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Abstract— A network of n communication links operating over
a shared wireless channel is considered. Power management is
crucial to such interference-limited networks to improve the
aggregate throughput. We consider sum-rate maximization of
the network by optimum power allocation when conventional
linear receivers (without interference cancellation) are utilized.
It is shown that in the case of n = 2 links, the optimum
power allocation strategy is such that either both links use their
maximum power or one of them uses its maximum power and the
other keeps silent. An asymptotic analysis for large n is carried
out to show that in a Rayleigh fading channel the average sum-
rate scales at least as log(n). This is obtained by deriving an
on-off power allocation strategy. The same scaling law is obtained
in the work of Gowaikar et al., where the number of links,
their end-points (source-destination pairs), and the relay nodes
are optimally chosen all by a central controller. However, our
proposed strategy can be implemented in a decentralized fashion
for any number of links, arbitrary transmitter-receiver pairs, and
without any relay nodes. It is shown that the proposed power
allocation scheme is optimum among all on-off power allocation
strategies in the sense that no other strategies can achieve an
average sum-rate of higher order.

I. INTRODUCTION

In a wireless network, a number of source nodes transmit

data to their designated destination nodes through a shared

wireless channel. Capacity of such networks has received

considerable attention in the literature [1]–[3]. Based on the

network structure, throughput optimization can be executed in

different ways, e.g. by power control [4], bandwidth allocation

[5], [6], transmission scheduling [7], routing [1], [3], [8], base

station selection [9], etc. Among these various challenging

problems, power control has a prominent role in the ongoing

research in this area.

In this work, we investigate the sum-rate of single-hop

wireless networks achievable by means of power allocation.

In our model, interference is treated as Gaussian noise. Thus,

one can de£ne the signal to interference-plus-noise ratio

(SINR) and obtain the achievable rate from the Shannon

capacity formula. The network under consideration consists

of n transmitter-receiver pairs, referred to as links or users.

This model includes single-hop wireless networks, cellular

networks, and code division multiple access (CDMA) systems

as its special cases.

The problem of sum-rate maximization has been frequently

appeared in the literature [10]–[13]. This problem translates

to the problem of maximizing a product of linear fractional

functions1, which is a non-convex problem. Although there

are algorithms to £nd the global optimum of such problems

[14], their complexity precludes them from being implemented

practically. Thus, one should think of £nding suboptimum

methods which are simple and yet their performance is not

far from the optimum. One approach is to utilize numerical

optimization methods [15] to solve the problem (see e.g.

[12]). Since the problem is non-convex, these methods may

converge to local optimum solutions. Another approach is to

adopt an approximation of the objective function such that the

problem can be converted to a convex program. Speci£cally,

one common technique that has been utilized in [10]–[12] is

the assumption of large SINR; with this assumption, the 1

in the Shannon capacity formula is neglected and the rate

of each link becomes proportional to the logarithm of the

corresponding SINR (i.e. log(1 + SINR) ≈ log(SINR)).
As a result, the problem is easily converted to a convex

program [16]. Unfortunately, in the interference channel, the

assumption of large SINR is not valid. The reason is that due

to the presence of interference the solution of the optimization

problem is not guaranteed to satisfy this condition even when

the noise power is quite low. In addition to being suboptimal,

the above methods do not provide a suitable framework for

analyzing the achievable sum-rates.

In this work, we show that in the case of 2 links, the

optimum power allocation is such that either both transmitters

transmit with maximum power or one them remains off and

the other transmits with maximum power. Stimulated by this

result and the result of [13], we consider a power allocation

scheme where the powers of all links are selected from 0 and

a maximum value.

Followed by the pioneering work of Gupta and Kumar

[1], considerable attention has been paid to £nd out how the

throughput of wireless networks scales with n, the number of

nodes (see [3], [17] and the references therein). The random

behaviour of the channel is considered in [3], where it is

shown that the throughput of the network heavily depends on

the channel distribution. In particular, in a Rayleigh fading

channel, it is shown that the throughput scales at least as

1See Section III for illustrations.



log(n) for large n.

A common attribute of the works in [1], [3], and [17] is

that the direction of the information ¤ow is chosen optimally

to maximize the system throughput. However, in a realistic

network, the source nodes and their corresponding destinations

are predetermined. In this work, we show that in our wireless

network model, which has preset links and no relay nodes,

power allocation can achieve a throughput equal to log(n) for

Rayleigh fading. This result is the same as what is obtained in

[3], while unlike [3], the source-destination pairs are £xed and

no relays are used. An optimum power allocation strategy is

suggested that can be implemented in a decentralized fashion.

The rest of the paper is organized as follows. In Section

II, the system description is provided. The formulation of the

sum-rate maximization is presented in Section III. We derive a

lower bound on the average sum-rate in Section IV, and prove

its optimality among all on-off strategies in Section V. Finally,

we conclude the paper in Section VI.

Notation: Bold face lower case (upper case) letters denote

vectors (matrices); 0n and 1n stand for the all-zero and all-

one column vectors of length n, respectively; Nn represents

the set of natural numbers less than or equal to n; x−i

is a vector obtained by eliminating the ith element of x;

x ≤ y or x < y denote element-wise inequality; log is the

natural logarithm function; for any functions f(n) and h(n),
h(n) = O(f(n)) is equivalent to limn→∞ |h(n)/f(n)| < ∞,

h(n) = Ω(f(n)) is equivalent to limn→∞ |h(n)/f(n)| > 0,

h(n) = o(f(n)) is equivalent to limn→∞ |h(n)/f(n)| = 0,

h(n) = ω(f(n)) is equivalent to limn→∞ |h(n)/f(n)| = ∞,

and h(n) = Θ(f(n)) is equivalent to limn→∞ |h(n)/f(n)| =
c, where 0 < c < ∞.

II. SYSTEM DESCRIPTION

We consider a wireless communication network with n pairs

of transmitters and receivers. Each transmitter aims to send

data to its corresponding receiver. We denote the vector of

transmit powers by p = (p1, · · · , pn), where pi is the transmit

power of link i. Due to hardware constraints the transmit

powers of the transmitters can not exceed some certain values.

This power constraint is represented as

0n ≤ p ≤ a, (1)

where a = (a1, · · · , an) is the vector of maximum allowed

transmit powers.

The channel is represented by coef£cients Gji = |αji|2,

where αji is the channel gain between receiver i and trans-

mitter j. This means the received power from transmitter j
at the receiver i equals Gjipj . The channel gains, in general,

depend on small scale and large scale fadings, path attenuation,

processing gain of the CDMA system, etc. For the sake of

convenience, we collect all channel coef£cients in the channel

matrix G = {Gji}n×n
.

We consider an additive white Gaussian noise (AWGN) with

variance σ2

i at the receiver i. The receivers are conventional,

linear receivers, i.e., without multiuser detection. Since the

transmissions occur simultaneously within the same environ-

ment, the signal from each transmitter acts as interference for

other links. Assuming Gaussian signal transmission from all

links, the distribution of the interference will be Gaussian as

well. Thus, we can de£ne the SINR of the receiver i as

γi(p) =
Giipi

σ2

i +
∑n

j=1

j 6=i

Gjipj

. (2)

Throughout the paper, we occasionally use γi instead of γi(p).
The SINR determines different QoS measures such as the

maximum possible data rate, or the error probability of link i.
In this paper, we are interested in rates at which the

transmitters can send data to their corresponding receivers

without any error. According to the Shannon capacity formula

[18], the maximum rate of link i is equal to

ri = log (1 + γi) nats/channel use. (3)

The network rate vector is de£ned as r = (r1, · · · , rn). In

a network, we desire to have all rates as large as possible.

However, due to the interplay between the rates of different

links (see (2) and (3)), it is not possible to maximize all the

rates simultaneously. Instead, one may consider maximizing a

utility function of the network which is increasing in all rates.

A common utility function is the sum-rate of the network.

III. PROBLEM FORMULATION AND PRELIMINARY

RESULTS

The problem of sum-rate maximization is formulated as

follows:

max
p

n
∑

i=1

log (1 + γi(p)) ,

s.t. 0n ≤ p ≤ a, (4)

which is a non-convex optimization problem. Thus, the algo-

rithms developed for convex problems may converge to local

optimum points.

Proposition 1: In the optimum solution p∗ of (4), the power

of at least one link takes its maximum allowed value.

Proof: If p∗i < ai for all i ∈ Nn, we can scale p∗ by a

coef£cient greater than one and still stay in the feasible region.

Speci£cally, de£ne p̂ = α∗p∗, where α∗ > 1 is de£ned as

α∗ = min
i∈J

ai

p∗i
, (5)

and J ⊆ Nn is the set of indices i ∈ Nn for which p∗i > 0.

From the de£nition of γi in (2), it is easy to show that γi(αp)
is increasing in α. Thus, we have

γi(p̂) = γi(α
∗p∗) > γi(p

∗), ∀i ∈ J , (6)

which implies that the sum-rate obtained by p̂ is larger than

that of p∗. This is in contradiction to the optimality of p∗.

Thus, we should have p∗i = ai for at least one i ∈ J .

The results in [13] indicate that in the special case when

Gji = Gj for all j ∈ Nn the power of all links take the value

of zero or the maximum allowed value except for at most



one link. This result is not valid for a general distribution of

channel coef£cients. However, as discussed below there are

other special cases where an analogous result holds.

Special Case 1 (σ2

i → ∞ or σ2

i → 0): It is obvious that

when the noise power is very large it dominates the effect of

interference. Thus, to maximize the sum-rate all transmitters

should transmit with maximum power. On the other hand,

if the noise power is very small, the system can enjoy an

extremely large sum-rate by having the link with the largest

direct coef£cient transmit at its maximum power and keeping

the other links silent.

Special case 2 (n = 2): When there are only two links

sharing a wireless channel, we have the following interesting

result; it indicates that there are only 3 candidates for the

optimum power vector.

Proposition 2: The optimum solution of (4) for n = 2
is obtained when both transmitters transmit with maximum

power or one of them is silent and the other one transmits

with maximum power.

Proof: See the Appendix.

Obviously, if in the optimum solution only one link is active,

it should be the link with the largest direct channel coef£cient.

Special case 3 (low SINR regime): If we know that the

SINR of all links is small, we can use the approximation

log(1 + x) ≈ x to write (4) as follows

max
p

T (p) =

n
∑

i=1

γi(p),

s.t. 0n ≤ p ≤ a. (7)

Although this problem is again non-convex, the following

result can be concluded that allows for obtaining the optimum

solution by enumerating the vertices of the power domain.

Proposition 3: In the optimum solution p∗ of (7), all trans-

mit powers satisfy one of the power constraints by equality,

i.e., p∗i ∈ {0, ai} for all i ∈ Nn.

Proof: If p∗
−i = 0n−1, clearly p∗i = ai maximizes the

sum-rate and the proof is complete. If p∗
−i 6= 0n−1, by sub-

stituting the values of γi(p) from (2) in the objective function

of (7) and computing the second order partial derivative with

respect to pi we obtain

∂2T (p)

∂p2

i

= 2
∑

j 6=i

G2

ij

γj(p)

d2

j (p)
, (8)

which is positive for all p−i 6= 0n−1. Thus, T (p) is convex

with respect to pi. As a result, the maximizing value of pi lies

on one end of the interval [0, ai].
According to Proposition 3, if we somehow know that the

optimum solution of (4) satis£es the low SINR condition, then

the optimum value of (7) is an approximation for the optimum

value of (4) provided that the optimum solution of (7) satis£es

the low SINR condition.

IV. A LOWER BOUND ON SUM-RATE

It is interesting to know how the throughput of a wireless

network scales with the number of nodes, when this number

is large. In this section, we present a simple heuristic power

allocation scheme, which yields to a lower bound on the

average sum-rate of the wireless network described before.

This scheme is based on the on-off power allocation strategy.

De£nition 1: A power allocation strategy is called an on-off

power allocation strategy or brie¤y an on-off strategy if the

power of link i is selected from the two element set {0, ai}.

To facilitate the analysis, in the rest of the paper we assume

that the channel between each transmitter and each receiver

is Rayleigh fading. Also, all channels are pairwise indepen-

dent. Thus, the entries of G are independent exponentially

distributed random variables with mean 1 and variance 1, i.e.,

the pdf function of each entry is fX(x) = e−xu(x). Moreover,

we assume that all links have power constraints equal to 1, i.e.,

a = 1n. Furthermore, the noise powers at all receivers are

limited and the same, i.e., σ2

i = σ2 < ∞. The next theorem

states the main result of this section.

Theorem 1: In a wireless network with Rayleigh channels

and n links, with probability 1 the sum-rate grows with n at

least as log(n) + O(log log n).

Proof: We provide a power allocation strategy and show

that with probability 1 its corresponding sum-rate is larger than

log(n)+O(log log n). Consider a threshold t and assume that

link i is activated and transmit with full power if Gii > t;
otherwise, it is kept off. Note that the performance of this on-

off strategy depends on the value of the threshold t; if t is very

large, the quality of the selected links will be very good, but

the number of such links is small and as a result the achieved

sum-rate will be small; on the other hand, if t is very small,

many links are chosen, but it causes a large interference and

again the sum-rate will be small. Thus, it is crucial to choose

a proper value for t.

As the channel coef£cients are exponentially distributed,

the probability of a link being chosen is q = e−t. Thus, the

number of active links k is a binomial random variable with

parameters n and q. However, according to the central limit

theorem [19], if ζ = o(
√

nq), then, we have

Pr {nq − ζ
√

nq < k < nq + ζ
√

nq} → 1, (9)

as n → ∞. Since ζ
√

nq = o(nq), we can assume k = nq =
ne−t.

Without loss of generality, we assume that the active links

are indexed by 1, 2, · · · , k. The corresponding sum-rate is

equal to

Rtot =

k
∑

i=1

log






1 +

Gii

σ2 +
∑k

j=1

j 6=i

Gji







≥
k

∑

i=1

log






1 +

t

σ2 +
∑k

j=1

j 6=i

Gji






, (10)

where the inequality is because Gii > t for the selected links.

According to the law of large numbers, we can rewrite (10)



as

Rtot ≥ kE






log






1 +

t

σ2 +
∑k

j=1

j 6=i

Gji












. (11)

Using the convexity of log with respect to Gji, we obtain

Rtot ≥ k log






1 +

t

σ2 +
∑k

j=1

j 6=i

E {Gji}







= k log

(

1 +
t

k

)

, (12)

where the equality relies on E {Gji} = 1. Consequently, by

substituting k = ne−t in (12) we have

Rtot ≥ ne−t log

(

1 +
t

ne−t

)

. (13)

The last step is to £nd the optimum value of t, such that the

lower bound (13) becomes as tight as possible. By setting the

derivative of this lower bound equal to zero, we obtain:

log

(

1 +
tet

n

)

=
(1 + t)et

n + tet
. (14)

We can verify that the solution of the above equation is

obtained as:

topt = log n − 2 log log n + log 2 + O

(

log log n

log n

)

. (15)

By substituting this value in the lower bound (13), we obtain

Rtot ≥ log n − 2 log log n + O(1), (16)

which gives a lower bound on the sum-rate that can be

achieved with probability 1.

As an immediate result of Theorem 1, we have the following

corollary.

Corollary 1: In a Rayleigh fading channel, the average

sum-rate Rtot of a network with n links is lower bounded

as Rtot ≥ log n + O(log log n).

From the proof of Theorem 1, we have the following

corollary on the number of active links in the suggested on-off

strategy.

Corollary 2: In a Rayleigh fading channel, with probability

1 the number of active links of a network with n links scales

as O(log2 n).

We can deduce from Corollary 2 that the rate per link scales

as O

(

1

log n

)

.

It is worth mentioning that in the suggested on-off strategy,

no coordination is required between the links. All one trans-

mitter needs to know is wether its direct channel coef£cient is

above the threshold topt. Based on this information, it decides

wether to transmit with full power or remain silent.

V. OPTIMUM LINK ACTIVATION STRATEGY

Stimulated by Propositions 2 and 3 and the results of [13],

we limit the power allocation problem to the on-off power

allocation strategies. Finding the optimum subset of users

who should transmit with maximum power requires solving

a complicated integer program. However, it is possible to £nd

suboptimum algorithms that perform close to the optimum.

Indeed, in this section we show that an average sum-rate

larger than the lower bound provided in the previous section

is not achievable. Thus, the strategy described in the proof

of Theorem IV is optimum in the sense of the order of the

average sum-rate.

Lemma 1: Let m∗ denote the number of active links in the

sum-rate maximizing strategy. Then, with probability 1,

m∗ → ∞ as n → ∞. (17)

Proof: To prove this lemma, it is enough to show that

for any given integer m, Pr {m∗ ≤ m} → 0 as n → ∞. We

have

Pr {m∗ ≤ m} =
m

∑

k=1

Pr {m∗ = k}

≤
m

∑

k=1

(

n

k

)

qk (18)

where qk is the probability that a given k-tuple set of active

links achieves the maximum sum-rate. The inequality is be-

cause of the union bound. Let’s denote the pdf and the cdf of

the sum-rate achieved by a k-tuple set of active links by fk(x)
and Fk(x), respectively. It is clear that qk is upper bounded by

the probability of the event that the sum-rate of the k-tuple set

of active links is larger than the rate of any of the remaining

n − k links when it is the only active link, i.e.,

qk <

∫ ∞

0

Fn−k
1

(x)fk(x)dx (19)

From (18) and (19), we obtain

Pr {m∗ ≤ m} <

m
∑

k=1

(

n

k

)∫ ∞

0

Fn−k
1

(x)fk(x)dx

≈
m

∑

k=1

∫ ∞

0

(

e

kF1(x)

)k

nkFn
1

(x)fk(x)dx(20)

The equality is obtained by using Stirling’s approximation for

factorial. As it is seen, the integrand includes a product of

a term polynomial in n and a term exponential in n. Since

F1(x) < 1, the integrand goes to 0 as n → ∞. Thus, the

summation goes to zero and consequently,

Pr {m∗ ≤ m} → 0 as n → ∞ (21)

This means with probability 1, m∗ grows with n.

The above result is valid for any channel conditions. The

following Lemma states how fast the optimum number of

active links should grow in a Rayleigh fading channel.



Lemma 2: If the channel is Rayleigh, then with

probability 1

m∗ = Ω

(

log n

log log n

)

. (22)

Proof: Assume by contradiction that

Pr

{

m∗ = Ω

(

log n

log log n

)}

= 1 − ǫ, for some constant

ǫ > 0. Hence, m∗ = o

(

log n

log log n

)

happens with probability

ǫ. If this happens, the sum-rate is upper bounded by the

sum-rate of a network for which the m∗ links with largest

direct coef£cients have no interference on each other. For

such an imaginary network, the optimum strategy is to assign

maximum power to the best m∗ links and keep the other

links off. Thus, we have

Rtot ≤ m∗
E

[

log

(

1 +
Gii

σ2

)]

≤ o

(

log n

log log n

)

log

(

1 +
E[Gii]

σ2

)

, (23)

where the second inequality is obtained by the concavity of the

log function. Recalling that the expected value of the largest of

n i.i.d. exponential random variables is of order O(log n) [20],

we can write E[Gii] ≤ O(log n). Thus, (23) can be written

as:

Rtot ≤ o

(

log n

log log n

)

log

(

1 +
O(log n)

σ2

)

(24)

= o(log n). (25)

This means that with probability ǫ the sum-rate if of order

less than o(log n), which is in contradiction to the result of

Theorem 1.

The previous lemma implies that in order to achieve the

maximum sum-rate the growth rate of the number of active

links should be larger than some certain orders. However, due

to the effect of interference, the number of active links should

not grow very fast. In the next lemma, we address this effect.

Indeed, we show that when m, the number of active links,

growth larger than some certain orders, then the interference

seen by most of the links is of order Ω(m).

Lemma 3: If m = Ω

(

log n

log log n

)

, the probability that there

exists an m-tuple set of active links, with the property that the

number of links with interference of order o(m) be larger than

αm (for some constant 0 < α < 1), approaches zero as n goes

to in£nity.

Proof: Consider an arbitrary set of m active links. Let Y
denote the interference seen by one of these links, which has

chi-squared distribution with 2(m − 1) degrees of freedom.

The cdf of Y is upper bounded as

FY (y) = e−y

∞
∑

k=m

yk

k!

< e−y

∞
∑

k=m

(ye

k

)k

< e−y

∞
∑

k=m

(ye

m

)k

=
e−y

(ye

m

)m

1 − ye

m

(26)

where the £rst inequality is obtained by using the Stir-

ling’s approximation for the factorial function. By considering

y = o(m), (26) is converted to

FY (y) < e−y
(ye

m

)m

. (27)

Let π represent the probability of having at least αm links

with interference of order o(m). It turns out that

π =

m
∑

i=αm

(

m

i

)

F i
Y (y) (1 − FY (y))

m−i

< 2mFαm
Y (y), (28)

where the inequality is obtained by replacing F i
Y (y) and

(1 − FY (y))
m−i

by the larger values F αm
Y (y) and 1, respec-

tively. Let ρ denote the probability of having at least one m-

tuple of active links in which at least αm of links experience

interference of order o(m). By using the union bound, we

obtain

ρ ≤
(

n

m

)

π

<
(ne

m

)m

2me−αmy
(ye

m

)αm2

= exp [m(log n + 1 − log m) + m log 2

−αmy + αm2(log y + 1 − log m)
]

, (29)

where the second inequality is obtained by using (27) and (28).

To complete the proof it suf£ces to show that the exponent

of the above expression approaches minus in£nity as n goes

to in£nity. Taking into account the fact that y = o(m) and

neglecting the non-dominant terms, the condition for having

negative exponent is obtained as

m log n − αm2 log m < 0. (30)

This is equivalent to having

m = Ω

(

log n

log log n

)

, (31)

which is exactly the hypothesis of the lemma.

Theorem 2: In a Rayleigh fading channel, the power allo-

cation policy of activating the links with direct coef£cients

larger than log n is optimum among all on-off strategies.



Proof: According to Lemma 2 with probability 1, we

have m∗ = Ω

(

log n

log log n

)

. However, according to Lemma

3, for this value of m∗, the interference in most of the links

is Ω(m∗). Thus, if a strategy creates an interference of order

Θ(m∗), it is optimum (because otherwise the interference is of

order ω(m) and yields a sum-rate of lower order). Moreover,

if a group of such strategies exists, since the interferences are

from the same order, the best one is the one that chooses the

links with largest direct channel coef£cients. The decentral-

ized power allocation scheme described in previous section

possesses both two aforementioned properties. Hence, it is

optimum.

VI. CONCLUSION

In this paper, the problem of sum-rate maximization by

means of power allocation was investigated. This problem is

non-convex and only suboptimum solutions have been reported

for it in previous works. We proved that in the case of n = 2
links the optimum solution is one of the corner points of the

power domain. By limiting the power allocation problem to a

on-off strategies, we showed that the average sum-rate scales

as O(log n). Moreover, it was proved that this sum-rate can

be achieved by a simple decentralized scheme.

APPENDIX

Assume for simplicity that channel coef£cients and noise

powers are scaled such that the maximum allowed power of

both links and also the direct channel coef£cients Gii are equal

to one. According to Proposition 1, in the optimum solution

of (4) the power of at least one link should be equal to one;

without loss of generality assume p2 = 1. It suf£ces to show

that the maximum of the function

f(p1) = log

(

1 +
p1

σ2

1
+ G21

)

+ log

(

1 +
1

σ2

2
+ G12p1

)

(32)

is obtained either at p1 = 0 or p1 = 1. By computing the

derivative of f(p1) and simplifying it we obtain

f ′(p1) =
Ap2

1
+ Bp1 + C

d(p1)
, (33)

where A = G2

12
, B = 2σ2

2
G12, C = σ2

2
(σ2

2
+ 1) − G12(σ

2

1
+

G21), and d(p1) is a polynomial in p1 with all coef£cients

non-negative. Thus, the sign of f ′(p1) is determined by its

numerator. Note that A, B ≥ 0. If C ≥ 0, the numerator (and

thus f ′(p1)) is always non-negative for p1 ≥ 0. Thus, f(p1)
is increasing in p1 and achieves its maximum at p1 = 1. If

C < 0, the numerator has exactly one positive (p′
1
) and one

negative (p′′
1

) roots. Thus, f(p1) has a minimum at p′
1

and

attains its maximum at 0 or 1.
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