from (12) as

Pj =

[

λ′
0 −

µj

γ
(c)
j

]P
+
j

P
−
j

, (17)

where

[

x

]x+

x−

=











x+ if x > x+,

x− if x < x−,

x otherwise.

The water-level, λ′
0, is expressed as

λ
′
0 =

(

2r
th
Tot

∏

j∈Sc

2r
−
j

∏

j∈Sp

2r
+
j

∏

j 6∈{Sc∪Sp}

(
γ
(c)
j

µj

)

) 1
N−(|Sc|+|Sp|)

, (18)

with Sc and Sp defind as










Sc =
{

j ∈ {1, ..., N} such that
λ′
0

µj
− 1

γ
(c)
j

< P−
j

}

Sp =
{

j ∈ {1, ..., N} such that
λ′
0

µj
− 1

γ
(c)
j

> P+
j

}

.

(19)



The obtained throughput per channel is deduced then as a

function of the signal-to-noise ratio and unit price per channel

as

rj =

[

log2

(

λ′
0

γ
(c)
j

µj

)]r
+
j

r
−
j

. (20)

We obtain a water-filling expression used in resource al-

location algorithms over multichannel systems [17] with the

modification that the channel unit price power will affect

the power allocated in each channel. The allocated power is

obtained as the difference between the water-level and the ratio

of the unit price by the channel gain instead of the inverse of

the channel gain in ordinary water-filling.

B. Power Consumption Dependent Unit Price

In this section, we assume that the unitary power cost de-

pends not only on the channel but also on the allocated power

in that channel. In fact, in practical scenarios, power providers

impose higher unitary power prices when the consumption

increases. Similarly, to penalize high power consumers, higher

factors are associated when the allocated power increases in

the carbon impact computation. Thus, in this section, we study

the following model for the cost function

cj(P1, ..., PN ) = µj(Pj)× Pj , ∀j (21)

. where µj(Pj) is the unitary cost function.

1) Linear Unit Price function: We consider the unitary cost

as a linear function of the consumed power, i.e.,

µj(Pj) = aj + bjPj , (22)

where aj and bj are power pricing coefficients fixed by the

power provider and can be obtained in real-time through the

back-haul network.

Inserting (22) and (21) in (12), we obtain the following

equation to solve for the allocated power per channel

Pj =

[

λ′
0

aj + 2bjPj

−
1

γ
(c)
j

]P
+
j

P
−
j

. (23)

Although this is a quadratic equation, non-negativity of the
allocated power per channel results in obtaining a unique
solution which is written as

Pj =

[−(ajγ
(c)
j + 2bj) +

√

(

ajγ
(c)
j − 2bj

)2
+ 8bjλ′

0

(

γ
(c)
j

)2

4bjγ
(c)
j

]P
+
j

P
−
j

.

(24)
The expression of λ′

0 can not be derived analytically in this
case but it can be obtained by solving the total throughput
constraint which is transformed into finding the zero of the
function f(λ′

0) for λ
′
0 ≥ 0 with

f(λ′
0) =

2r
th
Tot

∏

j∈Sc

2r
−
j

∏

j∈Sp

2r
+
j

−
∏

j 6∈{Sc∪Sp}

(

2bj − ajγ
(c)
j +

√

(ajγ
(c)
j − 2bj)2 + 8bjλ′

0

(

γ
(c)
j

)2
)

4bj

= 0, (25)

with Sc and Sp defined as










Sc =
{

j ∈ {1, ..., N} such that
λ′
0

aj+2bjPj
− 1

γ
(c)
j

< P−
j

}

Sp =
{

j ∈ {1, ..., N} such that
λ′
0

aj+2bjPj
− 1

γ
(c)
j

> P+
j

}

.

(26)

It is easy to check that f(λ′
0) is continuous and decreasing

with f(0) > 0 and lim
λ′
0→∞

f(λ′
0) = −∞ thus it has a unique

zero which can be obtained numerically.

Although in this case we do not obtain a strictly speaking

water-filling expression, a similar algorithm can be developed

where λ′
0 will represent an "imaginary" water-level as it

remains constant for all channels. The pseudo water-filling

expression can be deduced from (23) as follows

Pj =

[

λ′
0

µ̂j

−
N0

g
(c)
j

]P
+
j

P
−
j

, (27)

with µ̂j = aj + 2bjPj is the effective power cost in the j-

th channel. Note that this is not a water-filling equation as

µ̂j depends on the allocated power Pj but it only allows

to analyze the allocated power function to the channel gains

and the price coefficients. Thus, we obtain a system of non-

linear coupled Equations (24) and (25). An iterative approach

allows us to determine this water-level and thus obtain the

optimal power allocation per channel by solving at each step

consecutively (24) and (25) until convergence. This algorithm

has the same convergence speed as the regular water-filling

algorithm. The only difference is that the water-level is deter-

mined analytically in regular water-filling while it is obtained

numerically by solving (25) in this case.

2) Polynomial Unit Price function: We consider the unitary

cost as a general polynomial function of the consumed power

as follows

µj(Pj) =

p
∑

i=0

aj,iP
i
j , (28)

where p is the polynomial degree and aj,i are power pricing

coefficients fixed by the power provider.

Inserting (28) and (21) in (12), we obtain the following

Equation to solve for the allocated power per channel

Pj =

[

λ′
0

∑p−1
i=0 aj,i+1(i+ 1)P i

j

−
1

γ
(c)
j

]P
+
j

P
−
j

. (29)

Since the solution of this equation is unique if it exists

as shown earlier, we transform the problem into root finding

problem of the following polynomial

p+1
∑

i=0

αj,iP
i
j , (30)

with

αj,i =















aj,0

γ
(c)
j

− λ′
0, if i = 0

aj,i

γ
(c)
j

(i+ 1) + aj,i−1i, if 1 ≤ i ≤ p

aj,p(p+ 1), if i = p+ 1.

(31)



The obtained power will depend on the water-level λ′
0 which

is obtained by solving the total throughput constraint which
is transformed into finding the zero of the function f(λ′

0) for
λ′
0 ≥ 0 with

f(λ′
0) = r

th
Tot −

[

∑

j∈Sc

r
−
j +

∑

j∈Sp

r
+
j +

∑

j 6∈{Sc∪Sp}

rj(Pj)

]

= 0, (32)

with Sc and Sp defined as















Sc =
{

j ∈ {1, ..., N} such that
λ′
0∑p−1

i=0 aj,i+1(i+1)P i
j

− 1

γ
(c)
j

< P−
j

}

Sp =
{

j ∈ {1, ..., N} such that
λ′
0

∑p−1
i=0 aj,i+1(i+1)P i

j

− 1

γ
(c)
j

> P+
j

}

.

(33)

Although in this case we do not obtain a strictly speaking

water-filling expression, a similar algorithm can be developed

where λ′
0 will represent an "imaginary" water-level as it

remains constant for all channels. The pseudo water-filling

expression can be deduced from (29) as follows

Pj =

[

λ′
0

µ̂j

−
N0

g
(c)
j

]P
+
j

P
−
j

, (34)

with µ̂j =
∑p−1

i=0 aj,i+1(i+1)P i
j is the effective power cost in

the j-th channel. Note that this is not a water-filling equation

as µ̂j depends on the allocated power Pj but it only allows

to analyze the allocated power function to the channel gains

and the price coefficients. Thus, we obtain a system of non-

linear coupled Equations (30) and (32). An iterative approach

allows us to determine this water-level and thus obtain the

optimal power allocation per channel by solving at each step

consecutively (30) and (32) until convergence.

V. SIMULATION RESULTS

We consider a cognitive user randomly located in a cell with

a radius d0 = 1 Km. We assume that the CU is equipped with

a smart meter that could provide it with (instantaneous) unit

pricing in real-time. Unless notified for a different usage of the

parameters, we consider N = 20 channels. The total required

throughput rthTot = 50 Mbps while the individual required

throughput per channel is rthj = 1 Mbps, ∀j. We consider a

Rayleigh fading channel model. The interference threshold is

fixed to be equal to the noise floor I th = N0 = −120 dBm.

Using the different pricing cost models presented in section IV,

we compute the optimal cost of the power needed to reach

the required throughput, C
(

P
opt

)

, then compare it to the

cost of the power if dynamic pricing is not available. This

reference power allocation P
ref is obtained by minimizing

the total power consumed instead of cost of the power (we

use algorithm proposed in [17] for this reference allocation).

Then we compute the relative power cost gain as follows

Cost gain =
C
(

P
ref

)

− C
(

P
opt

)

C
(

Pref
) . (35)

In Fig. 1, we plot the cost gain with reference to the case

where pricing is not considered (minimization of the total

power cost) for the channel dependent unitary cost (16) as

a function of the standard deviation of this unitary cost for

different numbers of channels using the channel dependent

pricing model (16). We observe that the gain increases as

the variance of the unitary price increases. This is due to the

increase of the variability between channels which allows a

better exploitation of the channels. On the other hand, the

gain is more important when the number of channels is lower.

This can be explained by the fact that increasing the number

of channels limits users’ freedom to allocate the power due to

additional individual constraints for the new channels.
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Fig. 1. Percentage of cost gain function to the unitary cost variance with

E[γ
(c)
j ] = 20 dB.

In Fig. 2, we plot the obtained cost gain compared to ab-

sence of pricing for different values of the pricing coefficients

to observe their effect on the total cost. We use the pricing

model (21) with linear unit pricing as in (22) with uniform

pricing coefficients for all channels. We fix aj = 1 and vary

bj as shown in the legend. The cost gain is increasing with the

increase of the pricing coefficient since power savings became

more valuable with the increase of the unitary cost.
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Fig. 2. Total power consumption cost with different pricing parameters
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In Fig. 3, we plot the power cost gain compared to the case

where pricing is not taken in consideration as a function of

the average channel gains E[γ
(c)
j ]. We use power dependent

pricing model (21) with polynomial unit pricing as in (28)

with different degrees. The different polynomials are generated

using Chebychev polynomial approximation [18] from the

same cost function but with different degrees of approximation

p. In this figure, we observe two behaviors of the cost gain

as a function of the SNR. In the first part corresponding

to low SNRs, the cost gain is a decreasing function of the

SNR but it is higher with higher values of the polynomial

approximation degree. In fact, for low SNRs, high power

levels are needed to meet throughput constraints which results

in higher cost savings when the polynomial approximation

is more accurate (higher degree of the polynomial). In the

second part corresponding to high SNRs, the cost gain is a

slowly increasing function of the SNR and also function of

the polynomial degree. In fact, for high SNRs, lower power

levels are needed to reach throughput requirements. Thus, in

this case, the effect of the channel SNRs on the total cost gain

becomes dominant over the power effect. In addition, even

though we still observe that higher degrees of polynomial

approximations result in higher cost savings, the difference

between the gains become negligible which justifies the use

of a lower polynomial degree for this case since resource

allocation is easier with low polynomial degrees.
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Fig. 3. Cost gain with different polynomial approximations function to
average channels SNR.

VI. CONCLUSION

This paper proposes a resource allocation scheme for dy-

namic cost of the consumed power for a cognitive radio system

while ensuring total and individual throughput requirements.

The proposed power allocation allows to profit from available

information about the cost and the channels diversity to better

employ the power to meet the throughput requirements and

minimize the power cost. Analytic expressions of the allocated

power are developed for different cost functions and low-cost

algorithms are presented for the power allocation. Simulation

results show the gain that the cognitive system achieved

by profiting from the dynamic power pricing through the

proposed power allocation scheme.
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