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Abstract Distributed radar network systems have been shown to have many unique features. Due

to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In

practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve

better detection performance, which may be in contradiction with low probability of intercept (LPI).

Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a

cooperative game-theoretic framework such that the LPI performance can be improved. Taking into

consideration both the transmit power constraints and the minimum signal to interference plus noise

ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based

on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power

allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized

as a metric to evaluate power allocation. Then, with the well-designed network utility function, the

existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative

Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the

cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness

of the proposed algorithm.

1. Introduction
1.1. Background and Motivation

Distributed radar network systems have received contentiously growing attention in a novel class of radar

system and on a path from theory to practical use owing to their advantage of signal and spatial diversities

[Fisher et al., 2006; Haimovich et al., 2008; Li and Stoica, 2009; Pace, 2009], where the term radar networks refer

to the use of multiple-transmit as well as multiple-receive antennas. In recent years, the study of distributed

radar network architectures has received sizeable impetus, which has been extensively studied from various

perspectives [Chen et al., 2013; Fisher et al., 2006; Godrich et al., 2010, 2012; He et al., 2016; Shi et al., 2015,

2016a, 2016c, 2016d]. In Fisher et al. [2006], the authors introduce the concept of distributed multiple-input

multiple-output (MIMO) radar and investigate the inherent performance limitations of both conventional

phased array radars and the newly proposed radars. Niu et al. [2012] develop the localization and tracking

algorithms for noncoherent MIMO radar systems, in which it is demonstrated that the noncoherent MIMO

radar canprovide a significant performance improvement over traditionalmonostatic phased array radarwith

high range and azimuth resolutions. The work in Chavali and Nehorai [2012] addresses the problem of sen-

sor scheduling and power allocation in a cognitive radar network formultiple-target tracking. Yan et al. [2015]

extend the previous results in Chavali and Nehorai [2012] and present a performance-driven power alloca-

tion strategy for Doppler-only target tracking in unmodulated continuous wave radar network, where the

Bayesian Cramer-Rao lower bound (CRLB) is derived and utilized as an optimization criterion for the optimal

power allocation scheme. In Nguyen et al. [2015], the authors investigate the problem of target tracking in a

multistatic radar system from the perspective of adaptivewaveform selection, inwhich the transmittedwave-

form parameters are selected to minimize the target tracking covariance matrix. Shi et al. [2016c] study the

problem of joint target position and velocity estimation of a Rician target in orthogonal frequency division

multiplexing (OFDM)-based passive radar networks, and the modified CRLB on the Cartesian coordinates of
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target position and velocity are computed. Overall, the previous studies lay a solid foundation for the problem

of performance optimization in distributed radar network systems.

Game theory is a branch of mathematics traditionally investigated and applied in the areas of economics,

political science, andbiology,whichhas emerged in recent years as aneffective tool for radar network systems,

wireless communications, and signal processing [Bacci et al., 2015]. Rashid-Farrokhi et al. [1998] investigate

the game theory-based joint beamforming and optimal power control in wireless networks with antenna

arrays, and an iterative method is proposed to jointly update the beamformer weights and the transmitting

powers so that it converges to the optimum values. In Gogineni and Nehorai [2012], a polarimetric design

algorithm is proposed for distributedMIMO radar target detection from a game-theoretic perspective, which

examines the impact of all possible transmit strategies on the target detection performance with different

target profiles. Song et al. [2014] model the interaction between a smart target and a smart MIMO radar

as a two-person zero-sum game, and unilateral, hierarchical, and symmetric games are investigated based

on the available information set for each player. Moragrega et al. [2013] present a distributed scheme for

power selection inwireless sensor networks with positioning capabilities utilizing the framework provided by

supermodular games. Piezzo et al. [2013] present a noncooperative game code design in radar networks to

maximize the signal to interference plus noise ratio (SINR) of each radar. Lan et al. [2015] present a two-step

water-filling approach for Stackelberg game between MIMO radar and target in the presence of clutter.

Bacci et al. [2012] study the problem of power allocation in radar networks based on game theory for the

first time, which presents a distributed algorithm based on game theory for efficiently allocating the trans-

mit power in radar networks, while controlling the performance of the radar sensor networks in terms of

probability of false alarm and detection at each radar node. In Panoui et al. [2014a], a distributed power allo-

cation scheme is proposed for a multistatic MIMO radar network based on noncooperative game theory,

whose aim is to minimize the total transmission power while maintaining a specific signal-to-disturbance

ratio (SDR). Furthermore, Panoui et al. [2014b] also investigate the performance of the game-theoretic strat-

egy in the presence of estimation error, whileDeligiannis et al. [2016a] address a competitive power allocation

game-theoretic problem between a MIMO radar system and multiple jammers. Deligiannis et al. [2016b] also

investigate a game-theoretic method to tackle the problem of joint beamforming and power allocation in a

distributed radar network. Panoui et al. [2016] employ the potential games to investigate the interaction of

MIMO-based clusters of radars within a game-theoretic framework, which maximizes the SDR of the clusters

of radars by selecting the most appropriate waveforms. In Deligiannis and Lambotharan [2017], a Bayesian

game-theoretic SINRmaximization andpower allocation algorithm is proposed for amultistatic radar network

system, where the primary goal of each radar is to maximize their SINR with the constraint of its maximum

transmitting power.

However, in noncooperative game model, rational but selfish players maximize their own individual utilities

in a self-interestedmanner, which will inevitably increase themutual interference to other players. The objec-

tive of a noncooperative game is to find an Nash equilibrium (NE) solution, where each player has no chance

to increase its utility unilaterally. Unfortunately, the sum of the individual utilities might not be maximized at

the NE point. Cooperative game theory can provide an expressive and flexible framework for modeling col-

laboration in multiagent systems, in which players are motivated to cooperate with one another to enhance

their own utility functions. In Sun et al. [2014] and Chen et al. [2015], the problem of optimal power alloca-

tion with the goal of maximizing the determinant of Bayesian Fisher information matrix in distributed MIMO

radar networks is studied for target localization and tracking, wherein it is formulated as a cooperative game

and the Shapley value is exploited as the solution for the proposed scheme. Simulation results show the

superior performance of game-theoretic power allocation over other allocations in various scenarios. Chen

et al. [2016] develop two power management games for cooperation localization in both asynchronous and

synchronous networks.

As the notion of low probability of intercept (LPI) design is an essential part of military operations in hos-

tile environments [Pace, 2009], LPI performance optimization is a primary issue that needs to be taken into

account in designing radar network systems, and some of the noteworthy works includeNarykov et al. [2013],

Narykov and Yarovoy [2013] Shi et al. [2015, 2016a, 2016b], and Zhang et al. [2015]. Narykov et al. [2013] and

Narykov and Yarovoy [2013] investigate the sensor scheduling algorithm of selecting and assigning sensors

dynamically for target tracking, which can obtain a good tradeoff between the target tracking accuracy and

the LPI performance. Shi et al. [2015, 2016a] address the LPI optimization strategies in radar networks, where

it has been demonstrated that radar network architectures with multiple transmitters and receivers can
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provide remarkable LPI performance advantages over traditionalmonostatic radar systemandhas triggered a

resurgence of interest in radar networks. Zhang et al. [2015] propose a novel coordination algorithmof oppor-

tunistic array radars in the networks for target tracking, which not only has excellent target tracking accuracy

in clutter but also provides better LPI performance compared with other approaches. In Shi et al. [2016b], the

problem of LPI-based radar waveform design in signal-dependent clutter for joint radar and cellular com-

munication systems is studied, where three different LPI-based criteria are presented to minimize the total

transmitted power of the radar system by optimizing the OFDM radar waveformwith a given SINR constraint

and aminimum required capacity for the wireless communication systems. On the basis of the researchmen-

tioned above, power allocation problem of distributed radar network systems has been studied nicely with

the framework of a cooperative game-theoreticmodel [Chenetal., 2015, 2016; Sunetal., 2014], while theprob-

lem of LPI-based power allocation game for cooperative target detection in radar networks, which has not

been considered, needs to be investigated.

1.2. Major Contributions

To be specific, the main contributions of this paper are as follows:

1.We build a framework of adaptive power allocation strategy for cooperative target detection in radar networks.

A novel cooperative Nash bargaining power allocation game (NBPAG) model based on LPI is formulated

subject to the transmit power constraints and the SINR constraint of each radar, which improves the LPI

performance by minimizing the total transmit power in radar networks;

2.We strictly prove the existence and uniqueness of Nash bargaining solution (NBS) and develop an iterative Nash

bargaining algorithm to solve the NBPAGmodel;

3. Numerical simulations demonstrate the superior LPI performance improvement of the proposedNBPAG strategy

in radar networks compared with the NE solution of the noncooperative game;

4.Wereveal the relationshipsbetween thepowerallocation results and the following two factors: target radar cross

section (RCS) and the relative geometry between target and radar networks.

1.3. Outline of the Paper

The rest of this paper is organizedas follows. Section2describes the systemmodel of radar networks. Section3

presents the basic framework for the cooperative NBPAG problem based on LPI, including the basic concepts

of the cooperative game, and the well-designed network utility function. An iterative Nash bargaining algo-

rithm is developed for the NBPAG, alongwith analytical proofs that show the existence and uniqueness of the

NBS. Numerical simulations are provided in section 4, followed by conclusion remarks in section 5.

2. SystemModel

Consider a radar network composed of Nt netted radars, as illustrated in Figure 1. The ith radar receives the

echoes from the target due to its transmitted signals aswell as the signals from theother radars, both scattered

off the target and through a direct path.We assume that all the radars detect the target in the same frequency

band. The transmitted signals from different radars may be correlated because of various reasons, including

the absence of radar transmission synchronization [Panoui et al., 2016]. Each radar can independently detect

the target and send its received signals to the fusion center which takes a decision once the information

coming from all the radars is collected. In the presence of a target, the received signal at the radar i can be

given by as follows [Deligiannis and Lambotharan, 2017]:

si = �i
√
pixi +

Nt∑
j=1,j≠i

�i,j
√
pjxj + wi, (1)

where xi = �iai denotes the transmitted signal from radar i, ai = [1, ej2�fD,i ,… , ej2�(N−1)fD,i ] denotes the

Doppler steering vector of radar i with respect to the target, fD,i is the Doppler shift associated with the radar

i, N is the number of received pulses in the time-on-target, and �i is the predesigned waveform transmitted

from radar i. �i represents the channel gain at the direction of the target, pi is the transmit power of radar i,

�i,j stands for the cross gain between radar i and j, and wi denotes a zero-mean white Gaussian noise with

variance �2. It is assumed that �i ∼  (0, ht
i,i
), �i,j ∼  (0, ci,j(h

t
i,j
+ hd

i,j
)), andwi ∼  (0, �2), where ht

i,i
rep-

resents the variance of the channel gain for the radar i-target-radar i path, ci,jh
t
i,j
represents the variance of the

channel gain for the radar i-target-radar j path, ci,jh
d
i,j
represents the variance of the channel gain for the direct

radar i-radar j path, and ci,j denotes the cross-correlation coefficient between the ith radar and the jth radar.
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Figure 1. Radar networks system model.

Define the variances of the channel gains for the corresponding paths as follows:
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=

GtGr�
RCS
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,
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=

GtGr�
RCS
i,j
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(4�)3R2
i
R2
j

,

hd
i,j
=

G
′

tG
′

r �
2

(4�)2d2
i,j

,

(2)

where Gt is the radar main-lobe transmitting antenna gain, Gr is the radar main-lobe receiving antenna gain,

G
′

t
is the radar side-lobe transmitting antenna gain, G

′

r
is the radar side-lobe receiving antenna gain, �RCS

i,i
is

the radar cross section (RCS) of the target with respect to the ith radar, �RCS
i,j

is the RCS of the target between

the ith radar and jth radar, � denotes the wavelength, Ri denotes the distance from the ith radar to the target,

Rj denotes the distance from the jth radar to the target, and di,j denotes the distance between the ith radar

and jth radar. All the variances of channel gains are assumed to be fixed during observation.

Here the generalized likelihood ratio test is used to determine the appropriate detector. The probabilities of

miss detection PMD,i(�i, 	i) and false alarm PFA,i(�i) can be derived from the following equations [Conte et al.,

1995; Gini, 1997]:

⎧
⎪⎨⎪⎩

PMD,i(�i, 	i) = 1 −
(
1 +

�i

1−�i
⋅

1

1+N	i

)1−N

,

PFA,i(�i) = (1 − �i)
N−1,

(3)

where �i is the detection threshold. 	i denotes the SINR received at the ith radar, which can be given by the

following:

	i =
ht
i,i
pi

∑Nt

j=1,j≠i
ci,j

(
hd
i,j
pj + ht

i,j
pj

)
+ �2

. (4)

Equation (4) can equivalently be rewritten as follows:

	i =
ht
i,i
pi

I−i
, (5)
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where the total interference and noise received at the ith radar is defined as the following:

I−i =

Nt∑
j=1,j≠i

ci,j

(
hd
i,j
pj + ht

i,j
pj

)
+ �2. (6)

Following the analysis of Bacci et al. [2012] and Panoui et al. [2014a], we can obtain the corresponding �i by

equating PMD,i(�i, 	i) and PFA,i(�i) to the predefined parameters, which can be determined by the required

target detection performance. Then, using the obtained �i , we can compute the value of 	i for each radar. In

order to examine the interaction among radars and determine the best strategy for each radar, we propose to

optimize the transmit power allocation for radar networks using a cooperative game model. Specifically, the

radar network optimizes power allocation to maximize its utility function for a given SINR requirement. This

competition can be modeled utilizing a cooperative power allocation game as follows.

3. Game Theoretical Formulation

This section investigates the problem of adaptive power allocation to each netted radar in a distributed fash-

ion, where an LPI-based NBPAGmodel is developed for radar networks. The objective of such allocation is to

minimize the total transmit power while maintaining a certain target detection requirement in radar network

systems. Cooperative game-theoretic framework is a powerful tool for the resulting problem because of its

distributed nature. First, we define a novel SINR-based network utility function to evaluate power allocation,

which is formulated as a cooperative game. Then, the existence and uniqueness of NBS are proved analyt-

ically. Moreover, an iterative Nash bargaining algorithm is implemented that converges quickly to a Pareto

optimal equilibrium for the cooperative game.

3.1. Game Theory and Utility Function

Noncooperative game theory is an excellent mathematical tool, which is very suitable for modeling interac-

tions between selfish and rational decisionmakers in distributed networks [Bacci et al., 2012]. A utility function

of a player quantifies its degree of satisfaction as a function of the combination of all players choices [Yang

et al., 2015]. In distributed radar network systems, all the netted radars detect the target in the same frequency

band. All the radars in a game with conflict interests will behave in a selfish and rational manner to maximize

their own utility functions. The objective of noncooperative game is to find an NE point at which none of the

radars desires to change its transmit strategy unilaterally. However, the sum of the individual utility functions

may not be Pareto optimal at the NE point.

In a cooperative gamemodel, the netted radars adjust their transmission strategies to maximize the network

utility function [Liu and Dong, 2014]. The network utility function is selected as the sum of the individual util-

ities of the radars. With the system model described above, the cooperative power allocation game can be

defined as follows:

Π =
[
� , {pi}

N
i=1

, {ui(pi,p−i)}
N
i=1

]
. (7)

Themathematical structure of a cooperative gamemodel consists of the following three primary components

[Yang et al., 2015]:

1. Player set: In this paper, players are netted radars, which are decisionmakers that choose a particular power

level to transmit. A finite set of radars is denoted as� = {1, 2,… ,Nt}, where Nt is the number of players

in the game.

2. Strategy space: Herein, the strategy space is defined by the transmit power allocation strategy. The ith radar

in a game selects a strategy si from its strategy set S. For each available power level pi ∈ si , the strategy

space of the game is defined as S = ×i∈� pi .

3. Utility function: The utility function of the ith radar is denoted as ui(pi,p−i), where p−i = [p1, p2,… , pi−1,

pi+1,… , pNt
] is the transmit power vector of all netted radars but radar i. It should be noticed that the ith

radars utility is determined by its strategy vector S = (pi,p−i). Each radar wants to select the appropriate

transmission strategy to maximize the network utility function.

For a cooperative game model, Yang et al. [2010] propose extended Nash theorem that specify the conditions

for reaching Pareto-optimal NBSs, as in Theorem 1.
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Theorem 1 (Extended Nash Theorem): There exists a unique and fair NBS p∗ = [p∗
1
,… , p∗

Nt
], which can be

obtained by maximizing a Nash product term as follows:

p∗ = arg max
pi∈S,ui≥ui,min ,∀i

Nt∏
i=1

(ui(p) − ui,min), (8)

where S = ×i∈� pi is the strategy space of the game, and ui,min is the minimum utility requirement for player i

to satisfy its basic need. Taking advantage of the strictly increasing property of logarithmic function, the opti-

mization problem (8) can equivalently be transformed into the following problemwith the objective function

ln

(
Nt∏
i=1

(ui(p) − ui,min)

)
:

p∗ = arg max
pi∈S,ui≥ui,min ,∀i

Nt∑
i=1

ln(ui(p) − ui,min). (9)

However, this game formulation is not ideal and fair, which may lead to inefficient solution as it cannot guar-

antee fairness and the basic requirement of each player. If the radars maximize the network utility function

by increasing their own transmit power, this will inevitably result in the mutual interference between differ-

ent radars and in turn degrade the overall LPI performance of radar networks. Hence, it is of high importance

to select an ideal utility function when utilizing cooperative game theory. Utility function is the foundation

of game theory, which will deduce the iterative algorithm [Li et al., 2011]. As two sides of the cooperative

game, target detection performance and transmission power should be taken into account, which should be

reflected in the utility function. The primary objective of radar networks is to minimize the total transmitted

power while guaranteeing a specified target detection requirement for each radar. In this paper, we utilize

SINR as the target detection performance metric. A novel SINR-based utility function is constructed with the

corresponding channel gain, which characterizes the radar’s preference regarding LPI and fairness. Therefore,

we consider the following LPI-basedNBPAGmodel,whichoptimizes its transmit power allocation tomaximize

the network utility function for a specified SINR threshold, i.e.,

max
{pi ,i∈� }

Nt∑
i=1

ui(pi,p−i) =

Nt∑
i=1

ht
i,i
ln(	 − 	min

th
), (10a)

s.t. ∶

⎧⎪⎨⎪⎩

	i ≥ 	min
th

, i ∈ �

0 ≤ pi ≤ pmax
i

, i ∈ �

∑Nt

i=1
pi ≤ pmax

tot

, (10b)

where 	min
th

denotes the predefined SINR threshold, pmax
i

denotes the peak transmit power of radar i, and the

total transmit power of radar networks is constrained by a maximum value pmax
tot

. The first constraint implies

that the power allocation results should be larger than the given SINR threshold. The second constraint sug-

gests that the transmit power of each radar is limited, while the third one stands that the total transmit power

of radar networks is constrained by a maximum value. It is worth pointing out that ht
i,i
is related to the tar-

get’s RCS and the distance between radar i and target. Introducing ht
i,i
can well guarantee the fairness among

different radars locating at different places. On the basis of the interference degree, greater power would be

transmitted when the radar is far away from the target with small RCS and the minor one on the contrary

[Yangetal., 2015]. In the simulation part, somenumerical exampleswill be provided to reveal the relationships

between the power allocation results and the following two factors: target RCS and the relative geometry

between target and radar networks. Here it can be noticed from (10a) that the variances of channel gains

{ht
i,i
}N
i=1

are employed tomodify the network utility function. The transmitting parameters are adjusted adap-

tively to guarantee the specified SINR requirement, which can improve the LPI performance by reducing the

total transmitted power in radar networks.

3.2. Existence and Uniqueness of NBS

To analyze the outcome of the proposed cooperative NBPAG model, the achievement of an NBS is a

well-known optimality criterion.

Theorem 1 (Existence). There is at least one NBS to the proposed NBPAG in (10) if, for all i ∈ � :

1. The transmission power pi is a non-empty, convex and compact subset of some Euclidean space.

2. The utility functions ui(pi,p−i) are continuous and quasi-concave in pi .
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Proof . It is apparent that our proposed NBPAG model satisfies the first condition (1), which is due to the fact

that the transmission power of each radar pi ranges from 0 to pmax
i

.

One can observe from (10a) that the utility functions ui(pi,p−i)(∀i ∈ � ) are continuous with respect to pi .

Taking the second derivative of ui(pi,p−i)with respect to pi, we can obtain the following:


ui(pi,p−i)


pi
=

(
	i

pi

) ht
i,i

	i − 	min
th

> 0, (11)

and


2ui(pi,p−i)


p2
i

= −

(
	i

pi

)2 ht
i,i

(	i − 	min
th

)2
< 0. (12)

Thus, ui(pi,p−i) is concave in pi . As a result, the utility functions are continuous and quasi-concave. This proves

the existence of NBS in the proposed NBPAG. ◾

Theorem 2 (Uniqueness). The NBS to NBPAG is unique.

Proof . For the uniqueness of the NBS in a cooperative game, it has been established that there is at most

one NBS to the game if and only if the following four conditions are satisfied [Alireza et al., 2009; Kalai and

Smorodinsky, 1975; Yang et al., 2010].

1. Ai = {pi ∈ S, f (pi) = p̄ − pi ≥ 0} is nonempty, where p̄ is the average transmission power.

2. There exists pi ∈ si that satisfies f (pi) ≥ 0.

3. The utility function ui(pi,p−i) of player i is continuous and quasi-concave.

4. The game model is diagonally strictly concave on its strategy set S, that is, for any p(0) ≠ p(1) with p(k) =

[pk
1
,… , pk

Nt
] ∈ S for k = 0, 1, and for t = [t1,… , tNt

] ≥ 0, the following inequality holds:

(p(0) − p(1))Td(p(0), t) + (p(1) − p(0))Td(p(1), t) < 0, (13)

where the function d(p, t) is defined as follows:

d(p, t) =

[
t1

u1


p1
,… , tNt


uNt


pNt

]T

. (14)

Obviously, conditions 1 and 2 could be satisfied as direct results from the strategy space constraint (10b).

Condition 3 has been proved in Theorem 1. For condition 4, we have the following:

(p(0) − p(1))Td(p(0), t) + (p(1) − p(0))Td(p(1), t)

= (p(0) − p(1))T ×
[
d(p(0), t) − d(p(1), t)

]

= (p(0) − p(1))T ×

⎡
⎢⎢⎣
t1

(

u1


p
(0)

1

−

u1


p
(1)

1

)
,… , tNt

⎛
⎜⎜⎝

uNt


p
(0)

Nt

−

uNt


p
(1)

Nt

⎞
⎟⎟⎠

⎤
⎥⎥⎦

T

=

Nt∑
i=1

ti(p
(0)

i
− p

(1)

i
)

(

ui


p
(0)

i

−

ui


p
(1)

i

)
.

(15)

Let �i = ti(p
(0)

i
− p

(1)

i
)

(

ui


p
(0)
i

−

ui


p
(1)
i

)
, where ti ≥ 0. From Theorem 1,


ui


pi
is monotonically decreasing with

respect to pi , which is because that the utility function is concave. Thus, we can obtain

ui


p
(0)
i

−

ui


p
(1)
i

< 0 for

p
(0)

i
> p

(1)

i
, and hence, �i ≤ 0. Similarly, �i ≤ 0 holds for p

(0)

i
< p

(1)

i
as well. As a consequence, all the required

conditions are met. It can be concluded that our proposed NBPAG model has only one unique NBS, which

completes the NBS uniqueness proof. ◾

3.3. Iterative Nash Bargaining Algorithm

In this section, we present an iterativeNash bargaining algorithm that repeats the power allocation steps until

convergence. Having proved the existence and uniqueness of the NBS, we now solve for this unique equilib-

rium by solving the constrained optimization problem in (10a) utilizing the method of Lagrange multipliers
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[Yang et al., 2010]. Introducing Lagrangemultipliers {�i}
Nt

i=1
, {�i}

Nt

i=1
, {i}

Nt

i=1
and � for the multiple constraints,

the Lagrangian of problem (9) can equivalently be expressed by as follows:

ℒ

(
{ui(pi,p−i)}

Nt

i=1
, {�i}

Nt

i=1
, {�i}

Nt

i=1
, {i}

Nt

i=1
, �

)

=

Nt∑
i=1

ht
i,i
ln(	 − 	min

th
) − �i(	 − 	min

th
) + �i(pi − pmax

i
) − ipi + �

(
Nt∑
i=1

pi − pmax
tot

)
.

(16)

In order to obtain the NBS, taking the first derivative of (16) with respect to pi and setting it to zero, we can

observe that


ℒ


pi
=

ht
i,i

	i − 	min
th

ht
i,i

I−i
− �i

ht
i,i

I−i
+ �i − i + � = 0. (17)

After basic algebraic manipulations, we can reach the optimal solution p∗
i
as a function of the Lagrange

multipliers:

p∗
i
=

I−i

ht
i,i

	min
th

+
ht
i,i

�i
ht
i,i

I−i
− �i + i − �

. (18)

In this paper, the fixed-point method is utilized to derive an iterative procedure that updates the power allo-

cation results in radar network system. Obviously, according to (5) and (18), (18) can be used to obtain p∗
i

through iterations as follows:

p
(n+1)

i
=

⎡
⎢⎢⎢⎣

p
(n)

i

	
(n)

i

	min
th

+
ht
i,i

�
(n)

i

	
(n)
i

p
(n)
i

− �
(n)

i

+ 
(n)

i
− � (n)

⎤
⎥⎥⎥⎦

pmax
i

0

, (19)

where [x]b
a

= max {min(x, b), a}, and n denotes the iteration index. The Lagrange multipliers {�
(n)

i
}
Nt

i=1
,

{�
(n)

i
}
Nt

i=1
, {

(n)

i
}
Nt

i=1
and � (n) need to carefully be chosen to ensure fast convergence. Here, the subgradient

method is employed to update these multipliers through the following steps:

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
(n+1)

i
=

[
�
(n)

i
+ st(	i − 	min

th
)

]+
0
,

�
(n+1)

i
=

[
�
(n)

i
+ st(p

max
i

− pi)
]+
0
,


(n+1)

i
=

[

(n)

i
+ stpi

]+
0
,

�(n+1) =

[
�(n) + st

(
pmax
tot

−
∑Nt

i=1
pi

)]+
0
,

(20)

where [x]+
a

= x if x> 0, and [x]+
a

= a if x ≤ 0. st is a small step size, n ∈ {1,… ,Nmax}, and Nmax is the

maximum number of iterations. Apparently, �
(n)

i
, �

(n)

i
and 

(n)

i
are locally updated, whereas �(n) is updated

through cooperation. Each netted radar updates its action at each iteration step such that the network utility

function in (10) is maximized. The overall iterative procedure of applying the proposed cooperative NBPAG

model is given in detail as follows:
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Table 1. Radars Positions in Radar Networks

Radar Position (km) Radar Position (km)

1 [0, 0] 3 [50, 50]

2 [50, 0] 4 [0, 50]

Remark 1. In the foregoing procedure, the transmit power iteration function p
(n+1)

i
can be updated according

to (19), wherein the optimal power allocation results can be decided locally. For the ith radar, compute the

difference of utility function for n+ 1 and n iteration. If the difference in allowable error scope �, the iteration

stops; otherwise, it returns to step 2.

Remark 2. In order to implement Algorithm1 in a distributedmanner, each radar has to collect the variances of

its adjacent channel gains {ci,jh
t
i,j
}
Nt

j=1,j≠i
and {ci,jh

d
i,j
}
Nt

j=1,j≠i
. The variances of channel gains {ht

i,i
}
Nt

i=1
also need to

be obtained. This can be done by having each radar measures the channel and feed back to the transmitter.

Here the best response of the ith radar p∗
i
depends on the strategies of all the other radars, that is, p∗

−i
. In

order to obtain this knowledge, each radar has to broadcast its transmission strategy to the other radars. In

the following section, the convergence behavior of the iterative Nash bargaining algorithm will be verified

via numerical simulations.

4. Numerical Simulations and Analysis

In the following, several numerical simulations are dedicated to demonstrate the improvement of the LPI

performance brought by the power allocation strategy and reveal the effects of several factors on the power

allocation results.

4.1. Description

In this paper, we consider a radar network with Nt = 4 spatially diverse radars. The positions of the net-

ted radars are given in Table 1. To evaluate the effect of the relative geometry between the target and the

radar networks on the power allocation, two different target positions with respect to the radar networks are

Figure 2. Power convergence of the proposed NBPAG algorithm in Case 1: (a) Case 1 with
−−−→
�RCS
1

and (b) Case 1 with
−−−→
�RCS
2

.
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Figure 3. Power convergence of the proposed NBPAG algorithm in Case 2: (a) Case 2 with
−−−→
�RCS
1

and (b) Case 2 with
−−−→
�RCS
2

.

chosen. In the first case, we assume that the target is located at [25, 25] km. In the second case, we simulate a

scenario inwhich the target is located at [80, 60] km. The cross-correlation coefficient betweendifferent radars

is ci,j = 0.01(i ≠ j). The system parameters are set as follows: the radar antenna gains are Gt = Gr = 30dB,

G
′

t
= G

′

r
= −30dB, the wavelength is � = 0.03 m, the maximum transmit power of each radar is limited to

pmax
i

= 0.5pmax
tot

= 5 KW, the number of received pulses is N = 512, PMD,i = 2.7 × 10−3, PFA,i = 10−6. The SINR

can be computed using (2), which is 	i = 10dB for all radars, and the corresponding �i is equal to 0.0267 for

∀i. The noise power �2 = 10−18W, � = 10−15. We initialize �
(0)

i
= 10, �

(0)

i
= 10, 

(0)

i
= 10(∀i), and�(0) = 10. The

step size st is 0.001.

Two target RCS models are adopted in this paper. The first model is uniform reflectivity, where
−−−→
�RCS
1

=

[1, 1, 1, 1] m2. On the other hand, in order to evaluate the effect of the target RCS on the power allocation

strategy, we also adopt the second RCS model
−−−→
�RCS
2

= [5, 0.5, 0.1, 3]m2.

4.2. Numerical Results

Figures 2 and 3 testify the transmit power convergence of the proposed algorithm. There are four curves in

all subfigures, which means the power conditions of the four radars. The steady state transmit power values

are relatively ideal, which are much smaller than the maximum value. The difference between them resides

in the target RCS with respect to different radars and their different distances to the target. The convergence

to the equilibrium of the NBPAG model is visible in Figures 2 and 3, and the transmit power of each radar

converges fast to the equilibrium value after 4–8 iterations. Since the equilibrium of the proposed NBPAG

model is unique, the proposed algorithmwill converge to it independently of the initial set of transmit power

values that were used. Besides, it is worth pointing out that the choice of the Lagrange multipliers is crucial

to the convergence behavior [Liu and Dong, 2014].

In order to disclose the effects of several factors on the power allocation results, Figures 2 and 3 plot the

power allocation results of the proposed algorithm. In Figure 2b, less transmit power is assigned to Radar 2

and Radar 3, as they are closer to the target. In other words, more power tends to be allocated to the radar

farther from the target. Analyzing the power allocation results given in Figure 2 reveals that the different
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Figure 4. SINR convergence of the proposed NBPAG algorithm in Case 1: (a) Case 1 with
−−−→
�RCS
1

and (b) Case 1 with
−−−→
�RCS
2

.

Figure 5. SINR convergence of the proposed NBPAG algorithm in Case 2: (a) Case 2 with
−−−→
�RCS
1

and (b) Case 2 with
−−−→
�RCS
2

.
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Figure 6. Comparisons of equilibrium transmit power levels in Case 1 with various power allocation algorithms:

(a) Case 1 with
−−−→
�RCS
1

and (b) Case 1 with
−−−→
�RCS
2

.

deployment of radar networks may lead to different gain in LPI performance. Moreover, the results also show

that in an overdetermined scenario, most of the available total transmit power is allocated to a smaller subset

of radars, while others are kept to a minimal power [Yan et al., 2015]. We then expand the simulation with the

consideration of the losses due to target RCS and provide the power allocation results in Figure 3. The results

illustrate that the radars with smaller RCS are favorable over others, when it comes to power allocation. In

the optimization process, higher transmit power is assigned to the radars with relative weaker propagation

channels. The above results imply that the allocation of transmit power is determined by the following two

factors: radar network deployment and target RCS.

Figures 4 and 5 illustrate the SINR achieved at each radar receiver for each player, utilizing our proposed coop-

erative game-theoretic algorithm for the considered radar network topology. We can clearly notice that the

achieved SINR converges fast to the predetermined threshold after three to five iterations, which can meet

the target detection requirement of each radar, confirming that the NBPAGmodel can overcome the near-far

effect. As aforementioned, the proposed NBPAGmodel will converge to its equilibrium independently of the

initial set of transmit power values. Thus, the players will reach the same Nash equilibrium regardless of the

choice of the initial values and employing the publicly known information. Due to the fact that the conver-

gence rate of the proposed algorithm is not slow under current computation conditions, there is no need to

study the acceleration approach of our algorithm, which may be an interesting topic for further research.

Todemonstrate the superior advantages of theproposed algorithm further,we compare the LPI-basedNBPAG

algorithm with a couple of benchmark algorithms for power allocation: the standard NBS for cooperative

game, Koskie and Gajic’s [2005, hereinafter K-G] algorithm, and the adaptive noncooperative power con-

trol algorithm (ANCPCA) in Yang et al. [2015], as depicted in Figures 6–9. In Figures 6 and 7, we compare

the transmit power levels of four power allocation algorithms with different radars. It turns out that the

ANCPCA transmits the most power due to the radars’ self-interested noncooperative behavior in the game

process, which is consistent with the results in Yang et al. [2015]. To be specific, when one of the netted radars

cannot reach or maintain its minimum SINR, it resorts to the onlymeans of increasing the transmit power to
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Figure 7. Comparisons of equilibrium transmit power levels in Case 2 with various power allocation algorithms:

(a) Case 2 with
−−−→
�RCS
1

and (b) Case 2 with
−−−→
�RCS
2

.

Figure 8. Comparisons of equilibrium SINR values in Case 1 with various power allocation algorithms: (a) Case 1 with
−−−→
�RCS
1

and (b) Case 1 with
−−−→
�RCS
2

.
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Figure 9. Comparisons of equilibrium SINR values in Case 2 with various power allocation algorithms: (a) Case 2 with
−−−→
�RCS
1

and (b) Case 2 with
−−−→
�RCS
2

.

guarantee theSINR requirement, as doother radars in a similar situation [Yangetal., 2010, 2015]. As a result, the

LPI performance of radar networks degrades. While for the NBPAG algorithm, the netted radars can perceive

the interference environment well and accordingly make the most appropriate transmit power adjustment

decision.

From Figures 8 and 9, it can be seen that the SINR values of the proposed algorithm and ANCPCA can reach

the target SINR threshold. However, the standard NBS method and K-G algorithm are not ideal because they

sacrifice radars’ SINRs, where part of SINR values achieved at radar receivers are below the specified SINR

threshold. Thus, the standard NBSmethod and K-G algorithm cannot guarantee the fairness among different

radars. As we can observe, the SINR of each radar of the proposed algorithm converges to the SINR threshold,

which shows that theNBPAGalgorithmcanovercome thenear-far effect. Overall, the K-G algorithmconsumes

the least power, which cannot meet the radars’ target detection need. However, the NBPAG approach can

accommodate each radar’s transmit power to satisfy its SINR requirement, although it might consume high

transmit power. Generally speaking, those results demonstrate that the NBPAG approach not only guarantees

the SINR requirements of all the netted radars but also improves the LPI performance of radar networks.

5. Conclusion

We have considered an LPI-based distributed power allocation strategy for radar networks in a coopera-

tive game-theoretic framework. In our proposed algorithm, the LPI performance of radar networks can be

improved by optimizing the transmit power allocation for a predefined target detection threshold. A novel

SINR-based network utility function is developed as a metric to evaluate power allocation, which guaran-

tees the existence and uniqueness of the NBS. In addition, an iterative Nash bargaining algorithm with low

complexity and fast convergence is utilized to play the game among the netted radars. Simulation results

demonstrate that compared with the NE solution of the noncooperative game, the NBS of the cooperative

NBPAGcan remarkably improve the LPI performance for radar networks. In futurework,wewill concentrate on

other practical distributed approaches to enhance the LPI performance for distributed radar network systems.
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