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Power Allocation Schemes for Amplify-and-Forward
MIMO-OFDM Relay Links

Ingmar Hammerstrom and Armin Wittneben

Abstract— We consider a two-hop MIMO-OFDM communica-
tion scheme with a source, an amplify-and-forward relay, and
a destination. We examine the possibilities of power allocation
(PA) over the subchannels in frequency and space domains to
maximize the instantaneous rate of this link if channel state
information at the transmitter (CSIT) is available. We consider
two approaches: (i) separate optimization of the source or the
relay PA with individual per node transmit power constraints
and (ii) joint optimization of the source and the relay PA with
joint transmit power constraint. We provide the optimal PA at
the source (or the relay) with a node transmit power constraint
that maximizes the instantaneous rate for a given relay (or
source) PA. Furthermore, we show that repeating this separate
optimization of the source and the relay PA alternately converges
and improves the achievable rate of the considered link. Since the
joint optimization of the source and the relay PA is analytically
not tractable we use a high SNR approximation of the SNR at the
destination. This approximation leads to rates which are quite
tight to the optimum.

Index Terms— Amplify and forward relaying, MIMO, OFDM,
power allocation.

I. INTRODUCTION

IRST research results on relay channels were published
F in [1]-[3] during the seventies. Recently, cooperative
relaying strategies have become a major topic in the wireless
research community again. The encouraging results of, e.g.,
[4]-[6] initiated a large amount of work in this area. Relaying
strategies as decode-and-forward (DF), compress-and-forward
(CF), and amplify-and-forward (AF) have been proposed. In
DF the relays decode the received signal prior to retransmis-
sion while in CF they retransmit a compressed version of the
signal. In AF the relays only amplify and may process the sig-
nal linearly before they retransmit it again. Thus, AF leads to
low-complexity relay transceivers and lower power consump-
tion since there is no need of signal processing for decoding
procedures, but suffers from the noise amplification induced
by the relay. Moreover, AF relays are transparent to adaptive
modulation techniques which may be employed by the source.
Most of the literature available today considers frequency-flat
fading. In [7]-[9], optimal PAs between single antenna source
and relay (AF and DF) are discussed for the case of a joint sum
transmit power constraint. In [10], the optimal gain matrix for
an AF MIMO relay which optimizes the instantaneous rate
for a given uniform PA at the source is presented. A gain
allocation with a MIMO first hop and a second hop which
considers orthogonal channels to a single antenna destination
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is presented in [11]. The case of cooperative relaying in
frequency-selective fading channels is much less examined
so far. In [12], the authors determine power allocations for
multiple orthogonal AF relays (which is the same as having
one relay using OFDM) maximizing the average SNR of the
maximum-ratio combiner at the destination node. In [13], the
capacity of OFDM and OFDMA networks consisting of one
source/destination pair and multiple AF relays is examined. In
the case of OFDM only one amplification gain is used for all
subcarriers. Therefore, the rate is not optimized with respect
to the frequency-selective channel. In the case of OFDMA
only one relay is assigned to one subcarrier, which results
in an optimization problem that can be solved by integer
programming.

In this work we present PA schemes with respect to the
subchannels in frequency and space domains to maximize the
instantaneous rate of this link if CSIT is available. We give the
optimal PA at the source (or relay) with a individual per node
transmit power constraint that maximizes the instantaneous
rate for a given PA at the relay (or the source). This result
also includes the result presented in [10] for flat fading. To
further enhance the achievable rate of the considered relaying
scheme the subchannels of the channel matrices of both hops
are paired according to their actual magnitude. Furthermore,
we show that alternate, separate optimization of the source
and the relay PA with node power constraints converges and
provides higher achievable rates. Additionally, we present an
approximated solution for the joint optimization of the source
and the relay PA with a joint transmit power constraint. This
PA scheme achieves rates which are quite tight compared to
the rates achieved by the optimal PA.

The remainder is organized as follows. In the next section
the system model is introduced. In Section III we present
our PAs for separate optimization with individual per node
transmit power constraints at the source and the relay, whereas
in Section IV we provide the solution for the joint optimization
with a joint transmit power constraint. Performance results
are presented in Section V. Conclusions are given in the last
section.

II. SYSTEM MODEL

In Fig. 1 the considered relay link is depicted, which
consists of two terminals and one AF relay. All nodes are
equipped with multiple antennas. The nodes operate in the
half-duplex mode, i.e., they are not able to receive and transmit
at the same time and same frequency. The number of antennas
at the source, the relay, and the destination are denoted by
Ng, Nr, and Np, respectively. Since we are interested in
increasing the coverage by relaying, we consider the scenario
where the destination is not in communication range of the
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Terminal 1 Terminal 2
Source Relay Destination

Fig. 1. Link with two terminals and one relay. Each terminal can be either
source or destination.

source. Thus, the destination is not able to receive the signal
from the source directly. Further, we assume that all nodes
have perfect knowledge of the channels of both hops.

For broadband communication OFDM is used with a cyclic
prefix that is at least as long as the channel impulse re-
sponses. Thus, the frequency-selective channel is divided into
K frequency-flat subchannels. The channel matrix from the
source to the relay and from the relay to the destination within
the k-th OFDM subcarrier is denoted by H, ;, € CV=*Ns and
H,, € CNo*Nr, respectively. We assume that all channel
matrices have full rank. The received signal at the destination
in the k-th subcarrier is given by

v =Hy ¥, H,  x, + Hy  Frz, +w,, (D

where x; € CNs denotes the transmit vector of the source,
and F,, € CNr*Nr denotes the forwarding matrix at the relay.
The noise contribution at the relay and the destination are
denoted by z, ~ CN(0,071y, ) and w, ~ CN(0,03I, ).
Due to the full CSI at the nodes we can use the smgular
value decomposition of the channel matrices to determine
transmit- and receive-beamforming matrices at all nodes.
Since these matrices are unitary they do not change the
statistics of the channel and therefore preserve the mutual
information and error performance of this link. The singular
value decomposition of the channel matrices is given by
H,, = U,,S, VI,V ke {l.. K}qe {12} For
some antenna configurations the number of possible spatial
subchannels can be different for each hop. However, since
AF relaying is linear the number of spatial subchannels
per OFDM subcarrier over the two hops is bounded to the
minimum number of spatial subchannels of each single hop,
ie., N = min(Ng, Ng, Np). As a consequence, in AF
relaying either in the first or the second hop only a subset of
spatial subchannels can be used. These subspaces are defined
by H, , = quSq qu »» Whereby the matrices qu and
V k cons1st of the N columns of U , and V_, which
belong to the N largest singular values of S .k respectlvely
The resultmg transmit signal at the source is thus given by
X, = V;;X; and the forwarding matrix has the structure

F, = V2 G U1 - The destination multiplies the received
signal (1) by U; & such that it can be expressed as

Vi = U;,kYk =85 1 GESq kX + S0, GrZy + Wy, (2)

where z,, = ﬁi,kzk and w, = ﬁ;,kwk denote the equivalent
noise contributions.

Up to now, we have no constraint on the structure of the
gain matrix G,. To find the optimal structure of G, we

2799

study the mutual information in the k-th subcarrier assuming
Gaussian transmit signals with E {kak} = A, given by (3).
Due to Hadamard’s inequality, a prerequisite for maximizing
the determinant in (3) is that the rows (or columns) of the
matrix within the determinant have to be orthogonal [14].
Using this prerequisite and the observation that all matrices
in (3) are diagonal, we choose the gain matrix G, also as a
diagonal matrix. This leads to a diagonal overall matrix in the
determinant which maximizes (3). We define G, as

G, = diag [Qk,p . ~7gk,N] )
with

P
Pon - Ay + 02

9kn =9m =

where F; ,,, P; ., and /\Lm denote the transmit power of the
source, the transmit power of the relay, and the eigenvalue
of the source to relay channel matrix in the k-th subcarrier
on the n-th spatial subchannel, respectively. We introduce the
subscript m = (k— 1)N +n with 1 < n < N to keep the
total number of subscripts small. It can be seen that the two-
hop MIMO channel between the source and the destination
decouples into M = K N orthogonal SISO channels in which
the transmit power values P, ,, and P ,, can be chosen such
that the instantaneous rate is maximized. The instantaneous
rate (mutual information) per complex dimension is given by

), “4)

where a,, = )‘05 and b,, = . A2,m denotes the m-
th eigenvalue of the relay to destination channel matrix. The
factor 1/2 is due to the two channel uses which are needed
for the relay traffic pattern.

Convexity Properties: The rate expression (4) defines the
objective function for our PA schemes. If the objective func-
tion is concave it exists only one global maximum. A sufficient
condition for a function to be concave is that its Hessian
is negative semidefinite [15]. Unfortunately this is not the
case for the Hessian of (4) with respect to P ,, and P, ,,.
Therefore, solutions for the joint optimization of F ,, and
P, cannot be proven to be globally optimal. However, the
second derivative of (4) with respect to P ,,, or P, is strictly
negative. Therefore, it is possible to find globally optimal
solutions for the separate optimization of either the source
or the relay PA.

Fairing of Subchannels: Up to now we have assumed that
the signals of the source transmitted over the m-th subchannel
are retransmitted by the relay also on the m-th subchannel. A
higher performance in terms of mutual information can be
achieved if the subchannels of both hops are paired according
to their actual magnitude. In the following we want to give
an intuition why this is favorable. For this we assume without

M
Ps mGm Pr mbm
_ 1 1 il il
7 2 log: ( YT Ponam + Pob

m=1

Az,
0

_ N _ _ _
I (X4;¥) = logy det (IN + (%211 + 0382,kaG£S;k) S2,kasl,kAkSI,kGLS;,k) 3)
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loss of generality a system with two subchannels and a; > as
and b; > by. We define A; = P,a; and B, = P.b; for ¢ €
{1,2}. We want to show that the rate decreases if we pair the
subchannels of first and second hop unordered, i.e.,

AlB1 A2B2
1 14— 1 14 —= | >
Og2< +1+A1+Bl>+0g2( T4 1B) 7
A1B2 AQBl
1 14— 1 14— .
0g2( +1—|—A1+Bz)+0g2< +1+A2—|—B1

After some algebra we get (5). It can be seen that (5) can only
be negative for A, > A; or By > Bj, which is a contradiction
to our assumption a; > ag and by > by. In a system with Z >
2 subchannels we consider pairs of two subchannels and swap
the ordering. It can be seen that the rate can be increased until
Ay > Ay > ... > Az is coupled with By > By > ... > By.

Pairing can be applied to the different available dimensions.
In a single antenna OFDM system it can be done over the
frequency domain. The multiple antennas at all nodes open
the spatial domain for pairing of subchannels. Thus, the sub-
channels can be ordered in the spatial domain only or in both,
spatial and frequency domains. In the performance section
we show that for multiple antenna systems the performance
gain due to subchannel pairing in space domain is substantial,
whereas additional pairing over frequency does not provide
too much additional gain.

III. SEPARATE OPTIMIZATION WITH INDIVIDUAL POWER
CONSTRAINTS

In the following we want to optimize the PA at the source
and the relay separately, such that the instantaneous rate (4) is
maximized. We consider individual per node transmit power
constraints, i.e., S0 Pom = Py and YM_ P, = Pg.
We assume that for the optimization of the PA at one node
the PA at the other node is given. It can be seen that objective
function of the optimization (4) has the same mathematical
form with respect to either P;,, or F;,,. Therefore, the
optimization of the source or the relay PA can be expressed
as

M
O‘m,ﬂm,pm
Y. ...,Dy;) = arg max lo 14—
M
subject to me =P pn>0VYm. (6)
m=1
The parameter triplet (aun, Om, P) is chosen as

(Pr,mbm,am,PS) if the PA at the source is optimized
or as (Ps mGm, bm, Pg) if the PA at the relay is optimized,
respectively. Using the Karush-Kuhn-Tucker (KKT) [15]
conditions we get the solution of the optimization problem

(6) as
1 | am 1 46, 1 1 i 7
Pm Bm | 2 \V + amr ) ' )

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 8, AUGUST 2007

where [2]* = max {0, z}. The Lagrange multiplier v has to
be chosen such that the sum power constraint Zﬁ;l Pm =P
is fulfilled. The optimal PA for the source and the relay is
therefore given by

+
1 | Pmbm 4a,,
™ ( T Py 1) il 1] ®
and
1 | P 4b i
S mam m
P.,,=— 2 1+ ——-1]-1] ,
’ b 2 ( + Py pamv > ] ©)

respectively. Note that (9) is also presented in [10] for flat
fading and 03 = o2

T

A. Alternate Optimization of the PA at Source and Relay

For AF relaying the SNR per subchannel at the destination
depends on the fading channels of both hops and also on the
PA of the source and the relay. The separate optimization of
either the source or the relay PA always assumes a given relay
or source PA. Thus, the result is only optimal conditioned on
the PA of the other node. This leads to the question, how
can the joint optimal PA at the source and the relay with
individual sum transmit power be determined? Since (4) is
not jointly concave in F;,, and P ,, it is not possible to
derive the solution of the global optimum analytically. The
rate expression (4) has several maxima. To find one of these
maxima, we propose a distributed optimization approach. The
source and the relay alternately calculate their corresponding
PA (8) and (9) given the resulting PA of the previous node
as input for their optimization. Each optimization of the PA
at one node (source or relay) improves the achievable rate
of the relay link since (4) is concave in P, or P; ..
However, since (4) is bounded for a limited transmit power
the rate achieved by the proposed alternating optimization
approach cannot grow without limit. We therefore conclude
that the alternating optimization always converges to one of
the maxima of (4). The maximum can be either a local or
the global maximum depending on the chosen starting values
for the given PA. We propose to use a starting vector which
has equally large elements over all subchannels (i.e., uniform
power distribution). Thus, no subchannel is preferred in the
beginning.

IV. JOINT OPTIMIZATION WITH JOINT POWER
CONSTRAINT

In the following we jointly optimize the PA at the source and
the relay over the subchannels with respect to a joint power
constraint at both nodes, i.e., Z,J,Vf:l Py m + 2%21 Pom =
Ps,. By means of the joint power constraint this optimization
is capable of responding more efficiently to the relative path
losses between the first and the second hop. Although in a
practical system the source and the relay have independent

(A1 — A3)(B1 — B2) (1+ A1+ B1+ A1By) (1 4+ Az + By + A2 Bs)

(1+A14+B1)(1+ A2+ Bs)(1+ A1+ Bs) (1+ A2 + By) -

>0 5)
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power supply the optimization with a joint power constraint
gives insight to the behavior of the required transmit power
per communication link and not only per hop.

As already mentioned, the rate expression (4) is not jointly
concave in P, and P, ,,. Therefore, we use a high SNR
approximation of the SNR per subchannel given by

Ps7mam : Pr7mbm Ps7mam : Pr,mbm
N 1+ Ps,mam + Pr,mbm - Ps,mam + Pr,mbm )
This SNR expression leads to a jointly concave objective
function and therefore to an unique maximum. The joint opti-
mization problem is stated in (11). Note that the optimization
of high SNR approximation of the SNR expression leads
certainly to a lower bound in terms of rate. Using the KKT

conditions we get the solution of the optimization problem
(11) as

Pm (10)

- 2_+
1 1 Vam + Vom
Ps7m: __( ¢ +b ) 5 (12)
IV il A AmOm |
11 (Vam+ Vet
Prm: - o = ) (13)
’ 1_|_ bﬁ _V ambm ]

Am

where the Lagrange multiplier v has to be chosen such that
the joint sum power constraint is fulfilled. Note that v can
be computed very efficiently. By adding F;,, and P ,, it
turns out that the sum power of the source and the relay in
subchannel m is

1 (Vam+vh)°]"

Pam:Psm+Prm: - (14)
’ ’ ’ v A b,

The calculation of v such that Zf\le P, = Ps; is done by

the standard parallel Gaussian waterfilling [16] procedure.

V. PERFORMANCE RESULTS

In this section we present the performance of our proposed
PA schemes for OFDM AF relay links by means of Monte-
Carlo simulations. In our simulations we assume that the three
nodes are located on a line. The distance between the source
and the destination, the source and the relay, and the relay and
the destination is denoted by dy, di, and ds, respectively. In
the time-domain we model our frequency-selective channels
as tapped delay line, equally spaced in symbol duration, with
L = 4 paths. We assume a uniform power delay profile, where
all taps are subject to Rayleigh fading and path-loss with a path
loss exponent x = 3. We define a reference SNR between the
source and the relay placed at dy/2 as

Fs
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Fig. 2. Relative achieved rate of alternate optimization compared to reference
vs. number of iterations; (4/4/4); SN Ry = 0 dB; di = d2 = do/2.

It is used to determine Py, Py, o3, and o2. If not stated
otherwise in the simulations we have chosen K = 16, dg > 1,
SN Ryt = 10 dB, and 0% = o2. In the case of the individual
transmit power constraints at the source and the relay we
assume Pr = PFs, whereas for the case of the joint sum
transmit power constraint we have P, = Ps+ Pg. We denote
a system with Ng, Ny, and Np antennas at the source, the
relay, and the destination as (Ng/Ng/Np).

In Fig. 2 we show the convergence of the proposed alternate
optimization. It shows the relative achieved rate of the alter-
nate optimization approach compared to the numerical joint
optimization of the source and the relay PA with individual
transmit power constraint as reference vs. the number of
iterations. We define one optimization of the relay PA or
the source PA as one iteration. For the numerical reference
optimization we used the Optimization Toolbox of MATLAB.
Since the objective function for the numerical reference opti-
mization is not concave we repeated the optimization with 50
randomly generated starting vectors per channel realization.
The maximal achieved rate is taken for comparison. Note that
only with a certain probability the numerical obtained value is
the global optimum. In the figure it can be seen that the rate
always converges. Furthermore, sometimes it converges to the
same value as the numerical optimization. On the average the
difference between the numerically obtained reference and the
alternating optimization is quite small.

In Fig. 3 the average rate for the PA scheme with a joint
power constraint versus the defined SN R,.; is shown for
two system configurations. Firstly it can be seen that the
achieved rate of the lower bound solution (12) and (13) is

Ps,17Pr,l7~'7Ps,A1;Pr,M

SN Ryt = T dnE quite tight to the curve which has been obtained by the
Koy (?) numerical optimization with the original SNR expression.
M
Ps7mam : Pr7mbm
(Psfh Prfl’ T 7PSfM7 PrfM) = arg R mZ:l 10g2 (1 * Ps7mam + Pmmbm)

M M

subject to Z Py + Z Pim = Py,

m=1 m=1

Pom >0, P >0¥ m (11)
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Fig. 4. Average rate vs. relative distance d = d1/do; SN Ryes = 10 dB;
symmetric antenna configuration (4/4/4); pairing of subchannels in space
and frequency domains.

Here, were also repeated the numerical optimization with 50
randomly generated starting vectors. The tightness comes from
the fact that although the relative error of the lower bound
compared to the reference is increased for low SNRs it only
causes a small absolute error in b/s/Hz. Secondly, the impact
of subchannel pairing is depicted. It can be seen that the
difference for pairing in “space” and “space and frequency”
domains is negligible, but both offer a considerable increase
in performance compared to random subchannel pairing.

In Fig. 4 we show the average rates versus the distances
between nodes for a (4/4/4) system. For relative distances
d, = di/dy < 0.5 the optimal PA at the relay (9) with a
uniformly distributed transmit power at the source (“opt. relay
PA”) achieves a higher average rate than an optimal PA at the
source (9) with a uniform relay PA (“opt. source PA”). This
is due to the fact that in this area the attenuation between the
relay and the destination is larger than the attenuation between
the source and the relay. Therefore, it is more important to
allocate more power to the good subchannels of the second
hop. For d, > 0.5 this tendency changes. Now the path
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loss from the source to the relay is higher than from the
relay to the destination. Therefore, allocating more power
to good subchannels of the first hop is essential for high
rates. The alternating optimization of both, the source and the
relay PA, achieves the best performance of all PA schemes
with individual per node power constraints. All presented PA
schemes achieve a higher average rate compared to the case
where the relay has no CSI (“no CSI”) and only scales the
received signal to a transmit power of Pg/K per subcarrier.

VI. CONCLUSIONS

In this work we examined the possibilities of PA in space
and frequency domains within a MIMO-OFDM relaying link
if CSIT is available. We considered two approaches: (i) sepa-
rate optimization of the source or the relay PA with individual
per node transmit power constraints and (ii) joint optimization
of the source and the relay PA with a joint transmit power
constraint. For (i) we presented the optimal PAs for the
source and the relay. Further we showed that repeated alternate
optimization of the source and the relay PA improves the
achievable rate. For (ii) we presented a approximated solution
since the original problem is not concave. Furthermore, we
showed the impact of subchannel pairing on the achievable
rate of such a communication link.
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