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Power Allocation and Routing in Multibeam Satellites
With Time-Varying Channels
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Abstract—We consider power and server allocation in a
multibeam satellite downlink which transmits data to different
ground locations over time-varying channels. Packets destined
for each ground location are stored in separate queues and the
server rate for each queue depends on the power ( ) allocated
to that server and the channel state ( ) according to a concave
rate-power curve ( ). We establish the capacity region of
all arrival rate vectors ( 1 . . . ) which admit a stabilizable
system. We then develop a power-allocation policy which stabilizes
the system whenever the rate vector lies within the capacity region.
Such stability is guaranteed even if the channel model and the
specific arrival rates are unknown. Furthermore, the algorithm
is shown to be robust to arbitrary variations in the input rates
and a bound on average delay is established. As a special case,
this analysis verifies stability and provides a performance bound
for the Choose-the- -Largest-Connected-Queuespolicy when
channels can be in one of two states (ON or OFF) and servers
are allocated at every timestep ( ). These results are
extended to treat a joint problem of routing and power allocation
in a system with multiple users and satellites and a throughput
maximizing algorithm for this joint problem is constructed.
Finally, we address the issue of interchannel interference and
develop a modified policy when power vectors are constrained to
feasible activation sets. Our analysis and problem formulation is
also applicable to power control for wireless systems.

Index Terms—Delay, dynamic power allocation, power control,
queueing analysis, satellite communication, stability, wireless
downlink.

I. INTRODUCTION

I N THIS PAPER, we consider power allocation in a satel-
lite which transmits data to ground locations over

different downlink channels. Each channel is assumed to be
time varying (e.g., due to changing weather conditions) and
the overall channel state is described by the ergodic vector
process . Packets destined for ground
location arrive from an input stream and are placed in an
output queue to await processing (Fig. 1). The servers of each
of the output queues may be activated simultaneously at any
time by assigning to each a power level , subject to the
total power constraint . The transmission rate
of each server depends on the allocated power and on
the current channel state according to a general concave
rate-power curve . A controller allocates power to
each of the queues at every instant of time in reaction to

Manuscript received January 3, 2002; revised April 25, 2002; approved by
IEEE/ACM TRANSACTIONS ONNETWORKING Editor M. Ajmone Marsan.

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
mjneely@mit.edu; modiano@mit.edu; crohrs@mit.edu).

Digital Object Identifier 10.1109/TNET.2002.808401

Fig. 1. Multibeam satellite withN time-varying downlink channels andN
onboard output queues.

channel state and queue backlog information. The goal of
the controller is to stabilize the system and thereby achieve
maximum throughput and maintain acceptably low levels of
unfinished work in all of the queues.

We establish the capacity region of the system by de-
scribing the multidimensional region of all arrival rate vectors
( ) which admit a stabilizable system under some
power-allocation policy. Stability in this region holds for gen-
eral ergodic channel and packet arrival processes. It is shown
that if the channel model and arrival rates are known, any
power-allocation policy which stabilizes the system—possibly
by making use of special knowledge of future events—can be
transformed into a stabilizing policy which considers only the
current channel state.

We next consider the case of a slotted time system when ar-
rivals and channel-state vectors are independent and identically
distributed (i.i.d.) from one timeslot to the next, but the channel
probabilities and the exact values of arrival rates ( )
are unknown. A particular power-allocation policy is developed
which stabilizes the system whenever the rates ( ) are
within the capacity region.1 This policy is shown to maintain av-
erage queue occupancy within a fixed upper bound and is robust
to arbitrary changes in the input rates. These results are extended
to treat a joint routing and power-allocation problem with mul-
tiple users and multiple satellites and a simple policy is devel-
oped which maximizes throughput and ensures stability when-
ever the system is stabilizable. Finally, we address the issue of
interchannel interference due to bandwidth limitations and de-
velop a modified policy when power vectors are constrained to
activation sets. This analysis makes use of a Lyapunov function
defined over the state of the queues.

1In [20], we show the same policy is stabilizing for Markov modulated input
and channel dynamics (see simulation results in Section VII).
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Previous work on queue control problems for satellite and
wireless applications is found in [1]–[8], [14], [15], [18], and
[20]. In [2], a parallel queue system with a single server is exam-
ined, where every timeslot the transmit channels of the queues
vary betweenON andOFFstates and the server selects a queue to
service from those that areON. The capacity region of the system
is developed when packet arrivals and channel states are i.i.d.
Bernoulli processes, and stochastic coupling is used to show
optimality of theServe-the-Longest-Connected-Queuepolicy in
the symmetric situation that arrival and channel processes are
identical for all queues (i.e., , ).
Such a server-allocation problem can be viewed as a special
case of our power-allocation formulation, and in Section IV, we
verify stability of theServe-the- -Longest-Queuespolicy for
symmetric and asymmetric systems with multiple servers.

In [3], a wireless network of queues is analyzed when input
packets arrive according to memoryless processes and have ex-
ponentially distributed length. A Lyapunov function is used to
establish a stabilizing routing and scheduling policy under net-
work connectivity constraints. In [4], similar analysis is used to
treat server allocation in a network with time-varying connec-
tivity. Such a technique for proving stability has also been used
in the switching literature [9]–[12]. In [10], an packet
switch with blocking is treated and input/output matching strate-
gies are developed to ensure 100% throughput whenever arrival
rates are within the capacity region. In [12] and [13], the method
of Lyapunov stability analysis is used to prove that queues are
not only stable but have finite backlog moments.

The main contribution in this paper is the formulation of a
general power-control problem for multibeam satellites and the
development of throughput maximizing power- and server-al-
location algorithms for the system. The method extends to
other wireless networking problems where power allocation
and energy efficiency is a major issue. Recent work in [14]
treats a problem of minimizing the total energy expended to
transmit blocks of data arriving to a single queue, and it is
shown that power control can be effectively used to extend
longevity of network elements. In [15], power allocation
for wireless networks is addressed. The authors consider
ON/OFF-type power-allocation policies and observe that for
random networks, capacity regions are not extended much by
including more power quantization levels. Our capacity results
in Sections III and VII illustrate that the capacity region is often
considerably extended if multiple power levels are utilized for
the satellite downlink problem.

In the next section, we introduce the power- and server-al-
location problems. In Section III, we develop several stability
results for single-queue systems with ergodic and nonergodic
processing rates and establish the capacity region of the
satellite downlink with power control. In Section IV, a stabi-
lizing power-allocation policy is developed for systems with
i.i.d. inputs and channel states. In Section V, a joint routing and
power-allocation policy is treated using similar analysis, and in
Section VI, we extend the problem to treat channel interference
issues. Numerical results are presented in Section VII.

II. POWER AND SERVER ALLOCATION

Consider the queue system of Fig. 1. Each time-varying
channel can be in one of a finite set of states. We

Fig. 2. Set of concave power curves� (p ; c ) for channel statesc , c , c .

represent the channel process by the channel vector
, where .

Channels hold their state for timeslots of length, with
transitions occurring on slot boundaries . It is assumed
that channel states are known at the beginning of each timeslot.
Such information can be obtained either through direct channel
measurement (where timeslots are assumed to be long in
comparison to the required measurement time) or through a
combination of measurement and channel prediction.2 The
channel process is assumed to be ergodic and yields time-av-
erage probabilities for each state . At every timeslot, the
server transmission rates can be controlled by adjusting the
power-allocation vector subject to
the total power constraint .

For any given state of downlink channel , there is a
corresponding rate–power curve which is increasing,
concave, and continuous in the power parameter (Fig. 2). This
power curve could represent the logarithmic Shannon capacity
curve of a Gaussian channel, or could represent a rate curve
for a specific set of coding schemes designed to achieve a
sufficiently low probability of error in the given channel state.
In general, any practical set of power curves will have the con-
cavity property, reflecting diminishing returns in transmission
rate with each incremental increase in signal power.

The continuity property is less practical. A real system will
rely on a finite databank of coding schemes and, hence, actual
rate–power curves restrict operation to a finite set of points.
For such a system, we can create a new,virtual power curve

by a piecewise linear interpolation of the operating
points [see Fig. 3(a)]. Such virtual curves have the desired conti-
nuity and concavity properties and are used as the true curves in
our power-allocation algorithms. Clearly, a virtual system which
allocates power according to the virtual curves has a capacity re-
gion which contains that of a system restricted to allocate power
on the vertex points. However, when vertex points are equally
spaced along the power axis and integrally divide the total power

, the capacity regions are, in fact, the same, as any point on a
virtual curve can effectively be achieved by time-averaging two
or more feasible rate–power points over many timeslots. Indeed,
in Section IV, we design a stabilizing policy for any set of con-
cave power curves which naturally selects vertex points at every
timeslot if power curves are piecewise linear.

This power-allocation formulation generalizes a simpler
problem of server allocation. Assume that there areservers

2In [23] and [24], it is shown that satellite channel states can be accurately
predicted up to one second into the future, where attenuation levels in the Ka
band are estimated to within�1 db of accuracy in both clear and rainy weather
conditions.
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Fig. 3. Virtual power curves for systems with a finite set of operating points.

and every timeslot the servers are scheduled to serveof the
queues ( ). A given queue transmits data at a fixed

rate whenever a server is allocated to it and transmits nothing
when no server is allocated. This problem can be transformed
into a power-allocation problem by defining the virtual power
constraint and the virtual power curves

(1)

Such a virtual curve contains the feasible points
and , corresponding to a server being either

allocated or not allocated to queue[see Fig. 3(b)]. However,
it suffices to remove this feasible point restriction and treat the
system as if it operates according to the continuous virtual power
curve (1). This preserves the same capacity region, and later it
is shown that any stabilizing algorithm which uses the virtual
curves can be transformed into a stabilizing algorithm which
conforms to the feasible point restriction.

Example Server-Allocation Algorithm:One might suspect
the policy of serving the fastest nonempty queues would max-
imize data output and achieve stability. However, we provide the
following counterexample which illustrates that this is not the
case. Consider a three-queue two-server system with constant
processing rates . All arriving packets
have length and arrive according to i.i.d. Bernoulli pro-
cesses with packet arrival probabilities

, where and .
Note that the policy of serving the two fastest nonempty

queues removes a server from queue 3 whenever there are
simultaneous arrivals at queues 1 and 2. This happens with
probability and, hence, the time-average processing rate at
queue 3 is no more than (where the factor 1/2 is
due to the rate of server 3). This effective service rate cannot
support the input rate and, hence, queue 3 is unstable under
this server-allocation policy. However, the system is clearly
stabilizable: The policy of always allocating a server to queue 3
and using the remaining server to process packets in queues 1
and 2 stabilizes all queues.

III. STABILITY AND THE DOWNLINK CAPACITY REGION

To understand the capacity region of the downlink system,
we first develop a simple criterion for stability of a single queue
with an input stream and a time-varying processing rate

. We assume the input stream is ergodic with rate. How-
ever, because an arbitrary power-control scheme could poten-
tially yield a nonergodic processing rate, we must consider gen-

eral processes which may or may not have well-defined
time averages. We make the following definitions.

total amount of bits that arrived during ;
unprocessed bits in the queue at time;
instantaneous bit processing rate in the server.

(2)

where of a function is defined as
. The is

defined similarly.
The limits in (2) exist with probability 1. We assume the pro-

cessing rate is always bounded above by some maximum value
( , for all ) and, hence, . As a mea-
sure of the fraction of time that the unfinished work in a queue
is above a certain value , we define the “overflow” function

(3)

where the indicator function used above takes the value 1
whenever event is satisfied and 0 otherwise.

Definition: A single-server queueing system isstable if
as .

Notice that if sample paths of unfinished work in the queue
are ergodic and a steady state exists, the overflow function
is simply the steady-state probability that the unfinished work in
the queue exceeds the value. Stability in this case is identical
to the usual notion of stability defined in terms of a vanishing
complementary occupancy distribution [3], [10], [13], [17].

Lemma 1 (Queue Stability):For a single-queue system with
general input and server rate processes and , a nec-
essary condition for stability is . If the arrival process

and the rate process evolve according to an ergodic
finite-state Markov chain, then a sufficient condition for sta-
bility is .

Proof: The sufficient condition for Markovian arrivals and
linespeeds is well known (see large deviations results in [16]).
The necessary condition is proven in the Appendix by showing
that if , there exist arbitrarily large times such that the
average fraction of time that the unfinished work is above
during is greater than a fixed constant for any value of

.
We use this single-queue result to establish the capacity

region of the power-constrained multichannel system of Fig. 1.
We define the capacity region as the compact set of points

such that all queues of the system can be stabi-
lized (with some power-allocation policy) whenever the vector
of input bit rates is strictly in the interior of

and, conversely, no stabilizing policy exists whenever .
(The system may or may not be stable iflies on the boundary
of the capacity region.)

Assume arrivals and channel states are modulated by an
ergodic finite-state Markov chain and transitions occur on
timeslots of duration . Let represent the steady-state
probability that the channel vector is in state .
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Theorem 1 (Downlink Capacity):The capacity region of
the downlink channel of Fig. 1 with power constraint and
rate–power curves is the set of all input rate vectors
such that there exist power levels satisfying
for all channel states and such that

(4)

Proof: Using the stationary policy of allocating a power
vector whenever the system is in channel
state creates a Markov modulated processing rate for
all queues , with an average rate given by the right-hand side
of inequality (4). Thus, Lemma 1 ensures stability whenever the
vector satisfies (4) with strict inequality in all entries. We now
show that restricting power control to such stationary policies
(which use only the current channel state when making
power-allocation decisions) does not restrict the capacity region
and, hence, the region in (4) captures all input rates which yield
stable systems.

Suppose all queues of the downlink channel can be stabilized
with some power-control function which meets the power
constraints—perhaps a function derived from a policy which
knows future events. From the necessary condition of Lemma 1,
we know that the of the resulting rate process satisfies

for all queues .
We upper-bound as follows. Let represent the subin-

tervals of during which the channel is in state and let
denote the total length of these subintervals. Fix

and let represent the total number of channel states of the
system. Because the channel process is ergodic and because
there are a finite number of queues and channel states, there ex-
ists a time such that the time-average fraction of time in each
channel state and the time-average processing rate of all queues
are simultaneously within of their limiting values:

for all channel states (5)

for all

(6)

Thus, under power decisions , we have, for all

(7)

(8)

(9)

where (8) follows from concavity of the functions with
respect to the power variableand (9) follows from (5). We
define for all states and queues

(10)

Hence, from (9) and (10)

(11)

where is defined as the maximum processing rate of a
queue (maximized over all queues and channel states) when it
is allocated the full power .

Because the original power function satisfies the power con-
straint for all times , from (10) it is clear
that the values satisfy the constraint for all
channel states . Thus, (11) indicates that the arrival vector is
arbitrarily close to a point in the region specified by (4). Be-
cause the region (4) is closed, it must containand, hence, (4)
represents the capacity region of the system.

In the case when the channel does not vary but stays fixed, we
have one power curve for each queueand the expression
for the downlink capacity region in Theorem 1 can be greatly
simplified, as follows.

Corollary 1.1 (Static Channel Capacity):The capacity re-
gion for static channels is the set of allvectors such that

where

The smallest such that
if no such exists

In Fig. 4(a), we illustrate a general capacity region for
channels with fixed channel states and concave power curves

. In this case of fixed channel states, one might
suspect the optimal solution to be the one which maximizes the
instantaneous output rate at every instant of time: Allocate full
power to one queue whenever the other is empty and allocate
power to maximize the sum output rate sub-
ject to whenever both queues are full. Doing this
restricts the capacity region to linear combinations of the three
operating points, as illustrated in Fig. 4(a). The shaded regions
in the figure represent the capacity gains obtained by power al-
location using the full set of power levels. Note that the region
is restricted further if onlyON/OFFallocations are considered.

Corollary 1.2 (Server-Allocation Capacity):For the
-server-allocation problem where the channel rate of queue

is when it is allocated a server (and 0, otherwise), the
capacity region is the polytope set of allvectors such that

(12)

(13)

Proof: Using the virtual power curves and constraints
given in Section II, we find by Corollary 1.1 that the polytope
region described by (12) and (13) contains the true capacity



142 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Fig. 4. Capacity regions for static channels. (a) Two-queue system with power
allocation. (b)K-server-allocation problem withK = 2,N = 3.

region. However, the -server problem is constrained to
allocate rates only on the vertex points of the polytope [see
Fig. 4(b)]. Timesharing among vertex points, however, achieves
any desired point within the polytope.

IV. STABILIZING POWER-ALLOCATION ALGORITHM

Theorem 1 implies that stability of the downlink channel can
be achieved by a stationary power-allocation policy which allo-
cates power levels whenever the channel is in state. Such
power levels can, in principle, be calculated with full knowl-
edge of arrival rates and channel-state probabilities . How-
ever, such computation is impractical if the number of channel
states is large and cannot be done if the arrival and channel-state
probabilities are unknown. Here, we develop a power-allocation
policy which stabilizes the system at every point of the capacity
region (4) without using the arrival and channel-state probabil-
ities. In essence, the policy learns the system parameters in-
directly by basing power-allocation decisions both on channel
state and queue backlog information. Furthermore, because the
policy is not bound to a particular set of system parameters, it is
shown to be robust to arbitrary changes in the input rates.

We assume that channel-state vectorsvary i.i.d. from
timeslot to timeslot with probability distribution . Likewise,
assume that packets bring a new batch of unfinished work
i.i.d. from timeslot to timeslot in the form of an arrival vector

, with distribution and
expectation . Note that entries of the channel-state
vector and the arrival vector may be correlated within the same
timeslot. New arrivals are assumed to have bounded second
moments: .

The i.i.d. assumption on channel-state variation facilitates
system analysis and enables a simple bound on packet oc-
cupancy and delay to be calculated. However, note that this
assumption does not necessarily accurately model satellite
downlinks. Channel modeling experiments show that channel
states could be modeled as i.i.d. during clear weather conditions
(due to the observed rapid fluctuation of signal attenuation
from scintillations in the Ka band [23]–[27]). However, in rainy
weather, future channel states are highly dependent on the
current state. In [23] and [24], it is shown that the channel-state
variations can be modeled as a Markov process. In [20], we
show that the control schemes developed here (derived using
i.i.d. assumptions) offer the same stability properties under
general Markov modulated arrival and channel dynamics,
although the analysis and corresponding performance bounds
are slightly more complex and are omitted from this paper for
brevity.

Let represent the vector of unfin-
ished work in each queue at time(where ). We assume
channel- and queue-state vectors and are known at
the beginning of each timeslot and seek a control policy which
allocates power based on this information. Assuming this power
allocation is held constant during the full timeslot [ ],
the unfinished work dynamics proceed according to the one-step
equation

(14)

Notice that for a given stationary power-allocation policy, the
unfinished work vector at timestep is independent of the
past, given the current value of unfinished work. Hence, the
system can be viewed as evolving according to a Markov chain
on an -dimensional uncountably infinite state space.

A. Lyapunov Stability

For stability analysis, we define the Lyapunov function
(for arbitrary positive weights ) and

make use of a well-developed theory of stability in Markov
chains using negative Lyapunov drift [3], [10], [12], [13],
[17]. Below, we state a sufficient condition for the system to
be stable and have a well-defined steady-state distribution of
unfinished work . The proof is a straightforward extension to
those given for countably infinite state spaces in [13] and [17]
and is omitted for brevity.

Theorem 2 (Lyapunov Drift):For the given Lyapunov func-
tion , if there exists a compact region of and a
number such that

1) for all ;
2) , whenever

;
3) whenever , there is a nonzero probabilitythat

for some finite integer ;
then a steady-state distribution on the vectorexists (clearly,
with the property that as , for all )
and, hence, the system is stable.

The first two conditions of Theorem 2 are similar to the con-
ditions for Lyapunov stability in Markov chains with countably
infinite state spaces. They ensure that, because of the negative
drift, the mean recurrence time to theregion is finite. The third
condition is a necessary modification to address systems with
uncountably infinite state spaces. It implies that the zero state is
reached infinitely often with finite mean recurrence times and
ensures that the Markov chain reduces to a single ergodic class.
Using renewal theory [21], it can be shown that the steady-state
distribution is equal to the time-average integral of an indicator
function over a sample path

where the limit exists with probability 1.
The first and third conditions of Theorem 2 are rather mild.

The first is satisfied in the Markov chain for the downlink system
because of the assumption , for all . The third
is satisfied as long as there is a probability of drifting nega-
tively in one timestep for any , such as when there is
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a nonzero probability that no arrivals occur to any queue during
a timeslot. We assume throughout that these properties hold.
The second condition for negative drift is, thus, the most im-
portant for proving stability. In [12] and [13], it is shown that
if a stronger drift condition is satisfied (such that the negative
drift gets larger in magnitude as increases), the moments of
unfinished work are finite and can be bounded. Using a proof
technique similar to that of [12], we have the following corol-
lary to Theorem 2 for Lyapunov drift.

Corollary 2.1 (Performance Bound):Assuming condition 3
of Theorem 2 holds, if there exist positive valuesand
such that

(15)

then there exists a steady-state distribution with bounded first
moments , such that .

Proof: The proof relies on a telescoping series argument
similar to the proof given in [12]. A full proof is provided in
Theorem 4 (Section IV-D), where a more general time-varying
Markov chain is considered.

B. Power-Allocation Policy

Consider now the following power-allocation policy for
the downlink system. At the beginning of each timeslot,
observe and and allocate a power vector

(satisfying the power constraint)
to maximize the quantity , where is
any set of positive weights. (If the weights are chosen to be
different, the more heavily weighted queues can be given better
delay guarantees, as described subsequently). Notice that the
policy acts only through the current value of and
without specific knowledge of the arrival rate vectoror the
channel-state probabilities. Intuitively, we desire a policy that
gives more power to queues with currently high processing
rates (to achieve maximum throughput) as well as giving more
power to queues with large backlog (to ensure that these queues
are stabilized). The above policy does both by considering as a
metric the product of backlog and data rate for each queue.

Theorem 3 (Dynamic Power Allocation):The power-alloca-
tion policy of choosing the power vector

(16)

stabilizes the system whenever the arrival rate vectoris inte-
rior to the capacity region given by Theorem 1.

Proof: Consider the one-step drift in the Lyapunov func-
tion from Theorem 2. For ease of notation,
let , and let . From
(14), we have

(17)

From (17), it is clear that Property 1 of Theorem 2 holds. Now
define the following constants:

(18)

(19)

Taking conditional expectations of (17), scaling by weights
and summing over all, we have

(20)

where the i.i.d. nature of the packet arrivals has been used in
the identity . Now, notice that the term

maximizes the value of over all
vectors in the capacity region (4). To see this,
note that for any in the capacity region, there is a set of
values satisfying the power constraint such that

(21)

(22)

(23)

(24)

where we define as the rate of queueresulting from
the given power-allocation policy (16) when the queue- and
channel-state vectors areand , respectively. We thus have
for all in the capacity region

(25)

Now, because the arrival rate vector is assumed to be
strictly in the interior of the capacity region, we can add a
positive vector to produce another vector ( ),
which is in the capacity region. Hence, from (25) we have

and, thus

(26)

Using (26) in (20), we find that

(27)
Choose any number and define the compact region

We find from (27) that the Lyapunov drift is less than when-
ever .
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Using the bounded first-moment result from Corollary 2.1,
we find that the strong negative drift condition in (27) implies
that the steady-state queue occupancies have bounded first mo-
ments.

Corollary 3.1 (Downlink Delay Bound):For the downlink
system under the dynamic power-allocation algorithm of
Theorem 3, the steady-state unfinished work has a finite mean

for all queues and satisfies

(28)

Thus, by Little’s Theorem, the average bit delaysatisfies
.

The behavior that this bound exhibits is worth noting. Re-
call that can be viewed as the minimum distance from the input
rate vector to the boundary of the capacity region (in the sense
that is chosen as the largest value such that remains in the
capacity region). Thus, the bound grows asymptotically like
as the rate vector is pushed toward the boundary. Such behavior
is characteristic of queueing systems, as illustrated by the stan-
dard formula for average occupancy in an queue
[21].

In [20], we show the same policy guarantees stability and
provides a bound on average delay when the input and channel
processes are Markov modulated, provided that the steady-state
input-rate vector is within a distance of
the boundary of the capacity region (so that ). This
holds because we can analyze the Lyapunov drift of the system
every timeslots, rather than every timeslot, whereis chosen
such that time-average channel probabilities and data rates over

slots are within of their steady-state values (for some small
value ), regardless of the initial state of the Markov chain.
Hence, the effects of the initial conditions and the dependen-
cies introduced by the Markovian dynamics are negligible if the
system is analyzed every timesteps. Intuitively, such a slot
interval can be viewed as a “super-timeslot,” and the resulting
occupancy bound has a form similar to (28), exhibiting
behavior as well as a linear dependence on the super-timeslot
length . The exact bound is computed in [20]. Similar tech-
niques for stability analysis of Markovian systems are demon-
strated in [4] and for fluid limits in [13].

Note that the positive weights in the dynamic power-
allocation algorithm (16) can be chosen arbitrarily. Larger
weights can be given to specific queues to improve their relative
performance according to the downlink performance bound3

in Corollary 3.1. Choosing weights , for all , yields a
policy which chooses a power vector that maximizes
at every timestep. The following corollary makes use of a
different set of weights.

Consider again the -server-allocation problem where each
queue has only two channel states,ON or OFF, and these states
vary i.i.d. over each timeslot as an-dimensional vector. When
a server is allocated to queuewhile it is in theON state, the
server transmits data from the queue at a rate(the transmis-
sion rate is zero when in theOFFstate or when no server is allo-

3Note that in Corollary 3.1, the constantB is proportional to � , as ex-
pressed in (19). Hence, scaling all weights equally does not change the bound.

cated). Defining the virtual rate–power curves as in Sec-
tion II, we have the following corollary:

Corollary 3.2 (Dynamic Server Allocation):For the
-server-allocation problem withON/OFF channel states, the

policy of allocating the servers to the longestON queues
stabilizes the system whenever the system is stabilizable.

Proof: Assume the system operates according to virtual
power curves as in Section II (1) and define the Lyapunov func-
tion (using weights ). With
this Lyapunov function, we know that allocating power to max-
imize (where ) stabi-
lizes the system. Clearly, the optimization does not need to place
any power on queues in theOFFstate, so the summation can be
restricted to queues that areON

Maximize subject to

(29)

However, notice that the above maximization effectively
chooses a rate vector within the polytope capacity region
specified in (12) and (13). The optimal solution for maximizing
a linear function over a polytope will always be a vertex point.
Fortunately, such a vertex point corresponds to the feasible
allocation of servers (with full power ) to queues.
Considering (29), the optimal way to do this is to choose the
queues with the largest value of .

Using the same reasoning as in the proof above, it follows
that the power-allocation policy (16) naturally chooses a vertex
point when power curves are piecewise linear, such as the virtual
curves described in Section II. It follows that optimization can
be restricted to searches over the vertex points without loss of
optimality.

C. Real-Time Implementation

The dynamic power-allocation policy of the previous sec-
tion requires solving a nonlinear optimization problem every
timeslot (16). However, because the rate curves are con-
cave in the power parameter for every fixed channel state, the so-
lution can be computed efficiently. Indeed, for positive weights

and known unfinished work and channel-state vectors
and , the problem (16) becomes a standard concave max-
imization problem: Maximize , subject
to the simplex constraint . Using standard La-
grange multiplier techniques [22], it can be shown that a solu-
tion is optimal if and only if power is allocated according to the
constraints so that scaled derivatives
are equalized to some value for all queues which receive
nonzero power, while all queues which receive zero power have
scaled derivatives less than. A fast bisection-type algorithm
can be constructed to find such a solution, where a bracketing in-
terval [ ] is found which contains and the interval size is
decreased iteratively by testing the midpointvalue to see if the
corresponding powers sum to more or less than the power con-
straint . Such an algorithm yields power allocations whose
proximity to the optimal solution converges geometrically with
each iteration.
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An important set of rate–power curves to consider are the
standard curves for Shannon capacity

where represents the attenuation-to-noise level for downlink
channel during a particular timeslot. With these curves, the
solution to (16) is found by the following computation:

Set of downlinks such that

if

if (30)

The above equations produce the optimal power allocations
whenever the resulting values are nonnegative. If any
values are negative, these are set to zero, the corresponding

indices are removed from the set, and the calculation is
repeated—a process ending in at most iterations.

D. Robustness to Input Rate Changes

The dynamic power-allocation algorithm of Theorem 3
uses i.i.d. assumptions on packet arrivals and channel states
to establish the negative Lyapunov drift condition. In [20],
we show that the same dynamic policy stabilizes the system
when inputs and channel states are Markov modulated (see
simulations in Section VII). Here, we demonstrate that the
policy is robust to arbitrary changes in the input rateas
long as remains within the capacity region at each timestep.
Specifically, suppose that the input rate to the downlink system
is for a certain duration time, then changes to—perhaps
due to changing user demands. This change will be reflected
in the backlog that builds up in the queues of the system.
Because the power-allocation algorithm bases decisions on
the size of the queues, it reacts smoothly to such changes
in the input statistics. Formally, this situation is modeled by
defining an input distribution on the arrival vector
at each timestep. The distributions are arbitrary and
unknown to the controller, although we assume they yield input
rates , all of which are within the capacity
region. The dynamics of the system, thus, proceed according
to a time-varying Markov chain .
Although there is no notion of a steady-state distribution for a
time-varying chain,4 we show that time averages are still well
behaved.

Assume that all arrival distribution functions have uniformly
bounded second moments, so that a valueexists where

for all distributions . Further suppose
that there is some distancesuch that all instantaneous arrival
rate vectors are at least a distance from the capacity
region boundary, i.e., is in the capacity region for all

. For this system, we can again define a Lyapunov function
. Note that the one-step drift equation for

4Recall that thef (~a) distributions can vary arbitrarily. Thus, notions of
steady state do not exist unless the dynamics are further described by some prob-
abilistic model.

timestep can be expressed as in (20), where the first and
second moment of arrivals is taken over theth arrival distri-
bution . Because second moments are uniformly bounded
for all and because each rate vector is bounded by an
distance away from the boundary of the capacity region, we
have for each timestep

where the constant is defined in (18). In Theorem 4, given
below, a simple telescoping series argument is used to show that
the above inequality implies

The is needed for the above limit because the arrival
distributions may not be ergodic in . Thus, the expres-
sion above indicates that, for arbitrary input rate changes, the
power-allocation algorithm (16) stabilizes the system in that
it maintains bounded time averages of unfinished work. This
result follows as an immediate consequence of the following
Theorem 4, which uses a telescoping series argument similar to
a technique in [12].

Theorem 4 (Time-Varying Drift):If a time-varying Markov
chain has a Lyapunov function that satisfies

(31)

for positive constants , , then

(32)

Furthermore, if the chain is time invariant and condition 3 of
Theorem 2 holds, then a stationary distribution forexists with
the property that .

Proof: Taking expectations of (31) over the distribution of
and summing over from 0 to yields

Hence

Taking the of the above inequality yields (32). In
the case when the chain is time invariant, inequality (32) im-
plies that the first two conditions of the Lyapunov drift theorem
(Theorem 2) hold. If the third condition also holds, a steady-
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Fig. 5. Multiuser multisatellite system with joint routing and power control.
UserX can route to queues within setQ . Satellites allocates power subject
to p (t) � P .

state distribution exists. For this steady state, by (32), we have
.

V. JOINT ROUTING AND POWER ALLOCATION

We consider now a collection of multibeam satellites and
develop a method for jointly routing packets and allocating
power over the downlinks. Each satellite has multiple output
queues (corresponding to multiple downlink channels) and
operates according to individual power constraints
(Fig. 5). Every timeslot, packets enter the system frominput
streams according to input processes with arrival
rates ( ). Each input stream can route incoming
packets to a subset of the output queues, where the subsets may
overlap with each other and may contain queues from different
satellites. The problem is to jointly route packets and allocate
power to each of the downlinks in order to stabilize the system
and ensure maximum throughput.

Such a scenario arises, for example, when several satellites
have a connection to the same ground unit, and, hence, packets
destined for this unit have several routing options. Alternatively,
the routing options may represent a cluster of ground locations
connected together by a reliable ground network. In this case,
packets arrive to the cluster from the downlinks and are routed
to their final destinations using the wire lines on the ground.
We note that the formulation of this joint routing and power-
allocation problem also applies to wireless systems, where base
stations communicate with users over a wireless network.

As before, we consider slotted time and assume theinput
streams produce an arrival vectori.i.d. every timeslot, where

. Let represent the total number of
output queues (summed over all satellites), and let each output
queue be indexed with a single integer . For each
satellite , let represent the set of output queues which it
contains (hence, for all ).
Likewise, for each input stream, let represent the set of all
output queues that inputcan route packets to (where

). Note that the subsets are arbitrary and need not
be disjoint.

Channel states vary according to an i.i.d. state vector
. Let represent the

vector state of unfinished work in all queues at time. Every

timeslot, routing decisions are made and a power vector
is allocated according to the system constraints. In general,
the full queue- and channel-state vectors and are
important in both the routing and power-allocation decisions.
For example, more power should be allocated to queues which
are expected to grow large—which is dependent on the state of
unfinished work in other satellites as well as on future routing
decisions. Likewise, a router should place packets in faster
queues (especially if these rates are likely to be high for one or
more timeslots) and should avoid queues likely to be congested
because of high contention with other input sessions.

However, here we show that the routing and power-allocation
decisions can bedecoupledinto two policies: a routing policy
which considers only and a power-allocation policy which
considers both and . Furthermore, a router for stream
needs only to consider the entries of the unfinished work vector

within the set of queues to which it can route. Like-
wise, the power-allocation decisions use information local to
each satellite: Power is allocated in satellitebased only on
the unfinished work and channel-state information for queues
in . The resulting strategy stabilizes the system whenever
the system is stabilizable.

Theorem 5 (Joint Routing and Power Allocation):The
capacity region for the multisatellite system with joint
routing and power allocation is the set of all arrival vectors

such that there exist splitting rates and
power levels such that

1) , for all ;

2) , for all and all channel states;

3) .

Intuitively, the above theorem says that the system is stabiliz-
able if the input rates can be split amongst the various queues
(in accordance with the routing restrictions) so that the aggre-
gate input rates allow each satellite to be stabilized individually.

Proof that is necessary for stability:Suppose a sta-
bilizing algorithm exists for some set of routing decisions and
power controls . Define to be the total amount of
data the algorithm routes from inputto queue during the time
interval [0, ]. For simplicity, we assume the routing process is
ergodic so that is well defined for all and
. (The general nonergodic case can be handled similarly, ac-

cording to our treatment in Theorem 1). Let represent
these limiting values. Theth input stream can be written

. Dividing both sides by and taking
limits, it follows that for all , and, hence, con-
dition 1) holds. Note that the aggregate data rate entering any
queue is . Because the system is stable,
the stability conditions of Theorem 1 must be satisfied for each
satellite, and, hence, the remaining conditions 2) and 3) must
also hold.

We prove the sufficiency part of Theorem 5 by considering
the following decoupled power-allocation and routing policies.
The policies use only local information about queue and channel
states, and do not require knowledge of the input ratesor
the channel-state probabilities . We assume that enough is
known about the channel to identify and remove from the set
of routing options any queues which produce zero output rate



NEELY et al.: POWER ALLOCATION AND ROUTING IN MULTIBEAM SATELLITES 147

for all channel states and power allocations. Hence, in the al-
gorithms and analysis below, we assume that all queueshave
some nonzero probability of being in a functional channel state.

Joint Routing and Power-Allocation Algorithm:
Power allocation: At each timestep, each satelliteallo-

cates power as before, using the and vectors to max-
imize

subject to

Routing: All packets from streamare routed to the queue
with the smallest amount of unfinished work.

Proof of stability whenever is strictly interior to
: Suppose the vector is strictly interior to so that condi-

tions 1)–3) of Theorem 5 are satisfied even with an additional
input stream of rate applied to each queue ,
i.e., there exist and values such that conditions 1) and 2)
hold, and such that

for all (33)

Again, define the quadratic Lyapunov function
. Let represent the total amount of bits from

packets arriving from stream in timeslot , and
let represent the bit length of packets
from stream routed to queues (where

, and ). Let represent the
transmission rate of queue during timeslot

under the specified power-allocation policy. Likewise,
let represent the total arrivals to queuein a timeslot.
As in the stability proof for the dynamic power-allocation
policy of Theorem 3, we have for all queues[from (17)]

(34)

Define the constant

(35)

where the values are chosen to maximize the second term

in (35) subject to the power constraints

for all satellites and channel states. Summing (34) over all
and taking conditional expectations, it can be

shown that

(36)

The and values in the above in-
equality are influenced by the power control and routing algo-
rithm, respectively, and will determine the performance of the
system. To examine the impact of routing, we switch the sum
above to express the routing term as

Notice that the given routing strategy of placing all bits from
stream in the queue with the smallest value of unfin-
ished work minimizes the above term over all possible routing
strategies, including the strategy of routing according to flow
rates of condition (1) in Theorem 5, and, hence

(37)

To examine the power-allocation term in (36), we rewrite the
single summation as a double summation over all satellites:

(38)
By an argument similar to (21)–(25), it can be shown that the

given power-allocation policy maximizes (38) over all alloca-
tion policies, including the policy of allocating a power vector

whenever the channel is in state.
Hence

(39)

Using (37), (39), and (33) in (36), we find

Defining any and choosing the compact setto be

ensures the negative drift condition of Theorem 2 whenever
.
Corollary 5.1 (Performance Bound of the Joint Routing and

Power-Allocation Strategy):Steady-state values of unfinished
work are bounded and satisfy .

An important special case of the above theorem is when in-
puts can route to the full set of available queues, i.e.,

for all inputs . The goal is to simply transmit all
the data to the ground as soon as possible. Such a situation
arises when the ground units are connected together via a re-
liable ground network, and the wireless paths from satellite to
ground form the rate bottleneck (see Fig. 6). In this case, it is
shown in [18] that the capacity region of the Joint Routing and
Power-Allocation Theorem 5 simplifies to the simplex set of all
input rates such that

(40)
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Fig. 6. Joint routing/power-allocation problem where the goal is to transmit
the data to any node of the reliable ground network (Q = f1; . . . ; Jg for all
input streamsi).

Fig. 7. Capacity region for a two-queue system with routing and power
control. The region
 corresponds to the routing constraints shown in the
figure, and is dominated by the simplex region for unconstrained routing.

where

that is, is the average output rate of the system when power
is allocated to maximize the instantaneous processing rate at
every instant of time.

In Fig. 7, we illustrate the capacity region for a two-queue
system with and without routing constraints. As expected, ex-
ploiting the full set of routing options considerably expands
the capacity region of the system. Indeed, the simplex region
(40) always contains the capacity region specified in Theorem 5
for joint routing and power allocation. This capacity gain is
achieved by utilizing the extra resources offered by the ground
network.

We note that this joint routing and power-allocation problem
has been formulated for the case when data already contained
within a single satellite or within a constellation of satellites is to
be routed through a choice of downlinks. Hence, it is reasonable
to assume the unfinished work values are known to the
controllers when making routing decisions. However, it can be
shown that one can apply the same strategy when onlyestimates
of the true unfinished work values are known, and the system is
still stable for all arrival rates within the stability region.

VI. CONNECTIVITY CONSTRAINTS

It has been assumed throughout that all transmit channels
can be activated simultaneously, subject only to the total power
constraint for all time . Hence, it is

implicitly assumed that there is no interchannel interference.
Such an assumption is valid when there is sufficient bandwidth
to ensure potentially interfering channels can transmit using
different frequency bands. However, in bandwidth-limited sce-
narios, power-allocation vectors may be additionally re-
stricted to channelactivation sets: finite sets , where
each set is a convex set of points ( ) representing
power vectors which, when allocated, ensure that interchannel
interference is at an acceptable level. This use of activation sets
is similar to the treatment in [3], where activation link sets for
schedulingON/OFF links in a wireless network are considered.
Here, the definition has been extended from sets of links to sets
of power vectors to treat power control.

As an example of an activation set, consider the single-satel-
lite system of Fig. 1 with output queues, and suppose that
downlink channels 1, 2, and 3 can be activated simultaneously
if all other transmitters are silent. Such an activation set can be
represented by

Another type of system constraint is when power allocation
is further restricted so that no more thantransmitters are ac-

tive at any given time. Such a constraint corresponds to

convex activation sets. Multisatellite systems can also be treated
using this activation set model. Indeed, theoutput queues of
Fig. 1 may be physically located in several different satellites. In
the following, we assume that each activation set incorporates
the power constraints .

Consider the downlink system of Fig. 1. Packets arrive ac-
cording to a random arrival vector (i.i.d. on each timeslot) with
rates , and channel states vary i.i.d. every
timeslot with steady-state probabilities . Each timeslot, a
power-allocation vector is chosen such that it lies within
one of the activation sets .

Theorem 6 (Power Allocation With Connectivity Con-
straints): For the multiqueue system of Fig. 1 with power
constraints :

1) The capacity region of the system is the setof all arrival
rate vectors such that

Convex Hull

(41)

where addition and scalar multiplication of sets has been
used above.5

2) The policy of allocating a power vector
at each timestep to maximize the

quantity (subject to
) stabilizes the system whenever the

vector is in the interior of the capacity region.

5For setsA, B and scalars�; �, the set�A + �B is defined as {j =

�a + �b for somea 2 A; b 2 B}.
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We note that the allocation policy specified in part 2) of the
theorem involves the nonconvex constraint . Optimizing
the given metric over individual activation sets is a convex
optimization problem, although a complete implementation of
the given policy is nontrivial if the number of activation sets is
large.

However, the proof of parts 1) and 2) are simple extensions
of the analysis presented in Sections III and IV.

Proof of 1): To establish that is a necessary con-
dition for stability, suppose the system is stable using some
power-allocation function which satisfies for all
time. Thus, we know that for all (Lemma 1 for queue
stability), and the proof proceeds as the proof of the downlink
capacity theorem (Theorem 1), where for any fixed we
can find a large time such that the following entrywise vector
inequality is satisfied (where )

The main difference from Theorem 1 is that the above in-
tegral is broken into a double summation over intervals when
the channel is in state and when the power vector is in set

. Let represent the intervals of time during [0,] when
the channel is in state , and let represent the subin-

tervals of when the power function is in activation
set . Similar to our treatment in (7)–(9), the concavity of the
rate–power curve allows the integration to be pushed inside the

function, and we have

where

Note that any point in the convex hull of a collection of
convex sets can be written as a linear combination of points

in the sets: where
and . Letting , we see the

inequality above indicates thatis arbitrarily close to a point in
the closed region defined in (41) and, hence, .

The sufficiency condition is implied by part 2).
Proof of 2): Define the Lyapunov function .

The proof of Theorem 3 can literally be repeated up to (27)

From this point, negative drift of the Lyapunov function can be
established by again noting that the value of maxi-

Fig. 8. Three-state Markov Chain representing Good, Medium, and Bad
conditions for a single downlink from satellite to ground. In each state, an
attenuation level� is chosen according to a log-normal distribution with
means and variances as shown.

mizes over all vectors within the region specified
in (41). To see this, note that anyin can be written as

for some vectors and some scalar values

such that for all channel states . The result
follows by an argument similar to (21)–(25).

VII. N UMERICAL RESULTS

Here, we present numerical and simulation results illustrating
the capacity and delay performance provided by the dynamic
power-allocation policy of Section IV (16) for a simple satel-
lite downlink consisting of two channels and two queues. We
assume the corresponding input streams consist of unit length
packets arriving as Poisson processes with rates ( ). How-
ever, rather than simulating i.i.d. channel-state vectors every
timeslot, we consider a Markov modulated channel state that is
typical of a satellite downlink [24] and demonstrate the ability of
the dynamic power-allocation policy (16) to perform well under
general time-varying channel conditions.

Specifically, consider a Markov chain with three states
corresponding to Good, Medium, and Bad channel conditions,
with transition probabilities shown in Fig. 8. Such a three-state
system has been considered in [24] and extends the well-known
two-state Gilbert–Elliott model [28], [29] for satellite and
wireless channels. In each state, we assume signal attenuation
is log-normally distributed with a given mean and variance.
Such a distribution is consistent with the Karasawa model [27]
based on short-term fading measurements in the Ka band.

Total transmit power at the satellite is assumed to be 100 W.
Factoring together the antenna gains, signal attenuation, and re-
ceiver noise, the average signal-to-noise-ratio when full power
is allocated to a single channel is assumed to be 15, 10, and 0 db,
for Good, Medium, and Bad conditions, respectively. The cor-
responding variances are .264, .868, and .145 db, respectively.
These values are based on measurement data for Ka-band satel-
lite channels given in [24]. We consider the Shannon capacity
curves for data rate as a function of a normalized signal power
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(a) (b)

Fig. 9. Stability regions for the three power-allocation algorithms in the
two-queue downlink system. The isolated points represent (a) rate points
(� ; � ) used in the simulations, and (b) the corresponding average unfinished
workE[U + U ] obtained from simulations.

where and represents the fading coefficients,
chosen according to the specified log-normal distributions with
mean and variance determined by the channel state. For
the simulation, we discretize the log-normal distribution with
eleven quantization levels. The two channels from satellite to
ground are assumed to vary independently, each according to
the described Markov modulated process.

In Fig. 9(a), we plot the downlink capacity region given by
Theorem 1 (4). Notice the nonlinear “bulge” curvature, repre-
senting capacity gains due to dynamic power allocation. This
full region is achievable using the dynamic power-allocation al-
gorithm of Theorem 3 (16), (30). We compare the capacity re-
gion offered by this algorithm to the corresponding stability re-
gions when power is allocated according to the following alter-
native strategies.

1) ON/OFFpower allocation: Only one transmitter can be ac-
tivated at any time.

2) Static power allocation: Constant power is allo-
cated to each channel for all time.

TheON/OFF strategy allocates full power to the channel with
the largest rate-backlog index , which, by
Theorem 6, achieves full capacity among all policies restricted
to using a single transmitter. Notice that the stability region
is slightly nonlinear, because of the capacity boost due to the
diversity offered by the independently time-varying channels.
The stability region for the static power-allocation algorithm
has a rectangular shape, as shown in Fig. 9(a). The capacity
for this static algorithm is expanded beyond the stability region
for the single-transmitter algorithm when the input ratesand

are roughly within a factor of two of each other, although
the single-transmitter algorithm is better for highly asymmetric
data rates. Both policies are stable on a significantly reduced
subset of the capacity region offered by the dynamic power-al-
location policy. Note that even in the completely symmetric case

, the stability point of the static power-allocation policy
is slightly below the stability point of the dynamic power-allo-
cation policy, because the static policy cannot take advantage of
the time-varying channel conditions.

In addition, we simulate system dynamics for two million
iterations using the three power-allocation policies and a va-
riety of data rates which linearly approach a boundary rate point

of the capacity region. The rates tested

are shown in Fig. 9(a). In Fig. 9(b), we plot the empirical av-
erage occupancy for the two-queue system when the
multibeam dynamic power-allocation algorithm is used, where
power is allocated according to (30) (with weights , for all
). The plot illustrates that the dynamic power-allocation policy

achieves stability throughout the entire capacity region, with an
average delay growing asymptotically as the input data rates ap-
proach the boundary point (2.05, 3.79).

We compare the dynamic power-allocation algorithm to
the two other strategies, whose simulated performance is also
shown in Fig. 9(b). From the figure, it is clear that the average
occupancy (and, hence, average delay) of the multibeam
dynamic power-allocation algorithm is significantly lower than
the corresponding averages for the other algorithms at all data
rates (note that the asymptotes for instability occur earlier
for the other two algorithms). For the rate regime tested, the
stability region for the constant power-allocation algorithm is
slightly larger than the single-transmitter dynamic algorithm,
and, hence, the corresponding average occupancies are lower.
However, the static policy cannot adjust to asymmetries in data
rate and, thus, the single-transmitter algorithm will perform
better in the regime where one input rate is much larger than the
other [see the capacity plot in Fig. 9(a)]. The figures illustrate
that to enable high data rates and low delay in a satellite
downlink, it is essential to dynamically allocate power to the
multiple beams.

VIII. C ONCLUSION

We have treated data transmission over multiple time-varying
channels in a satellite downlink using power control. Processing
rates for each channelwere assumed to be determined by con-
cave rate–power curves , and the capacity region of all
stabilizable arrival rate vectorswas established. This capacity
region is valid for general Markovian input streams, and inputs
with arrival rates in the interior of the capacity region can be
stabilized with a power-allocation policy which only considers
the current channel state . In the case when arrival rates and
channel probabilities and are unknown, but packet arrivals
and channel-state transitions are i.i.d. every timeslot, a stabi-
lizing policy which considers both current channel state and cur-
rent queue backlog was developed. Intuitively, the policy favors
queues with large backlogs and better channels by allocating
power to maximize at every timeslot. The policy re-
acts smoothly to channel-state changes and arbitrary variations
in the input rates. A real-time implementation of the algorithm
was described, and an analytical bound on average bit delay was
established. This power-control formulation was shown to con-
tain the special case of a server-allocation problem, and anal-
ysis verified stability and provided a performance bound for the
Serve-the- -Largest-Connected-Queuepolicy.

A joint routing and power-allocation scenario was also con-
sidered for a system with multiple users and multiple satellites,
and a throughput maximizing algorithm and a corresponding
performance bound was developed. The structure of this algo-
rithm allows for decoupled routing and power-allocation deci-
sions to be made by each user and each satellite based on local
channel state and queue backlog information.
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In the case of interchannel interference, modified power-al-
location policies were developed when power vectors are con-
strained to a finite collection of activation sets. The policies offer
100% throughput, although they are difficult to implement if the
number of activation sets is large.

Stability properties of these systems were established by
demonstrating negative drift of a Lyapunov function defined
over the current state of unfinished work in the queues.
Robustness to arbitrary input rate changes was demonstrated by
establishing an upper bound on time-average queue occupancy
in the case when the arrival rate vectoris inside the capacity
region for all timesteps . We show in [20] that the given
control strategies provide similar performance guarantees for
general Markovian arrival and channel processes whenever
the steady-state arrival rate vectoris in the capacity region.
Thus, they offer desirable performance under a variety of input
processes and time-varying channel conditions.

Our focus was power control for a satellite downlink, al-
though the results extend to other wireless communication sce-
narios where power allocation and energy efficiency is a major
issue. The use of dynamic power allocation can considerably
extend the throughput and performance properties of such sys-
tems.

APPENDIX

Lemma 1b: If an input stream to a single-queue system
is rate-ergodic of input rate, a necessary condition for queue
stability is .

Proof: Suppose and choose such that
. The limits in (2) ensure that, with probability 1, we

can find a set of times where with
increasing and such that, for all

(42)

However, it is clear that

(43)

From (42) and (43), it follows that ,
for all . Define , and let represent the extra
time it takes the unfinished work in the queue to empty below
a threshold value , starting at value at time . Clearly,

and, hence, at any time the
empirical fraction of time that the unfinished work in the queue
exceeded the value is greater than or equal to ,
which is greater than or equal to .
Taking limits as reveals that
for all and, hence, the system is unstable.
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